5566GGss//ss AADDCC EEnnaabblliinngg 110000GGbbEE Ian Dedic, Chief Engineer, Fujitsu Microelectronics Europe OFC2010 Invited Paper, Digital Transmission Systems Copyright 2009 FUJITSU MICROELECTRONICS EUROPE GmbH 5566GGss//ss AADDCC :: nnoott jjuusstt aann AADDCC ddeessiiggnn pprroobblleemm (cid:1) 100G coherent receiver (cid:1) Why single-chip CMOS? (cid:1) So what is so difficult? (cid:1) CHAIS ADC (cid:1) DSP and integration (cid:1) Package and PCB (cid:1) Testing (cid:1) Examples (cid:1) Future challenges OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 1 Fujitsu Microelectronics Europe -http://www.chais.info 110000GG CCoohheerreenntt OOppttiiccaall TTrraannssppoonnddeerr 100G MUX S E F le I- c S t 10 r / S S ic M F F to a LD I-S I-S Precoding 4 l -> O / MUX X p F ti c I s a p l b s To system G p To network OTU-4 b 1 G (Router) Framer / FEC 11. 8 2 * * OTU-4 0 S 1 ADC 4 O 112 Gbps 100G client module for F p * 100G Ethernet or I- ti S c * OTU-4 / M SF SF ADC al - I I DSP > LD -S -S E ADC le / c X t F ri I c ADC a l 100G Coherent Receiver ADC+DSP Optical Module OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 2 Fujitsu Microelectronics Europe -http://www.chais.info 110000GG ccoohheerreenntt rreecceeiivveerr rreeqquuiirreemmeennttss (cid:1) 4-channel 56Gs/s ADC, minimum 6b resolution (cid:1) DP-QPSK receiver with H/V channels, I/Q conversion (OIF standard) (cid:1) 2x oversampling minimizes impact on performance • 56Gs/s needed, >60Gs/s with soft FEC (cid:1) In early 2009, predicted availability for such an ADC was in 2013 • Major obstacle to target rollout date for 100G networks (cid:1) DSP to remove transmission channel imperfections and recover data (cid:1) Dispersion, cross-polarization, time-varying channel, clock recovery (cid:1) ~12 TeraOperations/sec (TOPS) for 40Gb/s (cid:2) ~30 TOPS for 100Gb/s ? (cid:1) Power consumption and thermal constraints (cid:1) OIF target for complete coherent transponder ~70W (cid:1) Severe challenge for both ADC and DSP design • Total power for ADC+DSP needs to be < 50W (cid:1) Environmental restrictions make problem even more difficult than it first appears OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 3 Fujitsu Microelectronics Europe -http://www.chais.info WWhhyy ssiinnggllee--cchhiipp CCMMOOSS ffoorr 110000GG?? (cid:1) Massive data bandwidth between ADC and DSP (cid:1) 4-channel 6-8b 56Gs/s ADC means 1.3-1.8Tb/s of data at interface (cid:1) Getting this from one chip to another costs power and chip area (cid:2) • 10G SERDES link ~100mW/channel 3-4W per ADC (cid:1) Critical performance factor is power efficiency, not just speed (cid:1) Discrete ADC dissipating >10W each are difficult to use • Total power dissipation is too high (>100W) • Skew management/calibration nightmare (especially over temperature/lifetime) • Higher intrinsic manufacturing cost and lower yield for a hybrid (cid:1) Single-chip CMOS solution is the “Holy Grail” (cid:1) Integrate on ASIC with >50M gates (limited by power dissipation) (cid:1) Leverage CMOS technology advances to drive down power and cost • Single-chip allows integration of calibration and channel deskew/matching (cid:1) ADC and DAC get faster and lower power at the same rate as digital – ideally ☺ OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 4 Fujitsu Microelectronics Europe -http://www.chais.info AADDCC++DDSSPP ---- ssoo wwhhaatt iiss ssoo ddiiffffiiccuulltt ?? (cid:1) ADC is the biggest circuit design problem (cid:1) Ultra-high speed, low noise and jitter, low power consumption – all same time (cid:1) Conventional techniques cannot easily deliver required performance (cid:1) Digital-analogue noise coupling (cid:1) Sampler/clock jitter <100fs on same chip as DSP with >100A current spikes (cid:1) Wide bandwidth (>15GHz), good S11 (up to >30GHz), low theta-jc (cid:1) Sampler, package, PCB design all very challenging (cid:1) DSP design is out-of-the-ordinary (tens of TeraOPS) (cid:1) Extremely power-efficient (cid:2) use massive parallelism, not GHz clocks (cid:1) Test (cid:1) Performance verification challenges limits of test equipment (cid:1) Need at-speed performance verification in production, not just functional testing OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 5 Fujitsu Microelectronics Europe -http://www.chais.info TThhee AADDCC pprroobblleemm (cid:1) Wideband low-noise sampler + demultiplexer + interleaved ADC array (cid:1) Smaller CMOS geometries (cid:2) higher speed (cid:2) worse mismatch and noise (cid:1) Single 56Gs/s track/hold very difficult due to extreme speed (cid:1) <9ps to acquire, <9ps to transfer to following interleaved T/H stages (cid:1) Interleaved track/hold (e.g. 4-channel 14Gs/s) also very difficult (cid:1) Signal/clock delays must match to <<1ps – how do you measure this? (cid:1) Noise, mismatch and power of cascaded circuits all adds up (cid:1) Multiple sampling capacitors, buffers, switches, demultiplexers… (cid:1) Interleaved ADC back-end is not so difficult (but only in comparison!) (cid:1) Design for best power and area efficiency rather than highest speed (cid:1) Interleave as many as necessary to achieve required sampling rate (cid:1) 8 x 175Ms/s 8b SAR ADCs fit underneath 1 solder bump (cid:2) 45Gs/s per sq mm ☺ OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 6 Fujitsu Microelectronics Europe -http://www.chais.info AA 5566GGss//ss CCMMOOSS AADDCC ssoolluuttiioonn CHArge-mode Interleaved Sampler (CHAIS) DEMUX 14GHz VCO 80 x ADC Inputs 80 x 8b ADC Outputs (1 per ADC pair) Clocks D 80 80 E M ADCBANK U A X A D 80 80 E ADCBANK M B U X Input B 4 Phase Sampler D 80 80 EM ADCBANK D Output U C ig X i 1024b C t a 437.5MHz l 80 80 D E M ADCBANK U D X D Trim Voltages Calibration OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 7 Fujitsu Microelectronics Europe -http://www.chais.info CCHHAAIISS cciirrccuuiitt ooppeerraattiioonn [ this page intentionally left blank ] OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 8 Fujitsu Microelectronics Europe -http://www.chais.info AADDCC ppeerrffoorrmmaannccee (cid:1) 56Gs/s with 8 bit resolution (cid:1) Extra resolution allows some digital AGC after ADC instead of in OFE • Non-ideal INL/DNL has negligible impact on performance (cid:1) 63Gs/s for 40nm ADC to allow for higher overhead soft decision FEC • Higher clock rate plus soft FEC needs 40nm to meet same power budget (cid:1) 16GHz bandwidth (cid:1) Closely controlled, can be extended using digital equalization if required (cid:1) ENOB>5.7 for -6dBFS sinewave input (cid:1) Similar power to 100G OFE output signal peaking at full-scale (PAR=9dB) (cid:1) ENOB almost constant with input frequency (cid:1) On-chip PLL jitter is 30fs rms, THD < -40dBc at 15GHz (cid:1) <0.2ENOB variation from 1GHz to 15GHz (cid:1) Power consumption 2W per ADC in 65nm, 9W for complete 4-channel RX (cid:1) 5W for 63Gs/s 40nm 4-channel RX – power scales better than digital ! OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 9 Fujitsu Microelectronics Europe -http://www.chais.info
Description: