Occurrence of Photoprotective Mycosporine-like Amino Acid Compounds (MAAs) in Marine Red Macroalgae from Temperate Australian Waters Ulf Karsten University ofRostock, DepartmentofBiology, Institute ofAquatic Ecology, Freiligrathstrasse 7/8, D-18051 Rostock, Germany Karsten,U. (2000). Occurrenceofphotoprotectivemycosporine-likeaminoacidcompounds (MAAs) in marine red macroalgae from temperateAustralianwaters. Proceedings ofthe LinneanSocietyofNewSouthWales122, 123-129. UV-absorbingmycosporine-likeaminoacidcompounds(MAAs)wereidentifiedand quantified in 35 red macroalgal species (Rhodophyta) collected from the rocky shores of SoutheasternNewSouthWalesandSouthernVictoria, Australia.Withinalltaxainvestigated 5distinctcompoundswerefound,whichwereidentifiedasshinorine,porphyra-334,palythine, asterina-330andpalythinol.WhilesublittoralspeciescontainedonlytraceamountsofMAAs orevenlackthesesubstances,intertidalplantsalwaysexhibitedhighconcentrations.Thedata suggest that the biosynthesis and accumulation ofMAAs may represent a natural defence systemagainstexposuretobiologicallyharmfulUV-radiation. Manuscriptreceived25August2000,acceptedforpublication22November2000. KEYWORDS:mycosporine-likeaminoacidcompounds,MAAs,macroalgae,UV-radiation INTRODUCTION Due to a decrease in stratospheric ozone, levels of ultraviolet B (UVB, 280-320 nm)reachingtheEarth'ssurfacehadincreasedby>50%inAntarcticaunderspring"ozone hole" conditions (Madronich et al. 1998). This depleted ozone layer does usually not extend as far north as Australia, but stratospheric winds can occasionally carry ozone- depletedairmassestowardsAustraliacausingashorttermrise inUVB values.Although the relative rise in UVB has been most pronounced in the polar regions over the last decade (Kerr 1994), high ambient doses of UV-radiation are characteristic of tropical/ subtropical continents such as Australia even under normal stratospheric ozone concentrations (Fleischmann 1989). In these regions, the lightpath for solarradiation is short and the usually clear, oligotrophic water column exhibits a high transparency for UVB (Smith and Baker 1979). Consequently, many phototrophic organisms in aquatic ecosystems may be affectedby this spectral waveband (Franklin and Forster 1997). MultipleharmfuleffectsofUVB onmarineprimaryproducershavebeenreported, andincludethedirectinfluencesonmoleculartargets such as nucleic acids andproteins, onphysiologicalprocesses suchasphotosynthesis, growthandoncommunity structures (Smith et al. 1992; Buma et al. 1995; Davidson et al. 1996; Franklin and Forster 1997; Aquilera et al. 1999). Of major interest is the identification ofrepair and/or protective mechanisms that allow phototrophic organisms living in high-light habitats to survive andreproduce. Proc.Linn.Soc.n.s.w., 122.2000 124 MAAsINREDMACROALGAE AnimportantphysiochemicalmechanismagainstbiologicallyharmfulUV-radiation involves the biosynthesis and accumulation of photoprotective sunscreens. Typically absorbingintheUVA(320-400nm)andUVB,thesecompoundswereinvokedtofunction as passive shielding substances by dissipating the absorbed radiation energy in form of harmless heat without generating photochemical reactions (Bandaranayake 1998). The most common substances with a potential role as UV-sunscreens in marine organisms are the mycosporine-like amino acids (MAAs), a suite ofchemically closely related, water-solublecompounds. MAAshavebeenidentifiedintaxonomically diverse marineorganismsincludingbacteria,cyanobacteria,micro-andmacroalgae,invertebrates and fish (Dunlap and Shick 1998). Their function as intracellular screening agents has beeninferredfromadecreaseinconcentrationwithincreasingdepthasobservedincorals (Dunlapet al. 1986) andmacroalgae (Karsten etal. 1999). In addition, macroalgae from MAA South Europe contain up to 2-fold higher contents compared to similar species fromhigherlatitudesindicatingapositiverelationshipwiththenaturalsolarUV-radiation ofthe respective biogeographic region, i.e. the higher the UV-dose the more MAAs are formed and accumulated (Karsten et al. 1998a). In more recent studies on microalgae, Riegger and Robinson (1997) calculated sunscreen factors forAntarctic phytoplankton duetothepresenceofMAAsofupto0.72,i.e. 72%ofharmfulUVquantawereabsorbed beforehittingintracellularmoleculartargets. Inthered-tidedinoflagellateGymnodinium sanguineum Hirasaka, MAAs prevent, at least partially, UV-induced inhibition of photosynthesis (Neale et al. 1998). AlthoughMAAs arewidelypresentinvarioustypesofmarineorganisms,fewdata existoftheirtypeandquantityinmacroalgae(Nakamuraetal. 1982; Karentzetal. 1991; Karsten et al. 1998a,b), in particular from high-radiation coasts such as inAustralia. In the present investigation a qualitative and quantitative inventory was made ofMAAs in red macroalgae collected from the rocky shore in southeastern New South Wales and southern Victoria. MATERIALS AND METHODS ThelocationsofcollectioninsoutheasternNewSouthWalesandsouthernVictoria are shown in Figure 1 and the red macroalgal species studied are listed in Table 1. All plants were sampledduringafieldtripinMarch 1999 directly fromtheshoreas attached ordriftmaterial,orbysnorkeling.Afterwardsthealgaewereair-driedinthesunfollowed by storage in sealed plastic bags undercool, dry and dark conditions until analysis. Thalliofabout 10-20mgdryweight(DW)wereextractedfor2hin screw-capped centrifugevialsfilledwith 1 mL25%aqueousmethanol(v/v)andincubatedinawaterbath at 45°C. After centrifugation at 5000 g for 5 min, 700 |jL of the supernatants were evaporatedtodrynessundervacuum(SpeedVacConcentratorSVC lOOH).Driedextracts werere-dissolvedin700|iL 100% methanolandvortexedfor30s.Afterpassingthrough a0.2|im membranefilter, sampleswere analysedwithaWatersHPLC systemaccording to the method ofKarsten et al. (1998a), modified as follows. MAAs were separatedon a mm stainless-steel Phenomenex SpherecloneRP-8column(5 |im, 250x4 I.D.)protected withaRP-8guardcartridge(20x4mmI.D.).Themobilephasewas5%aqueousmethanol (v/vj plus 0.1% acetic acid (v/v) in water, run isocratically at a flow rate of0.7 ml min'. MAAsweredetectedat330nmandabsorption spectra(290-400nm)wererecordedeach seconddirectlyontheHPLC-separatedpeaks. Identificationwasdonebyspectra,retention timeandbyco-chromatography with standardsextractedfromthemarineredmacroalgae ChondruscrispusStackhouse(Karstenetal., 1998a)andPorphyraumbilicalis(Linnaeus) Kutzing,aswell asfromocularlensesofthecoraltroutPlectropomusleopardus(Lacepede, 1802). kindly sentby Dr. David Bcllwood,JamesCook University,Townsville,Australia. Quantification was made using the following molar extinction coefficients: shinorine: e334=44.700(Tsujinoetal. 1980),palythine:e320=36,200(Takanoetal. 1978),palythinol: e332=43,500 (Dunlap et al. 1986), porphyra-334: e334=43,300 (Takano et al. 1978), Proc.Linn.Soc.n.s.w., 122.2000 U. KARSTEN 125 asterina-330: e330=43,500(Gleason 1993).Allamountsaregivenasmeanof4replicates (±SD) based on separate extracts from separate algae, randomly collected from the respective habitatandexpressed as concentration on a dry weightbasis. J _ New SouthWales V ^ Sydney 34°- ^Batemans Bay Victoria 36°- Melbourne 4^^ — ^ 38°- Warrnambool S Pacific Ocean Lonsdale 142° 146° 150° 154° Er 1 .._j 1 HGURELEGENDS Figure 1.MapshowingcollectinglocationinsoutheasternNewSouthWalesandsouthernVictoria,Australia. RESULTS TheMAAsextractedfromthedriedredalgalsampleswerecharacterisedbyHPLC, and identified and quantified according to their retention times, absorption spectra, co- chromatography with standards and molar extinction coefficients (see Materials and Methods). FivedifferentMAAs couldbe detectedwithinthe samplesinvestigated, allof whichwereidentifiedas shinorine, porphyra-334, palythine, asterina-330andpalythinol (Table 1). The sum ofall MAAs ranged in all macroalgae analysed from (no trace) to 5.5 mg g'' DW. While typical subtidal species such as Ballia callitrichia, Hypnea episcopalis,Nizymeniaaustralis andPhacelocarpusalatuscontainedno MAAs atall or tracesonly, intertidalspeciessuchasBangiaatropurpurea, Capreolia implexa, Gelidium MAA australe and Porphyra columbina exhibited high concentrations between palpapryoexdiamamtienloyr2.r5olaenads5i.n5dmicgatge'dDbyWl(oTwabmlaex1)i.mQuuamntciotnacteinvterlaytaisotnesrionfa0-.33380amngdpga'lyDthWinoals detected in Laurencia elata. While palythine showed high contents ofup to 1.7 mg g ' DW MAA inonlyfewspeciessuchasL. elata, shinorinewasthequantitativelydominant in most species containing this compound. The maximum amounts ofshinorine reached up to 3.9 mgg"' DW. Porphyra-334 occurred in highconcentrations between 1.5 and 2.5 mg g ' DWinBangiaatropurpurea, Laurencia rigida andPorphyra columbina (Table 1). Proc.Linn. Soc.n.s.w., 122.2000 126 MAAsINREDMACROALGAE TO o g- if" TO g-7 2S<;.w-O^sC<o? "§•§ o >3 3- tJ»>nZT3O' ^ « « SS'^ ^ ooS^ooooo*- Ei « 3 s-s" -,.-_p_p-a_g S,g3grl3rg3S3g3S §t-§3gt|~3pS|33t~pS53|3 a=JO.•0^c oo2 <<< z*z^<< << o< 5z2 n< n< <n<o o<n<n<^zn<^zo<^z o<:f^<<n 2 ;5 iS z fSf ^3"n oo o o— o O K>O — •oC-D^ ouC-j>^ •^p—i aUC^)D op<~>~ o o 5a-3<;o2.. 3 o ^ or- r* r- 3 P > • £8 — ^ — — o — — o o OS o= o3 o1taj+\J 1o^^+ 1o0<*7i+^.^1oQ^+01oOt+oO3r» 1o<^—-+ft o1o.o+— o1^No+io1o(•-+—TiooiQ—T 1oHoo+- 1o—oo+ 1oovo+o o oo o o 9 " to o o to o ^ O Lftop o oo o to — ^ b> g 3 1+ § sp. 3p o = o— o_ o D.oo o >— o\ — CI. 3 — D. gsg UUJ) tc^o oo oooo p -a ^ s s Sii p p p p p p re St' *>.^LnL»JC2ooo g_3 Proc.Linn.Soc.n.s.w., 122. 2000 U. KARSTEN 127 DISCUSSION ThisstudyprovidesthefirstcomprehensivesurveyofthequaUtativeandquantitative occurrence ofMAAs in red macroalgae from temperateAustraha. In contrast to brown and green macroalgae, UV-absorbing substances have been widely observed in many speciesoftheRhodophyta(Sivalingametal. 1974;SivalingamandNisizawa 1990;Wood 1989; Karentzetal. 1991; Maegawaetal. 1993; MolinaandMontecino 1996; Karstenet al. 1998 a,b). Inthepresentstudy, theMAAconcentrationsmeasuredintypicalintertidal algae such as Bangia atropurpurea and Capreolia implexa are approximately >20-fold highercomparedtosublittoralspeciessuchasBalliacallitrichia.Thisisingoodagreement with earlierreports on RhodophytafromArctic to warm-temperate localities (Maegawa et al. 1993; Karsten et al. 1998a) which indicate that species from deeper water exhibit only trace amounts oreven lackthese compounds. Theredalgaecantolerateawiderrange ofradiation levels than any othergroupof macroalgae. The deepest known plant is a coralline-like species found at 268 m offthe Bahamasthatgrows at<0.1 |umolphotonsm -^ s ' (Littleretal. 1985). Othermembers of thegroup wellreproduce and survive in theupperintertidal zone, often fully exposedto bright sunlight at >2200 |amol photons m - s ' (Pedroche et al. 1995). Between these extremes theradiation quality andquantity reaching different species in differentdepths is highly variable due to the inherent optical properties ofthe water column, sun angle, latitude, seasonandweatherconditions. However, sublittoralredalgaeareadaptedtothe generallylowunder-waterradiationclimateandhencearecharacterisedas 'shade-plants' (Raven et al. 1979; Liining 1990). These species usually exhibit a lower photosynthetic capacity andrateofdarkrespirationthan 'sun-plants', as well asoptimumgrowthatlow photon flux densities. Moreover, photosynthesis ofmacroalgae from deeper waters was showntobeparticularly sensitivetoUVradiation(Bischofetal. 1998). Since sublittoral plants are generallyneverexposedtohigh irradiances includingUV, atleastnotforlong periods, there is no physiological need to synthesise and accumulate metabolically expensive MAAs as indicated in the data presented. This in turn would save energy to better support other essential pathways such as, for example, light-harvesting phycobilisomes. IthadbeenrecentlyreportedfromMalagainsouthernSpain(36.6°N-similarlatitude as the locations in this study) that the depth distribution of brown macroalgae on the shoreis controlledbytheincidentUV-radiation due tothe species-specific sensitivity of sporesagainstthisshortwavelengths(sporesfromshallowwaterspeciesaremoreresistant than spores from species collected at greater depths). This means that one specific developmental stage ofthe life history is the main target ofUV-radiation and this may affectzonation (Wiencke at al. 2000). Compared to sublittoral red algae, intertidal species are known to contain high contentsofMAAs(Maegawaetal. 1993;Karstenetal. 1998a),whichisingoodagreement with the results shown. While mostplants growing in this regularly exposed habitat are abletoflexiblysynthesiseandaccumulatethesecompoundsinresponsetotherespective radiation climate, some taxa such as Bangia atropurpurea exhibit always ahigh steady- state concentration. In this particular species cells seem to be loaded-up with the photoprotective substances, whichisconsistentwiththe typicaloccurrence very highon the shore. Besides the depthzonation, thebiogeographic distribution ofmacroalgae seems to MAA beanotherimportantfactorcontrollingthe concentrations,sincespeciesfromlower, high-solar latitudes always exhibit more MAAs than species from higher, low-solar latitudes (Karsten et al. 1998a). These observations indicate that the higher the natural solarUV-radiationoftherespectivehabitatthemoreMAAsareformedandaccumulated in these plants. MAAs are one ofnature's sunscreens, with 19 structurally distinct compounds so MAA far identified in marine organisms (Dunlap and Shick 1998). Although levels in Proc.Linn. Soc.n.s.w., 122.2000 . . 128 MAAsINREDMACROALGAE macroalgae show a decline in concentration with increasing growth depth and are in general positively correlated with natural doses ofUV-radiation (Karsten et al. 1998b), experimental evidence for the role of MAAs as UV-protectants in these plants is still MAA circumstantial. Nevertheless, the presence of increasing contents in the red alga Devaleraearamentaceawithdecreasingdepthstronglycorrelatedwithamoreinsensitive photosynthetic capacity under UV exposure (Karsten et al. 1999). Photosynthetic experimentsontheunicellularmicroalgaeGymnodiniumsanguineumprovedthatMAAs indeedactasspectrallyspecificUV-sunscreens(Nealeetal. 1998).Inmarineinvertebrates the function of MAAs as intracellular photon screening agents has been inferred from UV-induceddelaysinthefirstdivisionofseaurchinembryoshavinglowconcentrations ofMAAs compared to embryos with high MAA contents (Adams and Shick 1996). In anotherstudy,Dionisio-Seseetal. (1997)showedthatthepresenceofMAAsinthesurface tunic of the colonial ascidian Lissoclinum patella protect its photosynthetic symbiont, Prochlownsp.,fromUV-inducedphotodamage.Moreover,Ishikuraetal. (1997)measured maximum MAA concentrations in the outermost surface layerofthe siphonal mantle of thegiantclam Thdacna crocea. TheoccurrenceofMAAs intheanimaltissueprevented aninhibition ofphotosynthesis ofits zooxanthellaeSymbiodinium sp., whichoutsidethe protecting animal tissue responded very sensitively to UV radiation. These authors calculated that the sunscreen capacity ofthe measured MAAs were sufficient to absorb 87% of310-nmradiation and90% of320-nmradiationbeforereaching 0.2mmdepthin the siphonal mantle. All recent publications on marine algae and invertebrates strongly support the photobiological function ofMAAs as a cellular defenCe system againstthe harmful effects ofUV-radiation (Dunlap and Shick 1998). Therefore it is concluded thatthephysiological capability ofintertidalredalgae to MAA synthesise and accumulate high concentrations plays a vital role as biochemical adaptation ensuring survival underthe environmental extremes in thehabitat. ACKNOWLEDGEMENTS ThisprojectwasfinanciallysupportedbytheAlexandervonHumboldtFoundationviathePost-Contact- ProgrammeandtheDeutscheForschungsgemeinschaft(Ka899/3-2/3).TheauthorlikestothankLindaFranklin, HeikeLippert,AlanMillar,MonicaSchoenwaelder,JohnWestandJoeZuccarellofortechnicalsupport,aswell asfortheidentificationofthespecies. REFERENCES Adams, N.L., and Shick, J.M. (1996). Mycosporine-like amino acids provide protection againstultraviolet radiation in eggs of the green sea urchin Strongylocentrotus dwebachiensis. Photochemistry and Photobiolog\64, \49-l5S. Aguilera.J., Karsten, U., Lippert, H., Philip, E., Vogele, B., Hanelt, D., andWiencke,C. (1999). Effectsof solarradiationongrowth,photosynthesisandrespirationofmarinemacroalgaefromtheArctic.Marine EcologyProgressSeries 191, 109-119. Bandaranayake.W.M.(1998).Mycosporines:aretheynature'ssunscreens?NaturalProductReports15, 159- 172. Bischof, K., Hanelt, D.. and Wiencke, C. (1998). UV-radiation can effect depth-zonation ofAntarctic macroalgae. MarineBiology 131,597-605. Buma,uAl.tGr.aJv.io,lVeatn-B-Hianndnuceend,DE.NJ.A,'dRaozmaa,geL.i,nVienlddihvuiidsua,lMd.iJa.tWo.m,caenlldsGbiyesikmemsu,noWf.lWu.oCr.esc(e1n99t5)t.hyMmoinnietodriimnegr Davidsodnet,ecAt.iTo.n,.MJaorucrhnaanlt,ofHP.hJ.y,coalnodgyde31la,3M1ar4e-3,2W1.K. (1996). Natural UVB exposure changes the species composition ofAntarctic phytopjankton in mixedculture.AquaticMicrobialEcology 10, 299-305. Dionisio-Sese, M.L.. ishikura, M., Maruyama, T., and Miyachi, S. (1997). UV-absorbing substances in the tunic of a colonial ascidian protect its symbiont, Prochloron sp., from damage by UV-B radiation. MarineBiology 128,455-461 Proc.Lln.n.Soc..N.S.W., 122.2000 U. KARSTEN 129 Dunlap, W.C., Chalker, B.E., and Oliver, J.K. (1986). Bathymetric adaptions ofthe reef-building corals at DaviesReef,GreatBarrierReef,Australia.III. UV-B absorbingcompounds.JournalofExperimental MarineBiologyandEcology 104,239-248. Dunlap,W.C.,andShick,J.M.(1998).Ultravioletradiation-absorbingmycosporine-likeaminoacidsincoral reeforganisms: abiochemical andenvironmentalperspective.JournalofPhycology34,418-430. Fleischmann, E.M. (1989). The measurement and penetration of ultraviolet radiation into tropical marine water.LimnologyandOceanography34, 1623-1629. Franklin, L.A., and Forster, R.M. (1997). The changing irradiance environment: consequences for marine macrophytephysiology,productivityandecology.EuropeanJournalofPhycology32,207-232. Gleason,D.F.(1993).DifferentialeffectsofultravioletradiationongreenandbrownmorphsoftheCarribean coralPoritesastreoides.LimnologyandOceanography38, 1452-1463. Ishikura, M., Kato, C, and Maruyama, T. (1997). UV-absorbing substances in zooxanthellate and azooxanthellateclams.MarineBiology 128,649-655. Karentz,D.,McEuen,F.S.,Land,M.C.,andDunlap,W.C. (1991). Surveyof mycosporine-like amino acid compounds in Antarctic organisms: potential protection from ultraviolet exposure. Marine Biology 108, 157-166. Karsten,U.,Sawall,T,Hanelt,D.,Bischof,K.,Figueroa,F.L.,Flores-Moya,A.,andWiencke,C.(1998a).An inventoryofUV-absorbingmycosporine-likeaminoacidsinmacroalgaefrompolartowarm-temperate regions.BotanicaMarina41,443-453. Karsten, U., Franklin, L.A., Liining , K. and Wiencke, C. (1998b). Natural ultraviolet and photosynthetic activeradiationinduceformationofmycosporine-likeaminoacidsinthemarinemacroalgaChondrus crispus(Rhodophyta). Planta205,257-262. Karsten, U., Bischof, K., Hanelt, D.,Tiig, H. and Wiencke, C. (1999).Theeffectofultravioletradiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea(Rhodophyta).PhysiologiaPlantarum 105,58-66. Kerr,J.B. (1994). Decreasingozonecauseshealthconcern.EnvironmentalScienceandTechnologv28,514- 518. Littler,M.M.,Littler,D.S.,Blair,S.M.,andNorris,J.N.(1985).Deepestknownplantdiscoveredonanuncharted seamount.Science227,57-59. Liining, K. (1990). ,Seaweeds: theirenvironment, biogeography, and ecophysiology'. John Wiley & Sons: NewYork. Madronich,S.(1993).TheatmosphereandUV-Bradiationatgroundlevel.In'EnvironmentalUVPhotobiology' (EdsA.R.Young,L.O.Bjorn,J.MoanandW. Nultsch)PR l-40.(PlenumPress: NewYork). Maegawa,M.,Kunieda,M.,andKida,W.(1993).DifferenceoftheamountofUVabsorbingsubstancebetween shallow-anddeep-waterredalgae.JapaneaseJournalofPhycology41, 351-354. Molina,X.,andMontecino,V.(1996).AcclimationtoUVirradianceinGracilariachilensisBird,McLachlan &Oliveira(Gigartinales,Rhodophyta).Hydrobiologia2>16I2>21,414-420. Nakamura, H., Kobayashi, J., andHirata,Y. (1982). Separationofmycosporine-like amino acids in marine organismsusingreversed-phasehigh-performanceliquidchromatography.JournalofChromatography 250,113-118. Neale, P.J., Banaszak, A.T., and Jarriel, C.R. (1998). Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporine-likeaminoacidsprotectagainstinhibitionofphotosynthesis.Journalof Phycology34,928-938. Pedroche, F.F., West, J.A., Zuccarello, G.C., Senties, A., and Karsten, U. (1995). Marine red algae ofthe mangrovesinSouthern PacificMexicoandPacificGuatemala.BotanicaMarina38. 111-119. Raven,J.A., Smith,F.A., andGlidewell, S.M. (1979). Photosyntheticcapacitiesandbiological strategiesof giant-celledandsmall-celledmacroalgae.NewPhytologist83, 299-309. Riegger,L.,andRobinson,D. (1997). PhotoinductionofUV-absorbingcompoundsinAntarcticdiatomsand Phaeocystisantarctica.MarineEcologyProgressSeries 160, 13-25. Smith, R.C., and Baker, K.S. (1979). Penetration ofUV-B and biologically effective dose-rates in natural waters. PhotochemistryandPhotobiology29, 311-23. Smith,R.C.,Prezelin,B.B.,Baker,K.S.,Bidigare,R.R.,Boucher,N.R,Coley,T.,Karentz,D.,Macintyre,S., Matlick,H.A.,Menzies,D.,Ondrusek,M.,Wan,Z.,andWaters,K.J.(1992).Ozonedepletion:ultraviolet radiationandphytoplanktonbiologyinAntarcticwaters.Science255,952-959. Takano,S.,Uemura,D.,andHirata,Y.(1978).Isolationandstructureofanewaminoacid,palythine,fromthe zoanthidPalythoatuberculosa. TetrahedronLetters26,2299-2300. Tsujino,I.,Yabe,K.,andSekekawa,I.(1980).Isolationandstructureofanewaminoacid,shinorine,fromthe redalgaChondrusyendoiYamadaetMikami.BotanicaMarina23,65-68. Wiencke,C,Gomez,I,Pakker, H.,Flores-Moya,A.,Alttamirano.M.,Hanelt,D.,Bischof, K.andFigueroa, F.(2000).ImpactofUVradiationonviability,photosyntheticcharacteristicsandDNAofbrownalgal zoospores: implicationsfordepthzonation.MarineEcologyProgressSeries 197,217-229. Proc.Linn. Soc.n.s.w., 122.2000