ebook img

Occurrence, Severity, Risks: The Case of Wabi Shebele River Basin PDF

217 Pages·2009·12.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Occurrence, Severity, Risks: The Case of Wabi Shebele River Basin

Hydrological Drought Analysis - Occurrence, Severity, Risks: The Case of Wabi Shebele River Basin, Ethiopia Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) vom Fachbereich Bauingenieurwesen der Universita¨t Siegen genehmigte Dissertation von Adane Abebe Awass, M.Sc Referent Univ. Prof. Dr.-Ing Gerd F¨orch, Universita¨t Siegen Korreferent Univ. Prof. Dr.-Ing habil. Hans-B. Horlacher, TU Dresden Tag der mu¨ndlichen Pru¨fung 16. Januar 2009 Siegen 2009 To Victims of hydrological extremes in the region. “When the well is dry, we know the worth of water.” Benjamin Franklin (1706-1790) i Acknowledgements This research work is financially supported mainly from Gessellschaft fur Technische Zusammenarbeit/German Technical Cooperation (GTZ) under the framework of the supportprogramtotheWaterTechnologyInstituteinArbaMinchUniversity, Ethiopia. The financial support for the last year is obtained from Universitat Siegen through the ACP-EU water facility programme. I would like to express my great gratitude to all of them for making the fund availble. Thanks are also due to Deutscher Acadamischer Austauschdienst(DAAD) for the scholarship and supports I obtained. I would like to thank my supervisor Prof. Dr.-Ing Gerd F¨orch for his invaluable ad- vices and supports throughout the research period. I thank Prof. Dr.-Ing. Hans-B. Horlacher (TU Dresden) for his continuous very helpful comments. I acknowledge the administrative support I obtained from Dr. Stefan Thiemann, Dipl.-Ing. Ingrid Althoff and Dipl.-Geecol. Beate B¨ohme, all members of the Research Institute for Water and Environment, Universitat Siegen. I am grateful to the dendrochronology group at Wageningen University, the Netherlands for hosting and supporting the 2-month laboratory work. I am thankful to the staffs at the center for ecosystems studies, Wageningen University for the great experience and social atmosphere. Particularly, I would like to extend my appreciation to Dr. Ute Sass-Klaassen for all the help. Thanks Ute! A multitude of experts with whom I had the opportunity to discuss my views during the course of the research helped me while I was writing this dissertation. I would like to express my deepest appreciation and heart felt thanks to all who gave their time so generously. I am thankful to the hydrology section of Ministry of Water Resources and National Meteorological Services, Ethiopia for the provision of streamflow and Meteorological data respectively. I am thankful to Arba Minch University for providing the facilities during my fieldwork in Ethiopia. I would like to thank Kassa Tadele for sharing all the fun and sorrow during my stay in Siegen. Last but by no means least I would like to convey a heartfelt gratitude to my family and friends for their unfailing support. Adane Abebe Awass, Universit¨at Siegen, Germany, June 2008 iii Abstract by Adane Abebe Awass This study analyses hydrological drought with due emphasis to ungauged catchments. Identificationofhydrologicaldroughtandmethodsofunveilingitsintrinsicmulti-variate characteristics are investigated. The severity of drought has been examined using a multitude of methodologies. Quite often, absence of recorded long time streamflow data hinders a reliable drought analysis and understanding of the phenomenon in the past. Signatures of water stress are imprinted on tree rings. In this study streamflow reconstruction is achieved by coalescing proxy data from riparian tree rings and climatic indices. The generated data are used for extracting the multivariate features of this extreme hydrological event. The case study is demonstrated in Wabi Shebele river basin in Ethiopia. The methods proposed here are applicable to other similar river basins. Extracting hydrological drought entailed defining a possible threshold level. Threshold levels of low exceedance probability are found to be appropriate unlike the commonly used higher exceedance probabilities in temperate climate. It was corroborated that the frequency of some notable recent droughts as revealed with data generated from proxy records well matches that of instrumental data. Stochastic simulation of hydrological droughtisdoneusingSARIMAmodelsfromtimeseriesofinstrumentalmonthlystream- flowrecordsinthestudyarea. Thenonlineardependencybetweenseverityandduration of hydrological drought is studied using copula models. Different copula families and parameter estimation techniques are evaluated. Joint and conditional probabilities of severity and duration of drought in the area is specified from the derived relationship to provide empirical insight on the nature of the extreme events. It is demonstrated that droughts have distinct spatial patterns regarding temporal evolution and variability in the study area in which the geographic and climatic characteristics have a high degree of diversity. The relative strengths in association between the climatic, morphometric and geologic features of the catchment to the base flow estimates are weighted and a plausible relationship is produced. However, in view of the tremendous spatio-temporal heterogeneityofclimaticandlandscapepropertiesextrapolationofresponseinformation or knowledge from gauged to ungauged basins remains fraught with considerable diffi- culties and uncertainties. Catchment characteristics can be related to low flows thus are used to delineate hydrologically homogeneous pools. Severity-area-frequency analysis of droughtintheareausingnonparametrickernelsshowshighvariabilityofdroughtevents within the pools formed. Associated relative risks of drought are also scrutinized using multicriteria analysis. No single variable is sufficient to portray the complexity of the vulnerability of an area to drought. Contents Acknowledgements iii Abstract iv List of Figures ix List of Tables xiii Acronyms and Abbreviations xv 1 Introduction 1 1.1 Background and Statement of the Problem . . . . . . . . . . . . . . . . . 1 1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Scope of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Conceptual Framework of the Research . . . . . . . . . . . . . . . . . . . 6 1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Description of Study Area and Data 9 2.1 General Physiographic Condition . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Location, Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Topographic Features . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 Geologic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Land Use/Land Cover . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.5 Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Hydro Climatic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Climatic Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Hydrological Situation . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Socio-economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Population and Settlement . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Water Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 Major Drought Episodes . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Characterising Hydrological Drought 23 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Genesis of the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Drought Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Standardized Precipitation Index . . . . . . . . . . . . . . . . . . . 27 3.3.2 Normalized Difference Vegetation Index . . . . . . . . . . . . . . . 30 v Contents 3.3.3 Palmer Drought Severity Index . . . . . . . . . . . . . . . . . . . . 32 3.3.4 Surface Water Supply Index . . . . . . . . . . . . . . . . . . . . . . 36 3.3.5 Multivariate Aggregate Drought Index . . . . . . . . . . . . . . . . 37 3.3.5.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.5.2 Data and Methodology . . . . . . . . . . . . . . . . . . . 37 3.3.5.3 Aggregate Drought Index . . . . . . . . . . . . . . . . . . 38 3.3.5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . 39 3.4 Hydrologic Drought Event Definition . . . . . . . . . . . . . . . . . . . . . 41 3.4.1 Categories of Hydrological Drought . . . . . . . . . . . . . . . . . . 41 3.4.2 Drought Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.3 Assessing Threshold Levels . . . . . . . . . . . . . . . . . . . . . . 44 4 Hydrologically Homogeneous Drought Pools 47 4.1 Catchment Characteristics as Predictors of Base Flow Index . . . . . . . . 49 4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.2 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Pooled Estimates of Low Flow Quantiles . . . . . . . . . . . . . . . . . . . 56 4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.2 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Formation of Homogeneous Pools at Basin Scale . . . . . . . . . . . . . . 64 4.4.1 Delineation of the Hydrological Pools . . . . . . . . . . . . . . . . 64 4.4.2 Homogeneity of Pool Tests . . . . . . . . . . . . . . . . . . . . . . 66 5 Spatial Patterns of Hydrological Drought 71 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 73 5.2.2 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Area Coverage of Recent Worst Droughts . . . . . . . . . . . . . . . . . . 80 5.4 Severity-area-frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.1 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . 84 5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Paleohydrology 89 6.1 Background on Proxy Data . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Dendrochronologic Records . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3 Reconstructing Streamflows . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.1 Disaggregation of Annual Flows. . . . . . . . . . . . . . . . . . . . 97 6.3.2 Hydrological Drought Variables . . . . . . . . . . . . . . . . . . . . 99 6.3.2.1 Comparison with Instrumental Data . . . . . . . . . . . . 99 6.3.2.2 Univariate Drought Frequency . . . . . . . . . . . . . . . 100 7 Stochastic Simulation of Severity of Drought 103 7.1 Trends of Drought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 vi Contents 7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.3 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.3.1 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4.1 Akaike Information Criterion (AIC) . . . . . . . . . . . . . . . . . 112 7.4.2 Schwarz Bayesian Criterion (SBC) . . . . . . . . . . . . . . . . . . 112 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8 Double Chain Markov Model 115 8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2 Homogeneous Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.2.1 Nth order Markov Model . . . . . . . . . . . . . . . . . . . . . . . 119 8.3 Non-homogeneous Markov Model . . . . . . . . . . . . . . . . . . . . . . . 120 8.4 Hidden Markov Model (HMM) . . . . . . . . . . . . . . . . . . . . . . . . 121 8.5 Double Chain Markov Model (DCMM) . . . . . . . . . . . . . . . . . . . . 122 8.5.1 Maximum-likelihood Estimation . . . . . . . . . . . . . . . . . . . 123 9 Prediction of Risks of Hydrological Drought 125 9.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.1.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.2 Copula Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.2.1 Families of Copulas. . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.2.2 Identification of Copulas . . . . . . . . . . . . . . . . . . . . . . . . 133 9.2.3 Fitting Copulas to Hydrological Drought Variables . . . . . . . . . 133 9.2.3.1 Non-parametric Estimation . . . . . . . . . . . . . . . . . 133 9.2.3.2 Parametric Estimation . . . . . . . . . . . . . . . . . . . 134 9.2.3.3 Semi-parametric Estimation . . . . . . . . . . . . . . . . 135 9.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.3 Drought Risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.3.1 Implications for Water Management . . . . . . . . . . . . . . . . . 154 10 Summaries and Conclusions 157 10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11 References 163 A Appendix 1 177 B Appendix 2 185 C Appendix 3 195 Glossary 197 Index 197 vii

Description:
Meteorological Services, Ethiopia for the provision of streamflow and Meteorological data data hinders a reliable drought analysis and understanding of the phenomenon in the past. 3.7 Aggregate Drought Index at Dodolla, Imi and Gode stations 39 .. sources point of view than the irregularity
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.