ebook img

Obstructions in Vascular Networks PDF

17 Pages·2015·2.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Obstructions in Vascular Networks

RESEARCHARTICLE Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply AimeeM.TorresRojas1,AlejandroMezaRomero1,IgnacioPagonabarraga2,RuiD. M.Travasso3,EugeniaCorveraPoiré1,2* 1DepartamentodeFísicayQuímicaTeórica,FacultaddeQuímica,UniversidadNacionalAutónomade México,MéxicoD.F.,Mexico,2DepartamentdeFísicaFonamental,UniversitatdeBarcelona,Barcelona, Spain,3CentrodeFísicadaUniversidadedeCoimbra,DepartamentodeFísica,FaculdadedeCiênciase a11111 Tecnologia,UniversidadedeCoimbra,Coimbra,Portugal * [email protected] Abstract OPENACCESS Werelatevascularnetworkstructuretohemodynamicsaftervesselobstructions.Wecon- Citation:TorresRojasAM,MezaRomeroA, sidertree-likenetworkswithaviscoelasticfluidwiththerheologicalcharacteristicsofblood. PagonabarragaI,TravassoRDM,CorveraPoiréE Weanalyzethenetworkhemodynamicresponse,whichisafunctionofthefrequenciesin- (2015)ObstructionsinVascularNetworks:Relation volvedinthedriving,andameasurementoftheresistancetoflow.Thisresponsefunction BetweenNetworkMorphologyandBloodSupply. allowsthestudyofthehemodynamicsofthesystem,withouttheknowledgeofaparticular PLoSONE10(6):e0128111.doi:10.1371/journal. pone.0128111 pressuregradient.Wefindanalyticalexpressionsforthenetworkresponse,whichexplicitly AcademicEditor:AlanStitt,Queen’sUniversity showtherolesplayedbythenetworkstructure,thedegreeofobstruction,andthegeometri- Belfast,UNITEDKINGDOM calplaceinwhichobstructionsoccur.Notably,wefindthatthesequenceofresistancesof thenetworkwithoutocclusionsstronglydeterminesthetendenciesthattheresponsefunc- Received:October2,2014 tionhaswiththeanatomicalplacewhereobstructionsarelocated.Weidentifyanatomical Accepted:April22,2015 sitesinanetworkthatarecriticalforitsoverallcapacitytosupplybloodtoatissueafterob- Published:June18,2015 structions.Wedemonstratethatrelativelysmallobstructionsinsuchcriticalsitesareableto Copyright:©2015TorresRojasetal.Thisisan causeamuchlargerdecreaseonflowthanlargerobstructionsplacedinnon-criticalsites. openaccessarticledistributedunderthetermsofthe Ourresultsindicatethat,toalargeextent,theresponseofthenetworkisdeterminedlocally. CreativeCommonsAttributionLicense,whichpermits Thatis,itdependsonthestructurethatthevasculaturehasaroundtheplacewhereocclu- unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare sionsarefound.ThisresultismanifestinanetworkthatfollowsMurray’slaw,whichisin credited. reasonableagreementwithseveralmammalianvasculatures.Forthisone,occlusionsin DataAvailabilityStatement:Allrelevantdataare earlygenerationvesselshavearadicallydifferenteffectthanocclusionsinlategeneration withinthepaper. vesselsoccludingthesamepercentageofareaavailabletoflow.Thislocalityimpliesthat Funding:AMTRacknowledgesfinancialsupport wheneverthereisatissueirrigatedbyatree-likeinvivovasculature,ourmodelisabletoin- fromConsejoNacionaldeCienciayTecnología terprethowimportantobstructionsarefortheirrigationofsuchtissue. (CONACYT)throughfellowship245675(http://www. conacyt.mx/).IPacknowledgesfinancialsupportfrom MinisteriodeEconomíayCompetitividad(MINECO) underProjectNo.FIS2011-22603(http://www. mineco.gob.es/portal/site/mineco/).IPalso acknowledgesfinancialsupportfromDepartament d’UniversitatsRecercaiSocietatdelaInformació (DURSI)underProjectNo.2009SGR-634(http://web. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 1/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply gencat.cat/ca/inici/index.html).RDMTacknowledges Introduction financialsupportfromFondoEuropeodeDesarrollo Occlusionoftubeshasalwaysrepresentedaproblem.Fromenginesandfilterstoarteriesand Regional(FEDER)throughCOMPETEprogramand byFCTthroughprojectFCOMP-01-0124-FEDER- bronchia,wecanfindcountlesssystemswhereareductionofthefluidflowinaparticularsite 015708(http://ec.europa.eu/regional_policy/thefunds/ duetothepresenceofanobstacle,resultsinthepartialortotalfailureofaprocess.Occlusion regional/index_es.cfm).ECPdeclaresthatthe ofbio-tubesinthehumanbodyrepresentanimportantissueinmanydiseases,andthecircula- researchleadingtotheseresultshasreceived toryvascularnetworkisparticularlyvulnerabletoobstructions.Forinstance,afteranocclusion fundingfromtheEuropeanUnionSeventh inthearteries,bloodflowdecreases,and,incriticalcases,iseffectivelysuppresseddownstream. FrameworkProgramme(FP7-PEOPLE-2011-IIF) undergrantagreementno.301214(http://ec.europa. Suchdecreaseofflowmayhaveseriousconsequencesatdifferentlevels,affectingoxygenand eu/research/fp7/index_en.cfm).ECPalso nutrientdeliverytoatissue,orimplyinganincreaseinthestressovertheheartmuscle[1]. acknowledgesfinancialsupportfromConsejo Onedramaticexampleofthepathologicaleffectofvascularobstructionsisaretinalarteryoc- NacionaldeCienciayTecnología(CONACYT) clusion.Suchanocclusionbyabloodclotwithdrawsthenutrientandoxygensupplyfromthe throughproject219584(http://www.conacyt.mx/).The retinalcellsandmayrenderanindividualblindfromaneyewithinafewhours[2,3].Inthis fundershadnoroleinstudydesign,datacollection scenarioisoftheutmostimportancetoidentifyspecificsitesinavasculaturewhereapartial andanalysis,decisiontopublish,orpreparationof themanuscript. obstructioncandramaticallyaffectbloodsupply. Varioussimulationsofflowaroundpartialobstructionsinvesselsexistintheliterature CompetingInterests:Theauthorshavedeclared [4–12].Suchanalysesaimatdescribingindetailtheflowpatternsaroundocclusions,suchas thatnocompetinginterestsexist. thevelocityatdifferentpointsinsideavessel,theexistenceofvortices,orthevaluesofwall shearstressatdifferentlocations[5–7,9–12].Dependingontheinterestofeachparticular study,theymayaccountfor3-dimensionality,elasticityorviscoelasticityofthevessels,inclu- sionofnon-linearconvectiveterms,andtheeffectsonflowofbifurcations,tonameafew. Theenormousamountofworkinvolvedinsuchcomputationsisnecessarywhenonewants todescribespecificzonesofavasculature,andtoanswerdetailedquestionsregardingflowpro- filesaroundobstacles,stenosis,bypasses,bifurcations,orflowintheaorticarch.Thesecomplex computationsareabletopredicthowthewaveformsofpressureandflowchangeincertain vesselsduetoobstructions,stenosisorvesselsuppressionatparticularsites[4,8,13].Sophisti- catedmodelsarealsoveryinterestingfromatheoreticalandcomputationalpointofview. However,theyinvolvetoomanyvariablestoallowforthederivationofanalyticalexpressions whenoneisinterestedinknowingtheeffectthatobstructionshaveontheoverallflowthrough- outanentirenetwork.Analyticalexpressionsmightbeverypowerfulandarepotentiallyuseful clinically,whereareducednumberofparametersisoftenappreciated. Knowledgeaboutthestructureofvascularnetworks,iskeytopredicttheflowafteralter- ationsinthevasculature,e.g.afterthegrowthorintroductionofnewvessels[14,15]orafter thepartialocclusionofvesselsinthesystem[8,11,12,16].Thecorrespondencebetweenlocal structuralnetworkinformationandglobalflowthroughanetworkaftervascularalteration, wasputforwardintheworkofFloresetal[14];thesimplicityofthemodelallowedforanalyti- calexpressionsthatinturnleadtoconclusionsnotattainableotherwise.Forinstance,itwas demonstratedthattheincreaseofflowinthenetworkafterthegrowthofnewvesselsinthe formofanastomosis,isdeterminedbythemorphologyofthevasculatureinasmallneighbor- hoodaroundtheplacewherethenewvesselsareincluded.Otherprocessesthatregulatevessel width,suchasthemyogeniceffect,wereshowntohaveaverysmallqualitativeeffectinhow theincreaseinresponsedependsonthelocalizationoftheanastomoses. Thepurposeofthepresentstudyistorelatethebasic,genericcharacteristicsofanarterial vasculaturewiththeflowthatgoesthroughitafteranatomicalvariationscausedbyobstruc- tionsorvesselsuppressionoccur.Wedeliberatelykeepareductionistapproachinordertoob- tainanalyticalexpressionsforthesystemresponseinwhichtherolesplayedbythenetwork structure,thedegreeofobstruction,andthegeometricalplacewhereobstructionsoccur,can beclearlyidentified. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 2/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Westudyflowinthreetypesofnetworks:oneconstitutedbyidenticalvessels,asecondone inwhichradiiaregivenbyMurray’slaw,andathirdcaseinwhichlargechangesinresistance existwithinthenetwork.Weshowhowtheunderlyingnetworkcanleadtoradicallydifferent behaviorsofthehemodynamicresponseandidentifystructuralfeaturespresentintree-like vasculaturesthatarecriticalfortheoverallcapacityofthenetworktosupplybloodafterob- structions.Wedemonstratethatourresultsarelocalinthesensethattheydependonthenet- workstructurearoundtheplacewhereobstructionsoccur.Thisimpliesthatwheneverthereis atree-likenetworkinanin-vivovasculature,ourmodelisabletointerprettheeffectthatan obstructionhasonflow. Background Recently,amodelhasbeenintroducedinordertostudyviscoelasticflowinanetworkoftubes [17].Thismodelconsistsofatree-likenetworkinwhichrigidvesselsbifurcatealwaysinto identicalvesselsgivingrisetoidenticalbranchesofthenetwork.Ateachbifurcationstep,the possibilityofchangesinthecrosssectionalareaandthelengthofthevesselsisallowed.Each level(orgeneration)ofthenetworkisconstitutedbyvesselswiththesamelengthandcrosssec- tion.Segmentsbelongingtothesamelevelarelabeledwiththesameindex.Outerlevelsofthe networkaretheonesthatareclosertothemainbranch,innerlevelsaretheonesthatarethere- sultofseveralsuccessivebifurcations. Themodelconsidersalinearviscoelasticfluidwiththerheologicalcharacteristicsofblood [18]inarangeofshearrateswherethereisnoshearthinning,andanalyzesthenetworkhemo- dynamicresponsetoatime-dependentperiodicpressuregradient.AMaxwellfluid[19]isused forthisstudy,buttheformalismcanbeeasilygeneralizedtoconsideranylinearviscoelastic fluid[20].Byconsideringmassconservation,andassumingthatthetotalpressuredropisthe sumofindividualpressuredrops,thedynamicresponseofthenetwork,χ(ω),iswrittenin termsofthedynamicpermeabilityofindividualvesselsKi(ω)as 1 1XN l ¼ i ð1Þ w L 2i(cid:2)1AK i¼1 i i Thesumisoverthenetworklevels,Aiandliarerespectivelythecrosssectionalareaandthe lengthofthevesselsatthei-thlevel,LandNarethetotallengthofthenetworkandthetotal numberoflevels,respectively.ThedynamicpermeabilityforavesselofradiusriisKi ¼ h i iZ 1(cid:2) 2J1ðbriÞ whereJ andJ areBesselfunctionsoforderzeroandone,respectively,and or briJ0ðbriÞ 0 1 b2 ¼rZðtro2þioÞ,whereρ,tr,andηarethedensity,relaxationtimeandthefluidviscosityre- spectively.InordertoapplyEq(1)toaparticularnetworkofvessels,thenetworkgeometrical characteristics,namely,thenumberoflevels-thatdeterminethenumberofvessels-,lengths andradii,arerequired. Thenetworkhemodynamicresponserelatesviscoelasticflowandpressuredropinfrequen- cydomain[14,17].Inordertohaveitexplicitlyintimedomainoneneedstospecifyatimede- pendentpressuregradient.Astheequationsarelinear,wecanobtainthefluidresponsetoany time-dependentpressuregradientasalinearsuperpositionofsinusoidalmodes.Forasingle- modetime-dependentpressuredropΔp=Δp cos(ω t),thevolumetricflowasafunctionof 0 0 timeisgivenby 1 Dp QðtÞ¼(cid:2) ½Re½wðo Þ(cid:3)cosðo tÞþIm½wðo Þ(cid:3)sinðo tÞ(cid:3) 0 ð2Þ Z 0 0 0 0 L PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 3/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply wheretherealandtheimaginarypartsoftheresponsefunctionχ(Eq(1))givetheflowin- phaseandout-of-phasewiththepressuregradient,respectively[21].Eq(2)putsforwardthe importanceofthedynamicresponseasameasurementoftheresistancetoflow.Forsystems drivenatbiologicallyrelevantfrequenciesliketheonesimposedbytheheart,theimaginary partoftheresponseisoftennegligiblecomparedtoitsrealpartandtherealpartofthere- sponsegivesonetheproportionalityfactorbetweenpressuregradientandflowintimedomain. Theresponsefunctionallowsonetostudythehemodynamicsofthesystem,withoutthere- quirementofconsideringaparticularpressuregradient.Ourresultsarepresentedat1.5Hz, whichistherestingheartrateofthedog[22].Atsuchlowfrequenciesthenetworkresponseis almostindistinguishablefromthesteady-stateregimewheretheresponseisreal.However,we keeptheformalismasgeneralaspossibletomakeitapplicablewhenexternalfrequenciesare imposed[21].Weuseparametersfornormaldogblood[23],ρ=1050kg/m3,η=1.5×10−2 kg/(ms)andassumethattherelaxationtimeissimilartotheonereportedforhumanblood:tr =1×10−3s.Thisone,mightvaryseveralordersofmagnitude,dependingonconfinementand dynamicconditions[18].However,forthestudiespresentedinthispaper,thedynamicre- sponseisalmostindependentonthechoiceofthisquantitysinceweworkatlowfrequencies. Modelforobstructionsinatree-likenetwork Thevascularsystemofmammalshasacomplextopology.However,thereareseveralplacesin thebodyinwhichtree-likenetworksatdifferentscalesirrigatecertainregionsortissues,from thetree-likenetworksresultingfromsuccessivebifurcationsoflargearteriesthatirrigatethe limbs,tothetree-likenetworkscharacteristicofthemicrovasculaturethatirrigatestheeyes. WeuseanelectricalanalogyinwhichtheresistanceofeachvesselisgivenbyR ¼ li .Med- i AiKi icalandbiologicalliteraturefrequentlyreportthefraction,f,ofthetotalcrosssectionalarea thathasbeenobstructed.Accordingly,weconsidertheareaofanobstructedvessel, pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Aobs ¼ð1(cid:2)fÞA.Theradiusoftheobstructedvessel,robs ¼ ð1(cid:2)fÞr,modifiesitsperme- i i i i abilityanditscorrespondingresistance.Weconsiderthatobstructionsoccurinhalfofthe branchesofthesametreelevelasillustratedinFig1A.Althoughsuchanobstructionpattern doesnotcorrespondgenericallytophysiologicalconditions,ithelpstohighlighttheimpactof vesselgeometryforequivalentobstructions,thatis,thosewhichblockthesamepercentageof crosssectionalarearegardlessofthelevelinwhichtheyoccur. ThetotalresistanceforanN-levelnetworkobstructedatlevelnisgivenby L Xn(cid:2)1 R 1 R2 þR ðRobsþR ÞþRobsR ¼ i þ int int n n n n ð3Þ w 2i(cid:2)1 2n(cid:2)2 2R þRobsþR i¼1 int n n P whereR ¼ N Ri andRobs ¼ ln ,whereKobsisthepermeabilityofanobstructed int i¼nþ12i(cid:2)n n ð1(cid:2)fÞAnKnobs n vessel;Fig1Bshowstheelectricanalogyforasegmentofanetworkwithobstructionsatleveln. Althoughwewillfocusontheoverallbehaviorofthenetwork,theanalyticalapproachcan predictthelocalflowateachofthenetworkvessels.Wewillcharacterizetheimpactofvessel obstructionontree-likenetworksbyfocusingontwodifferenttypesofpaths.Wewillconsider unobstructedpaths,thosewhichcrossthenetworkwithoutmovingalonganyobstructedvessel, andobstructedpaths,whenanobstructedvesseliscrossedatsomepointinthenetwork. Obstructionsinanetworkwithequalvessels Wefirsttreatthecaseofanetworkinwhichallvesselshaveapproximatelythesameradius, whichisthecaseofseveralnetworksatthearteriolelevel,andapproximateitwithabifurcating networkofequalvesselswithresistanceR .Wefindthatinthiscase,theeffectcausedby 1 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 4/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig1.Modelforobstructionsinatree-likenetwork.A:Illustrationofanetworkwithobstructionsatleveln, indicatedbycrosses.B:ElectricalanalogyforaN-levelnetworkwithocclusionsatleveln. doi:10.1371/journal.pone.0128111.g001 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 5/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig2.Dynamicresponseforobstructednetworkswithequalvessels.Dynamicresponseforan11-level networkasafunctionofthelevelninwhichobstructionsoccur.Itisimportanttonotethateachpointinthis figurecorrespondstoadifferentnetworksinceweobstructonlyonelevelatatime.Thenormalizationisdone withthenetworkresponsewithoutocclusions.Theeffectoftheobstructionismoredramaticintheouter levelsofthenetwork.Inthiscalculation,thevesselshavethetypicaldimensionofthedogarterioles (r=1×10−5mandl=2×10−3m). doi:10.1371/journal.pone.0128111.g002 occlusionsisrelativelysmallwhenithappensintheinnervessels,anditisrelativelylargewhen ithappensintheoutervessels.Thenetworkresponseincreasesmonotonicallywiththelevel numberninwhichocclusionsoccur(seeFig2). Physically,thisimpliesthatforahealthytissueirrigatedbyatree-likenetwork,occlusions aremoredangerouswhentheyoccurinvesselsofearlygenerationssincebloodsupplyisdra- maticallydecreased,asillustratedinFig3. Amathematicalanalysissimilartotheonepresentedin[14]foranastomosis,allowsusto haveananalyticalapproximatedexpressionforthedynamicresponseofanetworkofequal vessels,χ,obstructedbyafractionofareafatleveln, (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:4) R w2 2f (cid:2)f2 1 lnðw (cid:2)wÞ(cid:4) ln 4 1 un þ ln þnln ð4Þ un L 4(cid:2)6f þ3f2 2 Inthisexpressionχunistheresponseoftheunobstructednetwork.ThelastterminEq(4)isre- latedtotheanatomicalplace,n,wheretheobstructionsoccurandlnð1Þisduetothebifurcation 2 natureofthetree.TheconstanttermsontherighthandsideofEq(4),areindependentofn anddependonlyontheunobstructednetworkfeaturesandonthefractionoftheoccluded areaf.Fig4displaystheremarkablegoodagreementbetweenthenumericalexactresultsand theanalyticalapproximationforthedynamicresponseofa20-levelnetwork,regardlessofthe levelwheretheobstructiontakesplace. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 6/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig3.Time-dependentflowforobstructednetworkswithequalvessels.Bloodflowforan11-level networkwithobstructionsof90%atlevels3,8andwithnoobstruction(reference).Thesharpdecreasein flowafterobstructionsattheouterlevelisclear.ThenetworkusedwasthesameasinFig2.Thetotal pressuredropwassetto110Pa. doi:10.1371/journal.pone.0128111.g003 Fig4.Analyticalapproximationandnumericalsolutionoftheresponseforobstructednetworkswithequalvessels.Analyticalapproximationand numericalsolutionofthequantityln(Re[χun−χ])for20-levelnetworksobstructedatlevelnasdescribedinthetext.Thevesselshavethetypicaldimensionof thedogarterioles(r=1×10−5mandl=2×10−3m). doi:10.1371/journal.pone.0128111.g004 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 7/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig5.Flowinsinglevesselsofanobstructednetworkwithequalvessels.Flowinsinglevesselsin logarithmicscaleasafunctionoftheleveltheybelongtoforanetworkconstitutedby11levelsandwith obstructionsof60%inareaatlevel3.Thecurvesshownare:theflowintheunobstructedpath,theflowinthe obstructedpathandareferencecurvefortheflowinapathofanunobstructednetwork.Forlanguage clarificationseeFig1.Eventhoughthetotalflowdecreaseswiththeobstructions,theflowinthenon- obstructedvesselsincreases.ThenetworkusedwasthesameasinFig2.Thepressuredropwassetto110 Pa. doi:10.1371/journal.pone.0128111.g005 Thetheoreticalpredictionprovidesinsightintheimpactthatthedegreeofobstructionand itslocationinsidethenetworkhasinitsglobalresponse;inparticulartheexpressionderived clearlyshowsthatthechangeinthenetwork’sresponseduetothepresenceofobstructionsis highlydeterminedbythestructureoftheunobstructednetwork. Itisveryimportanttokeepinmindthataglobaldecreaseofthetotalflowinanetwork, doesnotimplythatallvesselshaveasmallerflowthanintheabsenceofobstructions.Forin- stance,Fig5showsthelocalflowthroughtheunobstructedandobstructedpathswhenob- structionsthatocclude60%ofthevesselsectionareplacedinhalfofthevesselsatleveln=3of an11-levelnetwork.Thefigurequantifiestherelativeincrease(decrease)ofthelocalflow throughtheunobstructed(obstructed)path.Becauseofflowconservation,theslopesinthe log-linearplotinFig5fortheflowthroughobstructedandunobstructedpathsareidentical.It isworthpointingoutthatatleveli+1,therearetwicethenumberofvesselsthanatleveliand theflowishalved.Flowintheouterlevelsoftheobstructednetworkissmallerthantherefer- encecurve,becausethetotalflow(equaltoflowatlevel1)issmallerforanobstructednetwork thanforanunobstructedone. ObstructionsinanetworkwithvesselradiithatfollowMurray’slaw Realvascularnetworksarecomposedofvesselsofdifferentradiiandlengths;accordingly,they arecharacterizedbychangesinresistancefromoneleveltothenextone.Foranimaltree-like vasculatures,thisnormallyimpliesanincreaseinresistancefromonebifurcationleveltothe nextone,becauseinnerlevelshavesmallerradii. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 8/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Assumingthatthevascularsystemevolvedtominimizethepowerrequiredtomaintainand circulateblood[24],Murrayderived,in1926,therelationshipknownasMurray’slaw.This onerelatestheparentradius,rp,andthetwodaughtersvesselsradii,rd1,rd2,beforeandaftera bifurcation,as r3 ¼r3 þr3 ð5Þ p d1 d2 AccordingtoanextensivestudyonthevalidityofMurray’slaw[25]andareviewonvascu- larflowofreference[26],physiologicalstudiesshowedthat,barringsomeanomalies,alarge partofthemammalianvasculatureshavereasonableagreementwithEq(5).Accordingto[26], thereisalsoaconsiderablemassofliteraturecomparingphysiologicalstudiesinanimalsother thanmammals,andeveninplants[27–30],thatshowgoodagreementwithMurray’slaw. WethereforeconsiderMurray’slawasanexampleofphysiologicalrelevance,inwhichour analyticalresultsillustratehowtoexplainthedifferenttendenciesinthedynamicresponsein differentsectionsofthenetwork. Forourstudies,weconsidersymmetricalbranching,sointhiscase,radiiofsubsequentlev- elsaregivenby 1 (cid:3) (cid:4) r ¼ 1 3r ð6Þ i 2 i(cid:2)1 Forlengths,weconsiderapowerlawdecaywithparametersthatmatchtheactuallengthofthe aortaandthelengthofthecapillariesofthedogcirculatorysystem. Figs6Bleftand6Bright,showtherealandimaginarypartsoftheratiooftwosequentialre- sistancesoftheunderlyingnetwork,ai ¼RRi(cid:2)i1,whereRi ¼AiliKi.Thecomplexcharacterofaiis duetothefactthatwearenotworkinginasteadystate,butatthefrequencyoftheheartrateof thedogatrest.Asforanyrealisticvasculature,thevalueofachangesalongthenetworkac- cordingtothelengthsandradiiofthevesselsthatcomposeit.Adecreaseinradiibetweensub- sequentlevelsproducesanincreaseinresistance,ontheotherhandadecreaseinlength betweensubsequentlevels,producesadecreaseinresistance.Itisthereforetheinterplaybe- tweenthistwoquantitieswhichwilldeterminethevalueofa.Itturnsoutthatforabifurcating network,theresponsewillbequalitativelydifferentwheneveraissmallerorlargerthan2,as wewillseebelow. Figs6Aleftand6Aright,showtherealandimaginarypartsoftheresponseasafunctionof thelevelninwhichobstructionsoccur.AswecanseefromFig6Aleftforlargearteries,the realpartoftheresponseasafunctionofthelevelninwhichobstructionsoccur,increaseswith increasingn.Ontheotherhand,forthesectionofsmallervessels,therealpartoftheresponse asafunctionofthelevelninwhichobstructionsoccurdecreaseswithincreasingn. Inordertogaininsightintotheseresults,wepresentanalyticalapproximationsfornetworks inwhichtheratioofsubsequentresistancesislessthantwoorlargerthantwo.Theseones agreewellwithnumericalresultswhenevertherealpartofaisconsiderablylargerthanits imaginarypart.Theyaregivenby: (cid:3) (cid:4) (cid:3) (cid:4) (cid:5) (cid:6) R w2 2f (cid:2)f2 a lnðw (cid:2)wÞ(cid:4) ln 4 1 un þ ln þnln ð7Þ un L a½4þð2þaÞðf2(cid:2)2fÞ(cid:3) 2 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 9/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig6.DynamicresponseforanetworkwithvesselradiithatfollowMurray’slaw.A:Realandimaginarypartsoftheresponseofthenetwork(inm4)as afunctionofthelevelnatwhichobstructionsoccur.B:Realandimaginarypartsoftheratiooftwosequentialresistancesa ¼ Ri asafunctionoftheleveliof i Ri(cid:2)1 theunderlyingnetwork.Notethatweusethesubindexi,wheneverwerefertoapropertyoftheunderlyingnetwork,weusethesubindexnwheneverwerefer totheresponseofthewholenetworkwhenobstructionsoccuratleveln. doi:10.1371/journal.pone.0128111.g006 fora<2,whichreducestoEq(4)whena=1,and ! (cid:3) (cid:4) (cid:5) (cid:6) R w2 2f (cid:2)f2 a lnðw (cid:2)wÞ(cid:4) ln 4 1 un þ ln þnln ð8Þ un L 4að1(cid:2)fÞ2 2 fora>2. Thestrongestinfluenceoftheunderlyingnetworkwithoutobstructions,onthenetworkre- (cid:7) (cid:8) sponsewhenobstructionsarepresent,comesfromthetermn ln a whichgivesaqualitatively 2 differenttrendfora<2andfora>2.Inthefirstcasea<2,theresponseincreaseswithin- creasingn.Ontheotherhand,whena>2,theresponsedecreaseswithincreasingn. AswecanseefromFig6Aleftfortheouterlevels,theresponseincreaseswithincreasingn, andasFig6Bleftshowsa<2onthesamerange.Likewise,fortheinnervessels,theresponse PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 10/17

Description:
AiKi. р1Ю. The sum is over the network levels, Ai and li are respectively the cross sectional area and the length of the stenosed carotid bifurcation.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.