ebook img

Ocean acidification changes the structure of an Antarctic coastal protistan community PDF

32 Pages·2017·1.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ocean acidification changes the structure of an Antarctic coastal protistan community

BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) Ocean acidification changes the structure of an Antarctic coastal protistan community AlyceM.Hancock1,2,3,AndrewT.Davidson3,4,JohnMcKinlay4,AndrewMcMinn1,2,3,KaiSchulz5,and RickL.vandenEnden4 1InstituteofMarineandAntarcticStudies,UniversityofTasmania20CastrayEsplanade,BatteryPointTASAustralia7004 2AntarcticGatewayPartnership,20CastrayEsplanade,BatteryPointTASAustralia7004 3AntarcticClimate&EcosystemsCooperativeResearchCentre20CastrayEsplanade,BatteryPointTASAustralia7004 4AustralianAntarcticDivision203ChannelHwy,KingstonTASAustralia7050 5CentreforCoastalBiogeochemistryResearch,SouthernCrossUniversity Correspondenceto:AlyceHancock([email protected]) Abstract.Antarcticnear-shorewatersareamongstofthemostvulnerableintheworldtooceanacidification.Microbesoccupy- ingthesewatersarecriticaldriversofecosystemproductivity,elementalcyclingandoceanbiogeochemistry,yetlittleisknown abouttheirsensitivitytooceanacidification.Anunreplicated,six-leveldose-responseexperimentwasconductedusing650L incubationtanks(minicosms)adjustedtofugacityofcarbondioxide(ƒCO )from343to11641µatm.Theminicosmswere 2 5 filledwithnear-shorewaterfromPrydzBay,EastAntarcticaandtheprotistancompositionandabundancewasdeterminedby microscopy analysis of samples collected during the 18 day incubation. No CO -related change in the protistan community 2 composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of protists to ƒCO werespecies-specificforbothheterotrophicandautotrophicprotists.Theresponsebydiatomswasrelatedtocellsize, 2 large cells increasing in abundance with low to moderate ƒCO (634-953 µatm). Similarly, the abundance of Phaeocystis 2 10 antarctica increased with increasing ƒCO2 peaking at a ƒCO2 of 634 µatm. Above this threshold the abundances of large diatomsandPhaeocystisantarcticafelldramatically,andsmalldiatomsdominated,thereforeculminatinginasignificantshift inthecompositionoftheprotistancommunity.ThethresholdCO levelatwhichthecompositionchangedagreedwiththat 2 previouslymeasuredatthislocation,indicatingitremainsconsistentamongseasons.Thissuggeststhatnear-shoremicrobial communitiesarelikelytochangesignificantlyneartheendofthiscenturyifanthropogenicCO releasecontinuesunabated, 2 15 withprofoundramificationsfornear-shoreAntarcticecosystems. Copyrightstatement. 1 Introduction Eukaryotic and prokaryotic microbes are the most abundant organisms in the oceans and comprise the base of all marine foodwebs(Kirchman,2008;CooleyandDoney,2009;Doneyetal.,2012).Theircompositionandabundancedeterminesthe 1 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) qualityandquantityoffoodavailabletohighertrophiclevels,affectingfisheryproductivityandtheconservationofbiological diversity(CooleyandDoney,2009;Doneyetal.,2012).IntheSouthernOcean,microbesaredriversofproductivity,elemental cyclesandoceanbiogeochemistry,meaningtheirresponsetoenvironmentalstressorsisakeydeterminantofSouthernOcean feedbackstoglobalclimatechange(ArrigoandThomas,2004;Arrigoetal.,2008;Kirchman,2008).Despitetheirimportance, 5 relativelylittleisknownaboutthesensitivityofAntarcticamarinemicrobestooceanacidificationandthislimitsourabilityto predicthowtheSouthernOceanwillbeimpactedinthefuture,andthefeedbackthismayhaveonglobalclimatechange. TheSouthernOceanisparticularlyvulnerabletooceanacidificationduetoitscoldtemperatures,extensiveupwellingand naturally large seasonal fluctuations in pH. Carbon dioxide (CO ) has a higher solubility at cold temperatures so that more 2 CO isbeingabsorbedinpolarwaterscomparedtothatinwarmerwaters.Addedtothis,thesurfacewatersoftheSouthern 2 10 Ocean are being exposed to increased CO2 from upwelling bringing deep CO2 rich waters to the surface (Orr et al., 2005). Thisisenhancedinnear-shoreAntarcticawhereupwellingisgreater(McNeiletal.,2010;IPCC,2011).Thesewatersalready experience large seasonal fluctuations in pH, upon which the anthropogenic decrease is superimposed. Prydz Bay, off Davis Station East Antarctica, shows an annual cycle of CO levels ranging from as high as 450 µatm during autumn and winter 2 to below 100 µatm in summer (Gibson and Trull, 1999; Roden et al., 2013). During autumn and winter, sea-ice covers the 15 ocean,lightislimitingtophotosynthesis,thedraw-downofCO2byprimaryproductionandair-seagasexchangeisnegligible. During spring and summer the sea-ice retreats and phytoplankton bloom, due to the increased light and nutrient availability (Gibson and Trull, 1999; Roden et al., 2013). Thus, phytoplankton in these coastal Antarctic waters are exposed to highly variablecarbonatechemistryovertheannualcycle. TherehavebeenrelativelyfewstudiesontheresponseofmicrobialcommunitiestoincreasedCO intheSouthernOcean 2 20 andAntarcticwaters,andoutofthesefewerhavebeenatthecommunitylevel(Tortelletal.,2008;Fengetal.,2010;McMinn etal.,2014;Coadetal.,2016;Davidsonetal.,2016;Tarlingetal.,2016;Thomsonetal.,2016;McMinnetal.,2017).These studiesreportarangeofmicrobialresponsestoincreasedCO ,butonecommontrendwasashiftincommunitycomposition. 2 With increased CO Tortell et al. (2008) and Feng et al. (2010) found an increase in the dominance of Chaetoceros species 2 oversmaller,pennatediatomssuchasPseudonitzschiasubcurvata.Tortelletal.(2008)alsofoundanincreaseinPhaeocystis 25 antarcticaabundanceat800µatm,althoughFengetal.(2010)foundnoeffectonthesamespecies.Davidsonetal.(2016)and Thomsonetal.(2016)ranaminicosmstudyatthesamelocationasthisstudy(DavisStation,EastAntarctica),andfounda significantchangeinspeciesabundanceandbiomasswithincreasesinCO above643to1281µatm(Davidsonetal.,2016; 2 Thomsonetal.,2016).Belowthisthresholdthecommunityhadahighabundanceoflargediatoms,butabovewasdominated by nano- and picoplankton and Fragilariopsis curta/cylindrus <10 µm long. This is consistent with microbial communities 30 studiedelsewhereintheworld,particularlyintheArctic,wherestudieshaveobservedashifttopico-andnanoplanktonathigh CO (Hareetal.,2007;Brussaardetal.,2013).Schulzetal.(2017)recentlyreviewed31communitylevelstudies,findingan 2 increaseinpicoeukaryotesathighCO inmoststudies,particularlyprasinophytesandchlorophytes.Theeffectsofincreased 2 CO onlargermarinediatomswaslessclearwithevidenceforbothpromotionandinhibition.Schulzetal.(2017)concluded 2 that the effects on marine diatoms are likely to be at a species level rather than the community level, and therefore could be 35 moredifficulttodetect. 2 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) Incubationsofnaturalcommunities,whichincludetheeffectsofspeciesinteractionsandcompetition,areessentialtopredict theeffectsofoceanacidificationonmicrobialcommunities(Schulzetal.,2017).Thisstudywillassessthefollowingquestions onanaturalmicrobialcommunityfromnear-shoreEastAntarcticwaters. 1. DoindividualspecieshavedifferenttolerancestoincreasedCO level? 2 5 2. DoestheprotistancommunitycompositionandabundancechangewithincreasedlevelsofCO2?AndwhatCO2 level elicitsthischange? 3. DoesanacclimationperiodallowtheprotistancommunitytobettertolerateexposuretoelevatedCO ? 2 4. WhencomparedwithDavidsonetal.(2016)andThomsonetal.(2016),doesourexperimentindicatethattheresponse by the protistan community at this site is consistent in nature and threshold, irrespective of seasonal and interannual 10 differencesinthecompositionofthecommunityandtheavailabilityofnutrients? 2 Methods An unreplicated, six-level dose-response experiment was conducted on a natural microbial community over a range of CO 2 levels (343, 506, 634, 953, 1140 and 1641 µatm). Seawater was collected on the 19th November 2014 approximately 1 km offshorefromDavisStation,Antarctica(68 C35’S,77 C58’E)fromanareaofice-freewateramongstbrokenfast-ice.The ◦ ◦ 15 seawaterwascollectedusingathoroughlyrinsed720LBambibucketslungbeneathahelicopterandtransferredintoa7000L polypropalenereservoirtank.Six650Lpolyethenetanks(minicosms),locatedinatemperature-controlledshippingcontainer, wereimmediatelyfilledviateflonlinedhoseviagravitywithanin-line200µmArkalfiltertoexcludemetazooplankton.The minicosmsweresimultaneouslyfilledtoensuretheycontainedthesamestartingcommunity.Theambientwatertemperature attimeofcollectionwas-1.0 Candtheminicosmsweremaintainedatatemperatureof0 C 0.5 C.Atthecentreofeach ◦ ◦ ◦ ± 20 minicosmtherewasanaugershieldedformuchofitslengthbyatubeofpolythene.Thisaugerwasrotatedat15rpmtogently mixthecontentsofthetanks.Eachminicosmtankwascoveredwithanacrylicair-tightlidtopreventCO off-gassingoutside 2 oftheminicosmheadspace.Foramoredetaileddescriptionoftheminicosmset-upseeDavidsonetal.(2016). Theminicosmexperimentwasconductedbetweenthe19thNovemberandthe7thDecember2014.Initially,thecontentsof thetanksweregivenadaytoequilibratetotheminicosms.Thiswasfollowedbyafivedayacclimationperiodtoincreasing 25 CO2atlowlight(0.8 0.2µmolm−2s−1),allowingcellphysiologytoacclimatedtotheCO2increase(days1-5).Duringthis ± periodtheCO wasprogressivelyadjustedoverfivedaystothetargetlevelforeachtank(343-1641µatm).ThereafterCO 2 2 wasadjusteddailytomaintaintheCO levelineachtreatment(seecarbonatechemistrysectionbelow).Followingacclimation 2 tothevariousCO treatments,lightwasprogressivelyadjustedto89 16µmolm 2s 1 ata19hlight:5hdarkcycle.The 2 − − ± communitywasincubatedandallowedtogrowforafurther10days(days8-18)withCO adjustedbacktotargeteachday(see 2 30 carbonate chemistry section below). For a detailed description of lighting apparatus and climates see Davidson et al. (2016) andDeppeleretal.(submitted). 3 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) 2.1 Carbonatechemistrymeasurementsandcalculations Carbonatechemistrywascalculatedfromdissolvedinorganiccarbon(DIC),pH (totalprotonscale),salinityandtemperature. T MinicosmfugacityofCO (ƒCO )wasadjustedincrementallyduringtheacclimationphasetothetargetlevelforeachtank, 2 2 andthenfortheremainderoftheexperimentƒCO wasadjusteddailytomaintainthetargetlevelswithinthetanks.Dailyad- 2 5 justmentsweremadebasedonmorningandafternoonpHmeasurements,andwereachievedbytheaddingtherequiredvolume of0.2µmfilteredCO saturatedseawater.Afteradjustment,fullcarbonatechemistrymeasurementswereperformed(DIC,pH, 2 salinityandtemperature)tochecktheadjustment,andifrequiredasecondaryadjustmentwasmade.DailypHmeasurements wereconductedusingaportable,NBS-calibratedprobe(MettlerToledo)andsalinitymeasurementsviaaconductivitymetre WTW197. DIC was measured by infra-red absorption on an Apollo SciTech AS-C3 analyzer equipped with a LICOR7000 10 andpHT withaGBCUV-Vis916spectrophotometerinatencentimetrethermostatedcuvettteandpHindicatordye(m-cresol purple).Allsamplesforthecarbonatechemistrywerecollectedin500mLglassbottleswithstoppersfollowingtheDickson etal.(2007)guidelines.FullcarbonatechemistrymeasurementsandcalculationsaredescribedinDeppeleretal.(submitted). 2.2 Microbialcommunitystructure Samplesfromeachminicosmwerecollectedondays1,3,5,8,10,12,14,16and18formicroscopicanalysistodetermine 15 protistanidentityandabundance.Approximately960mLwerecollectedfromeachtank,oneachday.Sampleswerefixedwith 40mLofLugol’siodineandallowedtosedimentoutat4 Cfor 4days.Oncecellshadsettledthesupernatantwasgently ◦ ≥ aspiratedtillapproximately200mLremained.Thiswastransferredtoa250mLmeasuringcylinder,againallowedtosettle (asabove),andthesupernatantgentlyaspirated.Theremaining~20mLwastransferredintoa30mLamberglassbottle. Afurther1Lwastakenondays0,6,13and18foranalysisbyFieldEmissionScanningElectronMicroscope(FESEM). 20 Thesesampleswereconcentratedto5mLbyfiltrationovera0.8µmpolycarbonatefilter.Cellswereresuspended,theconcen- tratetransferredtoaglassvialandfixedtoafinalconcentrationof1%EM-gradegluteraldehyde(ProSciTechPtyLtd). Allsampleswerestoredandtransportedat4 CtotheAustralianAntarcticDivision,Hobart,Australiaforanalysis. ◦ 2.2.1 Electronmicroscopy Gluteraldehyde-fixedsampleswerepreparedforFESEMimagingusingamodifiedpolylysinetechnique(MarchantandThomas, 25 1983).Inbrief,afewdropsofgluteraldehyde-fixedsamplewereplacedonpolylysinecoatedcoverslipsandpost-fixedwith OsO (4%)vapourfor30min,allowingcellstosettleontothecoverslips.Thecoverslipswerethenrinsedindistilledwater 4 anddehydratedthroughagradedethanolseriesendingwithemersionin100%dryacetonebeforebeingcriticallypointdried inaTousimisAutosamdri-815CriticalPointDrier.Thecoverslipsweremountedonto12.5mmdiameteraluminiumstubsand sputter-coatedwith7nmofplatinum/palladiuminaCressington208HRDcoater.ImagingofstubswasconductedbyJEOL 30 JSM6701FFESEMandprotistsidentifiedusingScottandMarchant(2005). 4 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) 2.2.2 Lightmicroscopy Lugols-fixedandsedimentedsampleswereanalysedbylightmicroscopybetweenJuly2015andFebruary2017.Between2to 10mL(dependingoncell-density)oflugols-concentratedsampleswasplacedintoa10mLUtermohlcylinder(Hydro-Bios, Keil)andthecellsallowedtosettleovernight.Duetothelargevariationinsizeandtaxa,astratifiedcountingprocedurewas 5 employedtoensurebothaccurateidentificationofsmallcellsandrepresentativecountsoflargercells.Allcellsgreaterthan20 µmwereidentifiedandcountedat20xmagnification;thoselessthan20µmat40xmagnification.Forlargercells(>20µm), 20randomlychosenfieldsofview(FOV)at3.66x106µm2 werecountedtogainanaveragecellsperL.Forsmallercells(<20 µm), 20 randomly chosen FOVs at 2.51x105µm2 were counted. Counts were conducted on an Olympus IX 81 microscope with Nomarski interference optics. Identifications were determined using Scott and Marchant (2005) and FESEM images. 10 Autotrophic protists were distinguished from heterotrophs via the presence of chloroplasts and based on their taxonomic identity. 2.3 Statisticalanalysis The minicosm experiment was a six dose, unreplicated experiment based on a repeated measures design. Due to the lack of replication,noformalstatisticscouldbeundertakenontheinteractionsbetweentimeandƒCO treatment.Temporalchanges 2 15 inspeciesabundancesbetweentreatmentgroupswereinformallyassessedbyplottingthemeanmicrobialabundanceateach timeforeachtreatment.MeansandstandarderrorswerecalculatedfromseparateFOVcounts;asthesearesub-samplesare fromasingletreatment,theyshouldbeconsideredpseudo-replicatesandareindicativeoftreatment-levelsamplingvariability. Abundant taxa with low variance were examined separately, but rare taxa with high variance were combined into functional groups (see Table 1 for abbreviations). In plots, data points from the different ƒCO treatments were slightly offset at each 2 20 sampletimetoavoidover-plottingofthedata.ClusteranalysesandordinationswereperformedonBray-Curtisresemblance matrixesformedfromsquare-roottransformedabundancedata.Thistransformationwasassessedasappropriateforreducing the influence of abundant species, as judged from a one-to-one relationship between observed dissimilarities and ordination distances(ie.Sheparddiagram,notshown).TheBray-Curtismetricwasusedasitisrecommendedforecologicaldataduetoits treatmentofjointabsences(ie.thesedonotcontributetowardssimilarity),andgivingmoreweighttoabundanttaxaratherthan 25 raretaxa(BrayandCurtis,1957).Thedatadays1to8andthendays8to18wereanalysedseparatelytodistinguishcommunity structureintheacclimationperiodandintheexponentialgrowthphaseduringtheincubationperiodoftheexperiment. Hierarchical agglomerative cluster analyses, based on the Bray-Curtis resemblance matrix, were performed using group- averagelinkage.SignificantlydifferentclustersofsamplesweredeterminedusingSIMPROF(similarityprofilepermutations method) (Clarke et al., 2008) with an alpha value of 0.05 and based on 1000 permutations. An unconstrained ordination by 30 non-metricmultidimensionalscaling(nMDS)wasperformedontheresemblancematrixwithaprimary(‘weak’)treatmentof ties(Kruskal,1964a,b).Thiswasrepeatedover50randomstartstoensureagloballyoptimalsolutionaccordingtoPeres-Neto and Jackson (2001). Clusters are displayed in the nMDS using colour. Weighted average of sample scores are shown in the 5 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) nMDStoshowtheapproximatecontributionofeachspeciestoeachsample.Theassumptionofalineartrendforpredictors withintheordinationwascheckedforeachcovariate,andinallinstanceswasfoundtobejustified. A constrained canonical analysis of principal coordinates (CAP) was conducted according to the Oksanen et al. (2017) protocol using the Bray-Curtis resemblance matrix. This analysis was used to assess the significance of the environmental 5 covariates,orconstraints,indeterminingthemicrobialcommunitystructure.UnlikethenMDSordination,theCAPanalysis usestheresemblancematrixtopartitionthetotalvarianceinthecommunitycompositionintounconstrainedandconstrained components,withthelattercomprisingonlythevariationthatcanbeattributedtotheconstrainingvariables,ƒCO ,Si,Pand 2 NO .Randomreassignmentofsampleresemblancewasperformedover199permutationstocomputethepseudo-F statistic x asameasureofsignificanceofeachenvironmentalconstraintinthestructuralchangeofthemicrobialcommunity(Legendre 10 and Anderson, 1999). A forward selection strategy was used to choose a minimum subset of significant constraints that still accountforthemajorityofthevariationwithinthemicrobialcommunity(Legendreetal.,2011). AllanalyseswereperformedusingRv1.0.136(RCoreTeam,2016)andtheadd-onpackageveganv2.4-2(Oksanenetal., 2017). 3 Results 15 3.1 Protistancommunityoverview Thestartingmicrobialcommunitywascharacteristicofapostsea-icebreak-outcommunityinthenear-shoreseawaterofPrydz Bay.Itwashighlydiversewithover100speciespresent,rangingfromsmallflagellates(<2µm)tolargediatoms(>100µm). Thetotalprotistanabundanceatthebeginningoftheexperimentwasquitelow(approximately3x105cellsL 1),butincreased − tobetween6.4x106and1.9x107cellsL 1dependingonthetreatment.Abundancesremainedlowduringtheacclimationperiod − 20 (days1to8)thenincreasedexponentiallyfromdays10to16inalltreatmentsexceptthehighestƒCO2 treatment(Figure1). Atday18therewasadecreaseinabundanceinalltreatmentsexcept635and1641µatm.Thehighvarianceinthe635µatm treatmentonday18islikelyaduetotheincreaseinafewrarelargediatomspecies,whichwerehighlyvariable.Thehighest ƒCO treatmentshowedadifferenttrajectorytotheothertanks,withlowabundancemaintaineduntilday12,afterwhichcell 2 numbersincreasedexponentially;hereafterthisisreferredtoasalagingrowth. 25 3.2 SpeciesspecificƒCO2tolerances 3.2.1 Diatoms DiatomsdominatedthemicrobialcommunityandshowedmarkedresponsestoincreasedƒCO levels.Theresponseofdiatoms 2 was size related, with small diatoms (<20 µm) showing little effect of exposure to higher ƒCO , while larger diatoms (>20 2 µm)increasedinabundanceatmoderatelevelsƒCO ( 634µatm)butdeclinedathigherƒCO .Thistrendwasparticularly 2 2 ≤ 30 evident in discoid centric diatoms (centric diatoms of the genera Thalassiosira, Landeria and Stellarima), which showed decreasedƒCO tolerancewithincreasingsize.Thesmallestdiscoidtaxa,anunidentified1to2µmdiametercentricdiatom, 2 6 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) showednosignificantresponsetoincreasingƒCO (Figure2a).Thalassiosiraantarctica,whichrangedinsizefrom10to20 2 µmdiameter,alsoshowednoeffectofincreasedƒCO untilthehighesttreatmentlevelof1641µatm(Figure2b).Landeria 2 annulata,amediumsizedcellof30to60µmdiameter,hadanincreasesinabundanceinlowtomoderateƒCO treatments 2 (343-634µatm)afterwhichabundancesdecreasedbutnotlowerthanthatofthecontroltreatment(Figure2c).Thetwolarger 5 dominantcentricspecies,Stellarimamicrotrias(40to80µmdiameter)andThalassiosiraritscheri(>50µmdiameter)showed an increase in abundance with moderate increases in ƒCO ( 634 µatm), but they showed a decrease in abundance at the 2 ≤ three higher ƒCO levels (Figure 2d and e respectively). Whilst these two larger species had a similar response, there were 2 subtledifferencesthatcorrelatewithdifferencesintheaveragesizeofthespecies;Stellarimawasslightlymoretolerantthan T.ritscheri(averagesizesofStellarimaislessthanT.ritscheri). 10 Asimilarsize-relatedresponsewasobservedinFragilariopsiscells(mostlyF.cylindrusbutincludedoccasionalF.curtaand F.kerguelensis).Fragilariopsiswasthedominantdiatom,comprisingbetween15to50%ofthetotalphytoplanktonabundance and ranged in length from 2 µm to >50 µm. Toward the end of the incubation (days 16 and 18), the abundance of small Fragilariopsiscells(<20µm)washigherintreatmentsexposedtomoderatelyenhancedƒCO (506-953µatm)comparedto 2 that of the control. Abundances in the ƒCO treatments >953 µatm were lower but less than those in the control treatment 2 15 (Figure3a).Incontrast,largercellsofFragilariopsis(>20µm),showedalowertolerancewithabundanceshighestinthethree lowerƒCO treatmentsandconsiderablylowerabundancesinthetwohighestƒCO treatments.Theabundanceoflargecells 2 2 inthe953µmtreatmentfellbetweenthesetwoextremes(Figure3b). Other diatoms showed similar responses with larger species having higher abundances in ƒCO treatments 634 µatm 2 ≤ but lower abundances in the three highest ƒCO treatments ( 953 µatm). This included members of the centric diatom 2 ≥ 20 genus Odontella (mainly O.weissfloggi but also some O.litigiosa) and the pennant diatoms Pseudonitzschia subcurvata and Pseudonitzschiaturgidulodies(Figure4a,bandcrespectively). TheabundanceoftwodiatomtaxawasunrelatedtoƒCO treatment.ChaetocerosandProbosciatruncatabothshowedno 2 ƒCO relatedtrendintheirabundancesdespitebeingrelativelylargediatoms(P.truncatacanexceed100µminlength)(Figure 2 5). This may reflect a lack of precision in the microscopy counts due to high variance among replicate fields of views. The 25 response of Chaetoceros (mainly C.castracanei but C.tortissimus and C.bulbosus were also present) is difficult to interpret. Atday14theirabundancewaslowerinthethreehigherƒCO treatments.Byday18noƒCO relatedtrendwasevidentin 2 2 Chaetocerosabundance(Figure5b). 3.2.2 Flagellates Colonial life stage Phaeocystis antarctica occurred in much higher abundances in the three lower ƒCO treatments. It was 2 30 the most abundant flagellate in this study, reaching concentrations from 1.0x105 to 1.26x107cellsL−1 at ƒCO2 levels ∼ 634 µatm (Figure 6). This starkly contrasted with abundance at ƒCO levels 953 µatm in which they did not exceed 2 ≤ ≥ 1.6x106cellsL 1. − Otherflagellatetaxainourstudyshowedavarietyofresponses.ThechoanoflagellateBicostaantennigerashowedaƒCO 2 relatedresponsesimilartothatofP.antarcticawithhigherabundancesinƒCO treatments 506µatmandlowerabundances 2 ≤ 7 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) athigherƒCO levels(Figure7a).Otherchoanoflagellates(mainlyDiaphanoecamultiannulata)showednoconsistenttrend 2 inresponsetoƒCO level(Figure7b). 2 TheabundancesofothernanoflagellatesandotherheterotrophicprotistswerelowandseeminglyunrelatedtoƒCO treat- 2 ment. All other nanoflagellates were low in abundance and had high variance between field of view counts, therefore these 5 weregroupedtogether.Thisgroup,"OtherFlagellates",includingspeciesP.antarctica(gameteandflagellateforms),Telonema antarctica,Leucocryptossp.,Polytomasp.,Pyramimonasgelidicola,Geminigerasp.,Mantoniellasp.,Bodosp.,Triparmalae- vissubspramisping,T.laevissubsp.pinnatilobataandanunidentifiedhaptophyte.Similarlymicroheterotrophscomprisedonly of 1%ofallcellsandwasdominatedbyanunidentifiedeuglenoid( 0.8%).Dinoflagellatesweregroupedintoautotrophic ∼ ∼ dinoflagellates(mainlyGymnodimiumandHeterocapsa)andheterotrophicdinoflagellates(predominantlyGyrodiniumsp.,G. 10 glaciale, G. lachryma and Protoperidinum cf. antarcticum). Ciliates were grouped together but were mostly comprised of Strombidiumsp.WhilenoneofthesefunctionalgroupsshowedatrendinabundancecorrelatedwithƒCO treatment,thismay 2 beduetotheabundanceofthesetaxabeingpoorlyresolved. 3.3 Community-levelresponses Analysisofthecommunity-levelresponseshasbeenseparatedintothe8dayacclimationand10daygrowthperiods.During 15 acclimationthegrowthofthecellswaslimitedbylowlight.SIMPROFanalysisofthemicrobialcommunityovertheacclima- tionperiodidentifiedthreesignificantgroups(p<0.05)(Figure8).Group1iscomprisedofallthetreatmentsatday1,group 3containsofallthetreatmentsoverdays3,5and8exceptforthelowestƒCO treatmentonday3(D3T1,group2). 2 Cluster analysis and SIMPROF based on the composition of the protistan community identified ten significantly different groups of samples (p-value <0.05) during the growth period (days 8 to 18) (Figure 9a). On days 8 and 10 the communities 20 did not differ among treatments, except for the highest ƒCO2 treatment on day 10 (D10T6), which was clustered with the day 8 samples (clusters 8 and 9, Figure 9a). Day 12 treatments are scatter across the cluster groups but day 14 samples are againgroupedtogether(alltreatmentsexcept634µatmtogetherincluster6).Onday16theƒCO treatmentswereclustered 2 togetherexceptatthehighestƒCO level.Byday18theƒCO treatmentshadseparatedintotwodistinctlydifferentgroups; 2 2 onewiththethreelowestƒCO treatmentsandthesecondwiththethreehighestƒCO treatments.Interestingly,thesethree 2 2 25 highest ƒCO2 treatments fall into the cluster with the day 16 samples (or nearby cluster 2). This shows that at day 18 the higherƒCO treatments( 953µatm)containedaprotistancommunitymoresimilartothatofday16,andweresignificantly 2 ≥ differenttothatoftheday18lowerƒCO treatments(Figure9a). 2 AnMDSintwodimensionsprovedareasonableapproximationtothefullmultivariatestructure(stress=0.05),andshows thesimilarityamongclustersalongwiththerelativecontributionofeachspecifictaxon/functionalgroupstoeachcluster(the 30 morecloselyspeciesarelocatedtoasampleinthenMDS,themoreabundantitisinthatsample)(Figure9b).Thecommu- nity at day 8 was dominated by discoid centrics diatoms below 40 µm, flagellates, ciliates, P.subcurvata and dinoflagellates (heterotrophicdinoflagellatesarelocatedofftotheleftoftheplotinFigure9b).Byday18thecommunityhadshiftedtobe dominatedbyFragilariopsis,T.antarctica,T.ritscheri,OdontellaandP.antarctica(Figure9b).Betweenthestartandtheend oftheexperimentothertaxaemergedbetweendays10and14includinganunidentifiedeuglenoid,L.annulata,B.antennigera 8 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) andothercentricdiatoms.Othertaxaincreasedinabundancebetweendays14and16,includingotherchoanoflagellates,large centricdiatoms(ie.P.truncataandS.microtrias),andpennatediatoms(ie.P.turgidulodies)(Figure9b).Attheendoftheex- periment(day18)largediatoms,T.ritscheri,OdontellaandFragilariopsis(>20µm)aswellasP.antarcticaarelocatedclose tothelowerƒCO treatmentsforday18(cluster1),andresistantFragilariopsis(<20µm)isfoundnearthehighƒCO treat- 2 2 5 ments(cluster4).Interestingly,T.antarcticaisalsolocatedclosetothelowerƒCO2treatmentsdespitebeingquiteresistantto increasedƒCO whenanalysedasasinglespecies(Figure9bandFigure2b). 2 From the nMDS the lag in community growth and succession in the highest ƒCO level (tank 6) can be seen. At day 10, 2 thecommunityisgroupedwiththatonday8,likewiseatday12,14,16and18itisconsistentlyclosertosamplesfromthe previoustimepoint(Figure9b).Theseresultsareconsistentwiththechangesintotalcellabundance(Figure1).Thehighest 10 ƒCO2levelinhibitsgrowthandsuccessionintheprotistancommunitysuchthatitisconsistentlyatimepointbehindtheother ƒCO treatments. 2 CAP analysis showed differences in the trajectory of the protistan community succession over time in the different ƒCO 2 treatments(Figure10).Thisanalysis,usingcovariatesƒCO ,NO ,SiandP,providedamodelwhichexplained71.61%of 2 x the variation in similarity among samples (F = 19.544, p <0.001 based on 999 permutations). However, NO was not 4,31 x 15 significant (F1,32 = 1.3714, p >0.200 based on 999 permutations) and so was dropped from the model. In this reduced CAP model,CAP1andCAP2werebothsignificant(p<0.05)(Table2),andtheremainingtermsƒCO ,SiandPtogetheraccounted 2 for70.35%ofthetotalvariance(F =25.308,p<0.001basedon999permutations).Consideringeachtermmarginaltoall 3,31 others(ie.thecontributionofatermafterfirstaccountingforallotherterms),ƒCO accountedfor2.92%,P22.68%andSi 2 5.21%ofthevariance(Table3a).Theremainingtermsinthereducedmodelwereallsignificantwhensequentiallyadded,but 20 themarginaleffectsshowedthatonlyPandSiweresignificant,notƒCO2(p>0.100)(Table3b).TheCAPanalysisshowsthere is a separation of the protistan community between low ( 506 µatm), medium (634 to 1140 µatm) and high (1641 µatm) ≤ ƒCO treatments(Figure10).Atday18therearetwodistincttreatmentgroups,thosenamelyexposedtolowandmoderate 2 ƒCO (343,506and634µatm)andthoseexposedtohighƒCO (953,1140and1641µatm). 2 2 4 Discussion 25 4.1 AcclimationtohighƒCO2 Changesintheresponseoftheprotistancompositionandabundanceduringtheacclimationperiodoftheexperiment(days1 to8)werelikelyduetothetransferandestablishmentofthenaturalcommunitiesintheminicosmtanksratherthanexposure toƒCO .Therewasasignificantshiftinspeciescompositionbetweendayoneandallothersamplestimesduringacclimation. 2 The collection of seawater (via Bambi bucket under a helicopter) and subsequent filling of the minicosms is likely to have 30 damaged delicate protists (Estrada and Berdalet, 1997), and the minicosm conditions may have been sub-optimal for some species(Kimetal.,2008).Thereforeitislikelythischangeincommunitycompositionreflectedthedeclineindelicatespecies. The total abundance of the protistan community showed an initial lag in growth at the highest ƒCO level. Our results 2 indicatethattheprotistsrequiredmorethan8daystoacclimatetothishighƒCO andthereforegrowthwasdelayedcompared 2 9 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2017-224 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:7June2017 c Author(s)2017.CCBY3.0License. (cid:13) to other treatments. Deppeler et al. (submitted) showed that during acclimation there is a decrease in photosynthetic health of the community, but whilst all treatments had recovered by day 12, the highest ƒCO treatment had a greater decline in 2 photosynthetichealthandtooklongertorecover.Thislagwasalsoseeninaccumulationofchlorophylla,rateofproductivity andnutrientconcentrationswheretheslowergrowthmeantthiswastheonlytreatmentinwhichnutrientswerenotlimitingby 5 theendoftheexperiment(Deppeleretal.,submitted).AfterthislagtherateofgrowthinthehighestƒCO2treatmentissimilar toothertreatments.Toourknowledgethisisthefirststudytoreportsuchanacclimationresponseinashort-termexperiment. 4.2 Autotrophicprotisttaxaspecificresponses Themicrobialcommunitywithinthisstudywashighlydiverse,andthedetailedtaxonomicclassificationemployedallowedthe rangeofresponsesbytheindividualtaxatoberesolved.Indiatomstheresponsewasmainlysize-related.Smalldiatomsshowed 10 a strong resistance to high levels of ƒCO2 but large diatoms showed a non-linear response with an increase in abundance at moderate ƒCO levels (634-953 µatm) but a decrease a higher ƒCO . This trend is even evident within Fragilariopsis cells 2 2 >20µmwhichshowedasimilarresponsetootherlargecentricdiatoms,butthose 20µmshowedahigherresistancesimilar ≤ toothersmallerdiatoms.Whilsttheresponseformostdiatomtaxawasrelatedtocellsize,acoupleofspeciesdidnotfollow thistrend.ProbosciatruncataisalargecellbutdidnotshowaƒCO response,likewiseChaetocerosdidnotshowaresponse 2 15 toƒCO2 butinsteadreflectedthenutrientavailability(seeDeppeleretal.submittedfornutrientdata).AnumberofAntarctic studieshaveshownanenhancementoflargerdiatomspecieswithincreasesinCO (ie.Engeletal.2008,Tortelletal.2008and 2 Fengetal.2010).Therearealsootherpreviousstudiestowhichourresultsdonotalign.Fengetal.(2009)foundanincreasein abundanceofPseudonitzschiasubcurvataathighƒCO .InthisstudywerePseudonitzschiahadaverylowtolerancetoƒCO 2 2 levelsabovethecontrol,differenttothatofFengetal.(2009). 20 Unlikediatomspecies,thedominantautotrophicnanoplankton,Phaeocystisantarctica,dramaticallydeclinedinabundance at the three highest ƒCO levels. There has been a common consensus in other ocean acidification studies that pico- and 2 nanoplanktonabundanceincreasesathighCO levels(ie.Hareetal.2007,Brussaardetal.2013,Davidsonetal.2016,Thom- 2 sonetal.2016andarecentreviewbySchulzetal.2017),butourstudyonlyfindsthisresponsesindiatoms.P.antarcticahad anincreaseinabundancewithmoderateƒCO levelsbuthadastrongthresholdlevelbetween634and963µatm,abovewhich 2 25 abundances were very low. This contrasts with the findings of many ocean acidification studies that found that P.antarctica abundancewaseithernoteffectedorincreasedbyelevatedCO attheexperimentalCO levelsusedintheirstudies(Tortell 2 2 etal.,2008;Fengetal.,2010;Trimbornetal.,2013).ItisnotedthatthesestudieswereconductedintheRossSeawhichisa verydifferentecosystemtoothercoastalAntarcticareas(Smithetal.,2014;DeppelerandDavidson,2017).Thedifferencein responseofP.antarcticacomparedtootherstudiesshowinganincreaseinpico-andnanoplankton(Schulzetal.,2017),may 30 bebecauseofthepeculiarphysiologyofthisalgainthecoloniallifestage(whichdominatedinourstudy).P.antarctica,when incolonialform,protecttheircellsfromintimatecontactwiththesurroundingseawaterbyathintoughskinandbehaveina similarfashiontoalargediatom(DavidsonandMarchant,1992;Hammetal.,1999;Hamm,2000). Thisstudy’sƒCO treatmentsextendwellpasttherangeofotherstudies,wherecommonlythehighestlevelwasbetween 2 750and1000µatmcomparedto1641µatminthisstudy.WhentheresultsofthisstudyarecomparedinlightoftheseCO 2 10

Description:
variable carbonate chemistry over the annual cycle daily to maintain the CO2 level in each treatment (see carbonate chemistry section below).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.