ebook img

Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk

Astronomy&Astrophysicsmanuscriptno.nh3revrev (cid:13)c ESO2017 January11,2017 Odin observations of ammonia in the SgrA +50 kms−1 Cloud and ⋆ Circumnuclear Disk Aa.Sandqvist1,Å.Hjalmarson2,U.Frisk3,S.Lundin4,L.Nordh1,M. Olberg5,andG. Olofsson1 1 StockholmObservatory,StockholmUniversity,AlbaNovaUniversityCenter,SE-10691Stockholm,Sweden e-mail:[email protected] 2 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala, Sweden 7 3 OmnisysInstrumentsAB,SolnaStrandva¨g78,SE-17154Solna,Sweden 1 4 OHBSweden,POBox1269,SE-16429Kista,Sweden 0 5 OnsalaSpaceObservatory,ChalmersUniversityofTechnology,SE-43992Onsala,Sweden 2 Received<date>;accepted<date> n a J ABSTRACT 0 Context.TheOdinsatelliteisnowintoitssixteenthyearofoperation,muchsurpassingitsdesignlifeoftwoyears.Oneofthesources 1 whichOdinhasobservedingreatdetailistheSgrAComplexinthecentreoftheMilkyWay. Aims.TostudythepresenceofNH intheGalacticCentreandspiralarms. ] 3 A Methods.Recently,Odinhasmadecomplementaryobservationsofthe572GHzNH3 linetowardstheSgrA+50 kms−1 Cloudand CircumnuclearDisk(CND). G Results.Significant NH emissionhasbeenobservedinboththe+50 kms−1 CloudandtheCND.ClearNH absorptionhasalso 3 3 . beendetectedinmanyofthespiralarmfeaturesalongthelineofsightfromtheSuntothecoreofourGalaxy. h Conclusions.Theverylargevelocitywidth(80 kms−1)oftheNH emissionassociatedwiththeshockregioninthesouthwesternpart p 3 oftheCNDmaysuggestaformation/desorptionscenariosimilartothatofgas-phaseH Oinshocks/outflows. - 2 o Keywords.Galaxy:centre–ISM:individualobjects:SgrA–ISM:molecules–ISM:clouds r t s a [ 1. Introduction for the fractional abundance ratio of [O2/H2], averaged over a 1 ThecoreoftheMilkyWayGalaxyisaregionofgreatcomplex- e9t-aarlc.m20in08re)g-iosnig,nwifiascafnotuanmdotounbtesXo(fOH2)≤O,1C.2O×a1n0d−7C(iSwanedreqvdies-t v ity containing a wide variety of physical environments. At the 2 tected in many regions of the SgrAComplex (Karlsson et al. 6 verycentreresidesafour-million-solar-masssupermassiveblack 2013).Unfortunately,therewereanumberofinstabilitiesinthe 3 hole, whose non-thermal radio continuum signature is called 5 SgrA∗. Orbiting around it, at a distance of one to a few pc, 572GHzNH3 receiverduringthose observationperiodswhich 2 with a velocity of about 100 km/s, is a molecular torus called preventedusfromobtainingresultsforthisNH3transitioninthe 0 coreregionoftheGalaxy,althoughsomeresultswereobtained the Circumnuclear Disk (CND). The CND has a mass of 104 . forthespiralarmfeatures.Theseinstabilitieswereduetoaloss 1 to 105 M and a gas temperature of several hundred degrees. ⊙ of phase lock for this receiver early in the mission. However, 0 Beyondthis, thereexistsalargeMolecularBeltconsistingpre- 7 dominantly of two GMCs, called the +50 and the +20 kms−1 withappropriatecenteringoftheobservingfrequencyandmany 1 frequencycalibrations,performedusinganearbytelluricozone clouds.BothGMCsaremassive,about5×105M ,withaden- : ⊙ line,itispossibletocorrectforthislackofphaselock.Thisshort v sity104 -105 cm−3, gastemperature80-100K,anddusttem- papernowreportsonnewsuccessfulOdinNH observationsin Xi perature20-30K(e.g.Sandqvistetal.2008).Generalreviews theSgrA+50 kms−1 Cloud,andinthesouthw3esternregionof oftheGalacticCentrehavebeenpresentedbye.g.Mezgeretal. theCNDwhichisacomplexshockedregioncontaininganum- r (1996)andMorris& Serabyn(1996),with an up-to-dateintro- a berofinteractingcomponents(Karlssonetal.2015). ductiontotheSgrAComplexgivenbyFerrie`re(2012). TheOdinsatellite(Nordhetal.2003;Frisketal.2003)has 2. Observations surveyedtheSgrAComplexinanumberofdifferentmolecules. WhileitwasunsuccessfulinsearchingforO2-a3σupperlimit The Odin observations of the o-NH (1 − 0 ) line at 3 0 0 572.4981GHztowardstheSgrA+50 kms−1 CloudatJ2000.0 Sendoffprintrequeststo: 17h45m51s.7,−28◦59′09′′wereperformedinApril2015,withan AageSandqvist,e-mail:[email protected] ON-sourcetotalintegrationtimeof27.4hours.TheNH obser- ⋆ Odin is a Swedish-led satellite project funded jointly by the 3 vationstowardsthesouthwestern(SW)lobeoftheSgrACNDat Swedish National Space Board (SNSB), the Canadian Space Agency J2000.017h45m39s.7,−29◦01′18′′wereperformedinApril2016, (CSA),theNationalTechnologyAgencyofFinland(Tekes),theCentre withanON-sourcetotalintegrationtimeof26.7hours.Thesys- National d’Etudes Spatiales(CNES),France and the European Space Agency (ESA). The former Space division of the Swedish Space temtemperatureswere3300and3400K,respectively.Thehalf- Corporation,todayOHBSweden,istheprimecontractor,alsorespon- powerbeamwidthofOdin at the NH3 frequencyis 2.′1 and the sibleforOdinoperations. main beam efficiency is 0.89 (Frisk et al. 2003). The backend 1 Aa.Sandqvistetal.:OdinobservationsofNH towardstheSgrAComplex 3 spectrometerwasa1050MHzAOSwithachannelresolutionof 1MHz.FormoredetailsofOdinGalacticCentreobservations, seeKarlssonetal.(2013). 3. ResultsandDiscussion Ourtwo NH profiles,obtainedtowardsthe+50 kms−1 Cloud 3 andtheCNDSW,arepresentedinFigs.1and2,wheretheyhave beensmoothedtoachannelresolutionof1.6 kms−1.Gaussian analysiswasperformedonbothprofilesbyvisualestimationof allthreeparameters(intensity,velocity,andvelocityhalfwidth) foreachemissionandabsorptioncomponentandthefitwasthen executedinanunbiasedmanner.TheGaussiananalysisfittings arealsopresentedinFigs.1and2,andinTables1and2where thelisteduncertaintiesareatthe1σlevel.Thedominantimpres- sion in the figures is the clear emission features at positive ve- locities,whichariseintheSgrAComplex(e.g.Sandqvist1989). Mostofthenumerousweakerabsorptionfeaturesatnegativeve- locities are caused by the various Galactic spiral arm compo- Fig.1.Odinobservationsofthe572GHzNH linetowardsthe nentsalongthelineofsightfromtheSuntotheGalacticCentre 3 SgrA+50 kms−1 Cloud(blackprofile);thechannelresolution and are identifiable by their radial velocities (Sandqvist et al. is1.6 kms−1.TheredprofileistheresultoftheGaussiananal- 2015). A few of these features are near the limit of detectabil- ysis. ity,butcorrespondtoclearlyidentifiablesignaturesobservedin e.g.OH,H OandCOlinespresentedbyKarlssonetal.(2013). 2 The rms noise levels in the two profiles are 9 and 11 mK, re- spectively,sotheintensitiesoftheweakabsorptionfeaturesare predominantlygreaterthan3σ. The very fact that we are only observing ground-state am- moniaabsorptionfeaturesatnegativevelocities,andseenovisi- bleemission,againstveryweakcontinuumbackgroundsources (only210 and 140mK) implies thatthe excitationtemperature (T )ofthisgasmustbeclosetothetemperatureofthecosmic ex microwavebackground(T =2.725K),whichmeansthatthe CMB dominantpartoftheammoniapopulationisresidinginthelow- est state. This also means that the absorbing gas regions must have a density severalordersof magnitudelower than the crit- ical density of the ammonialine (5×107 cm−3), which is also consistentwiththeirlowH columndensities(seeTable3)and 2 lowvisualextinction.FromtheGaussiananalysisoftheabsorp- tion features,we cannow obtaincolumndensities, N(NH ), of 3 ortho-NH inamannersimilartoKarlssonetal.(2013): 3 N(NH )=3.69×1012τ (NH )∆V (1) 3 o 3 FWHM Fig.2.Odinobservationsofthe572GHzNH linetowardsthe 3 where∆V isthelinefullwidthathalfmaximumandτ is southwesternpartof theSgrA CircumnuclearDisk (blackpro- FWHM o thecentralopticaldepthoftheGaussianfittedtotheabsorption file);thechannelresolutionis1.6 kms−1.Theredprofileisthe featureand(forT =T )canbecalculatedas resultoftheGaussiananalysis. ex CMB T∗ τ =−ln 1+ A . (2) of RADEX 1 (van der Tak et al. 2007). Assuming a gas tem- o " Tcont# perature of T = 80 K and a gas density of n = 104 cm−3 H2 (Walmsleyetal.1986;Sandqvistetal.2008)andalinewidthof InEq.(2), TA∗ istheantennatemperatureoftheabsorptionline 39 kms−1,wegetN(NH3)=1×1016cm−2.Thisiscomparable intensity and is a negative number and Tcont is the background tothevalueof2×1016deducedbyMills&Morris(2013)from continuumtemperature,which is 210 and 140 mK for the +50 their observations of 14 higher NH transitions in this cloud, kms−1 Cloud and the CND SW, respectively (Karlsson et al. 3 where they estimate that about 10% of the NH column origi- 3 2013).TheresultsoftheGaussiananalysisoftheabsorptionfea- nates from a high temperature (≈ 400 K) cloud component. It turesaresummarizedinTables1and2. is,however,largerthanthevalueof3×1015 cm−2 obtainedby Themajoremissionfeatureinthe+50 kms−1 profile,at47 Herrnstein&Ho(2005)fromtheirobservationsofthe23GHz kms−1 originatesinthe+50 kms−1 Cloud.TheGaussiananal- inversion line. For the +50 kms−1 Cloud, our column density ysis yielded a T∗ = 266 mK and a line width of 39 kms−1. A valuethenyieldsano-NH3abundancewithrespecttohydrogen, Correctingforthebeamefficiency(0.89)weobtainamainbeam X(NH )= N(NH )/N(H ),of4×10−8,ifweassumeamolecu- 3 3 2 brightness temperature of 298 mK. In order to obtain an NH 3 columndensityforthecloud,wehaveusedtheon-lineversion 1 http://var.sron.nl/radex/radex.php 2 Aa.Sandqvistetal.:OdinobservationsofNH towardstheSgrAComplex 3 Table1.Gaussianfitstothe+50 kms−1 CloudNH profile. 3 V T∗ ∆V τ N(NH ) Source A o 3 (kms−1) (mK) (kms−1) (cm−2) −230 −36±8 7 0.19±0.05 (5±1)×1012 HighNegativeVelocityGas(HNVG) −217 −41±7 9 0.22±0.04 (7±1)×1012 HNVG −189 −29±8 7 0.15±0.04 (4±1)×1012 HNVG −136 −39±8 11 0.21±0.04 (8±2)×1012 ExpandingMolecularRing(EMR)(nearside) −111 −53±3 51 0.29±0.02 (55±3)×1012 EMR(nearside) −48 −40±6 11 0.21±0.03 (9±1)×1012 3-kpcarm −29 −19±9 7 0.10±0.04 (2±1)×1012 −30 kms−1arm −3 −45±39 12 0.24±0.20 (10±9)×1012 Local/Sgrarm 47 266±29 39 ... (1±0.1)×1016 +50 kms−1Clouda 49 −96±28 18 0.23±0.07 (15±5)×1012 +50 kms−1Cloudb 186 28±8 7 ... ... ... aFromRADEXanalysis,seetext bSelf-absorption,seetext larhydrogencolumndensityofN(H )=2.4×1023cm−2(Lis& 2 Carlstrom1994),whichwasdeterminedfromobservationsofa totaldustcolumn.UsinginsteadthevalueofN(H )=1.6×1023 2 cm−2, which was determined from SEST observations of the C18O(1-0)and(2-1)linesatthisposition,(Karlssonetal.2013), wegetano-NH abundanceof6.3×10−8. 3 Theemissionprofileofthe+50 kms−1Cloudissignificantly affected by self-absorption, as can be seen in Fig. 1. Also, the Gaussian analysis resulted in a clear self-absorption feature at 49 kms−1(seeTable1)withanintensityof−96mK.Thecorre- spondingopticaldepthandcolumndensityforthisfeaturewere thendetermined,usingEqs.(2)and(1),assumingthattheself- absorbing region of the cloud is on the near side of the +50 kms−1 Cloud and thus absorbing both the background contin- uumof210mKandthebackgroundlineemissionof265mK,a totalof475mK. There are two overlapping emission features in the CND SW profile seen in Fig. 2 and analysed in Table 2, namely at 33 and 68 kms−1 with line widths of 27 and 81 kms−1, respectively. In both of these features there are signs of self- Fig.3. Comparison of the Odin observations of the 572 GHz absorptionat34and76 kms−1,respectively.Theopticaldepths NH3 line (magenta) and the 548 GHz H128O line (black) to- of these self-absorptions will depend on the relative positions wards the southwestern part of the SgrA Circumnuclear Disk; of the components along the line of sight. For the 34 kms−1 thechannelresolutionsare1.6and3 kms−1,respectively. self-absorption we determine the optical depth, assuming that it and its emission companion at 33 kms−1 are in front of the emission componentat 76 kms−1, and that the self-absorption namelyagastemperatureof80Kanddensityof104cm−3.The is on the near side of the 33 kms−1 component.Thusthe self- antennatemperatureof139mKconvertstoamainbeamtemper- absorbingregionabsorbsthecontinuumemissionof140Kand atureof156mK;thelinewidthis27 kms−1.ThebestRADEX both the 33 kms−1 emission and the blue overlappingwing of fitthenyieldsanNH columndensityof4×1015cm−2. 3 the68 kms−1emissionfeature,whichamountstoatotalsumof PerhapsthemostinterestingfeatureisthebroadNH emis- 3 140+138+28=306mK,avalueweuseforTcontinEq.(2).For sion feature centered at 68 kms−1 with a line width of 81 the76 kms−1self-absorption,weassumethattheself-absorbing kms−1. Odin has detected a comparable very broad H18O ab- regionisonthenearsideofthe68 kms−1 emissionregionand 2 sorption line at the same position (Karlsson et al. 2015) - see both lie either in front of, or behind, the 140 K continuum re- Fig. 3. The antennatemperatureof this NH feature is 46 mK, 3 gion.Thusarangefortheopticaldepthisobtained,usingeither whichimpliesa mainbeamtemperatureof52mK.Applyinga the red-shifted emission of the 68 kms−1 region at the appro- RADEXstudy,andassumingakinetictemperatureof200Kand priatevelocityof76 kms−1 whoseemissionvalueis45mK,or densityof4×104cm−3(Requena-Torresetal.2012),weobtain 140+45=185mK,thevaluesofwhichweuseforTcontinEq. a column density of o-NH of 7×1014 cm−2. The H column 3 2 (2). density for this region is 4×1022 cm−2 (Karlsson et al. 2015), TherearetwomajoremissionfeaturesintheCNDSWpro- which would then yield an abundanceratio for o-NH with re- 3 fileandwehaveperformedaRADEXanalysisofboth.Firstwe spect to H of X[NH ] = 1.75× 10−8. Karlsson et al. (2015) 2 3 assume that the 33 kms−1 feature originates in the Molecular obtainedastrikinglyhighH Oabundanceof1.4×10−6 inthis 2 beltandwecanthusapplyitsphysicalpropertiestotheanalysis, shockregion. 3 Aa.Sandqvistetal.:OdinobservationsofNH towardstheSgrAComplex 3 Table2.GaussianfitstotheCNDSWNH profile. 3 V T∗ ∆V τ N(NH ) Source A o 3 (kms−1) (mK) (kms−1) (cm−2) −220 −43±8 7 0.36±0.08 (9±2)×1012 HNVG −195 −34±5 17 0.28±0.05 (17±3)×1012 HNVG −134 −49±12 4 0.43±0.13 (6±2)×1012 EMR(nearside) −113 −31±6 15 0.25±0.05 (14±3)×1012 EMR(nearside) −85 −44±8 8 0.38±0.08 (11±2)×1012 CND −51 −43±7 9 0.37±0.07 (13±2)×1012 3-kpcarm −22 −19±8 8 0.14±0.06 (4±2)×1012 −30 kms−1arm 3 −44±11 4 0.38±0.11 (6±2)×1012 Local/Sgrarm 33 139±47 27 ... (4±1)×1015 MolecularBelta 34 −64±50 13 0.23±0.19 (11±9)×1012 MolecularBeltb 68 46±6 81 ... (7±1)×1014 Shockregiona 76 −31±8 9 0.19±0.05to1.18±0.6 ((6±2)to(40±20))×1012 ??b aFromRADEXanalysis,seetext bSelf-absorption,seetext Table3.NH andH Oabundancecomparisons 3 2 Source N(NH ) N(H ) X(NH ) X(H O) 3 2 3 2 (cm−2) (cm−2) (×10−9) (×10−9) SgrAComplexComponents +50 kms−1Cloud (1±0.1)×1016 1.6×1023a 63 40a +50 kms−1Cloudredwing ... ... ... ≥1000a MolecularBeltatCNDSW (4±1)×1015 ¡1.0×1023b ¿40 ... ShockregionatCNDSW (7±1)×1014 4×1022c 18 1400c +20 kms−1Cloud ... 1×1023b ... 20a +20 kms−1Cloudredwing ... ... ... ≥800a GalacticComponents EMR (30±2)×1012d 2.5×1021e 12 ... 3-kpcArm (11±2)×1012d 4.0×1021 f 3 ¿3 f −30 kms−1Arm (3±1)×1012d 1.9×1021 f 2 30a Local/SgrArm (8±5)×1012d 6.4×1021 f 1 ¿3 f a Karlssonetal.(2013);b valueforthe+20 kms−1 CloudfromKarlssonetal.(2013);c Karlssonetal.(2015);d meanoftherespectivevalues inTables1and2;e deducedfromthe13CO(1−0)profileinFig.1(a)byBallyetal.(1988)andtheconversionfactorgivenbySofue(1995); f Sandqvistetal.(2003) A summary of the derived NH abundances for different magnitudesofvisualextinction2 andratherlowclouddensities 3 componentsin the SgrAComplexandGalactic featuresis pre- (socalledtranslucentclouds).However,itseemsthatachemical sented in Table 3, togetherwith H O abundances,where avail- modelcombininggas-phaseand grainsurface reactionscan do 2 able.Itappearsthattheortho-ammoniaabundancesof(2−6)× thejobatatemperatureof30-50Kandadensityof≈103cm−3, 10−8 observed by us in the SgrA molecular cloud regions(the butonlyiftherelevantspeciesreallyaredesorbedasaresultof +50 kms−1 Cloud, as well as the Molecular Belt) can be ac- exothermicsurfacereactions(Perssonetal.2014;theirFig.C3, commodated in current chemical models for dense gas clouds and the translucent gas part of Fig. C2). A remaining concern (PineaudesForetsetal.1990),especiallysoifgrainsurfacere- maybethatthesimultaneousmodelabundancesofNHandNH 2 actionsandvarioussubsequentdesorptionprocessesareconsid- are not consistentwith those observed by Persson et al. (2010, ered(Perssonetal.2014;densecloudpartoftheirFig.C2).Our 2012). detectionsofNH atthemuchlowerabundanceof(1−3)×10−9 As discussed in some detail by Karlsson et al. (2013), the 3 in spiral arm clouds are not so easy to understand in terms of gas-phase water abundances determined for the Sgr A +50 chemical models. Similarly low abundanceshave been derived kms−1 and +20 kms−1 molecular clouds are considerably en- by Persson et al. (2010, 2012) from Herschel observations of hancedcomparedtothesituationincoldcloudcoreswherethe spiral arm NH absorption regions in the directions of W49N watermainlyresidesasiceonthecoldgrainsurfaces.Similarly 3 and G10.6−0.4 (W31C), and by Wirstro¨m et al. (2010) from high or even more enhanced water abundanceshave been esti- Odin observations in the direction of SgrB2. The NH abun- mated in lower density spiral arm clouds observed in absorp- 3 dancesindiffuseortranslucentclouds,estimatedbyLisztetal. tionagainstSgrAbyKarlssonetal.(2013),andagainstSgrB2 (2006) from23 GHz inversionline absorptionagainstcompact using Odin by Wirstrm et al. (2010) and using Herschel Space extragalactic sources, are also similarly low. The low H col- ObservatoryalsobyLisetal.(2010).Theelevatedgasphasewa- 2 umndensitiesofthespiralarmcloudscorrespondtoonlyafew 2 usingN(H )/A ≈0.94×1021cm−2mag−1,Bohlinetal.(1978) 2 v 4 Aa.Sandqvistetal.:OdinobservationsofNH towardstheSgrAComplex 3 ter abundancesdefinitely require desorptionof water ice, most Requena-Torres,M.A.,Gu¨sten,R.,Weiss,A.,etal.2012,A&A,542,L21 likely handled by PDR modeling including grain surface reac- Sandqvist,Aa.1989,A&A,223,293 tions(cf.Hollenbachetal.2009)Thereleaseofwatermolecules Sandqvist,Aa.,Bergman,P.,Black,J.H.,etal.2003,A&A,402,L63 Sandqvist,Aa.,Larsson,B.,Hjalmarson,Å.,etal.2008,A&A,482,849 formedon colder grainsurfacesmay also explain the ortho-to- Sandqvist,Aa.,Larsson,B.,Hjalmarson,Å.,etal.2015,A&A,584,A118 paraH2O abundanceratio lowerthan3 verylikely observedin Sofue,Y.1995,PASJ,47,527 thespiralarmsagainstSgrB2(Lisetal.2010). vanderTak,F.F.S.,Black,J.H.,Scho¨ier,F.L.,Jansen,D.J.,&vanDishoeck, The very high gas-phase water abundance determined for E.F.2007,A&A,468,627 Walmsley,C.M.,Gu¨sten,R.,Angerhofer,P.,&Mundy,L.1986,A&A,155,129 the shock regionat CND SW by Karlsson et al. (2015) is sim- Wirstro¨m,E.S.,Bergman,P.,Black,J.H.,etal.2010,A&A,522,A19 ilar to that found in the red-ward high-velocity wings of the Sgr A molecular clouds, and likely results from shock heat- ing causing release of pre-existing grain surface water, possi- bly combined with high temperature shock chemistry. (cf. dis- cussion in Karlsson et al. 2013). The very large velocitywidth (80 kms−1) of the NH emission associatedwith the shockre- 3 gion at the CND SW (Fig. 2 and Table 2) may suggest a for- mation/desorption scenario similar to that of gas-phase H O 2 in shocks/outflows, where the actual ammonia abundance is achievableinchemicalmodelsforquiescentmolecularcloud(as discussedpreviously). 4. Conclusions We have successfully observed NH emission from the SgrA 3 +50 kms−1 Cloud and the CND using the Odin satellite. The verylargevelocitywidth(80 kms−1)oftheNH emissionasso- 3 ciatedwiththeshockregioninthesouthwesternpartoftheCND may suggest a formation/desorptionscenario similar to that of gas-phase H O in shocks/outflows. In addition, clear NH ab- 2 3 sorptionhasalsobeenobservedinthespiralarmfeaturesalong thelineofsighttotheGalacticCentre. The high quality Odin NH spectra, observed in 2015 and 3 2016, presented in this short paper, together with the H O and 2 H18OspectraofsimilarlyhighqualityobservedbyOdintowards 2 CometC/2014Q2(Lovejoy)inJanuary-February2015(Biver et al. 2016) were obtained 14-15 years after the launch of the Odin satellite. Thisdemonstratesto ourdelight(andalso some surprise) that it is possible to build a comparativelycheap, but still rather complicated, satellite observatory(with five tunable heterodynereceiversandamechanicalcoolingmachine)which can remain in high quality operationfor 15 years or more. We shouldherenotethatthe Odinsatellite observatorysincemany yearshasbeenoperatedpracticallyfull-timeinglobalmonitor- ingoftheterrestrialatmosphere(theOdinaeronomymode). References Bally,J.,Stark,A.A.,Wilson,R.W.,&Henkel,C.1988,ApJ,324,223 Biver,N.,Moreno,R.,Bockele´e-Morvan,D.,etal.2016,A&A,589,A78 Bohlin,R.C.,Savage,B.D.,&Drake,J.F.1978,ApJ,224,132 Ferrie`re,K.2012,A&A,540,A50 Frisk,U.,Hagstro¨m,M.,Ala-Laurinaho,J.,etal.2003,A&A,402,L27 Herrnstein,R.M.,&Ho,P.T.P.2005,ApJ,620,287 Hollenbach,D.,Kaufman,M.J.,Bergin,E.A.,&Melnick,G.J.2009,ApJ,690, 1497 Karlsson,R.,Sandqvist,Aa.,Hjalmarson,Å.,etal.2013,A&A,554,A141 Karlsson,R.,Sandqvist,Aa.,Fathi,K.,&Martin,S.2015,A&A,582,A118 Lis,D.C.,&Carlstrom,J.E.1994,ApJ,424,189 Lis,D.C.,Phillips,T.G.,GoldsmithP.F.,etal.2010,A&A521,L26 Liszt,H.S.,Lucas,R.,&Pety,J.2006,A&A,448,253 Mezger,P.G.,Duschl,W.J.,&Zylka,R.1996,A&AR,7,289 Mills,E.A.C.,&Morris,M.R.2013,ApJ,772,105 Morris,M.,&Serabyn,E.1996,ARA&A,34,645 Nordh,H.L.,vonSche´ele,F.,Frisk,U.,etal.2003,A&A,402,L21 Persson,C.M.,Black,J.H.,Cernicharo,J.,etal.2010,A&A,521,L45 Persson,C.M.,DeLuca,M.,Mookerjea,B.,etal.2012,A&A,543,A145 Persson,C.M.,Hajigholi,M.,Hassel,G.E.,etal.2014,A&A,567,A130 PineaudesForets,G.,Roueff,E.,&Flower,D.R.1990,MNRAS242,512 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.