RESEARCHARTICLE Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply AimeeM.TorresRojas1,AlejandroMezaRomero1,IgnacioPagonabarraga2,RuiD. M.Travasso3,EugeniaCorveraPoiré1,2* 1DepartamentodeFísicayQuímicaTeórica,FacultaddeQuímica,UniversidadNacionalAutónomade México,MéxicoD.F.,Mexico,2DepartamentdeFísicaFonamental,UniversitatdeBarcelona,Barcelona, Spain,3CentrodeFísicadaUniversidadedeCoimbra,DepartamentodeFísica,FaculdadedeCiênciase a11111 Tecnologia,UniversidadedeCoimbra,Coimbra,Portugal * [email protected] Abstract OPENACCESS Werelatevascularnetworkstructuretohemodynamicsaftervesselobstructions.Wecon- Citation:TorresRojasAM,MezaRomeroA, sidertree-likenetworkswithaviscoelasticfluidwiththerheologicalcharacteristicsofblood. PagonabarragaI,TravassoRDM,CorveraPoiréE Weanalyzethenetworkhemodynamicresponse,whichisafunctionofthefrequenciesin- (2015)ObstructionsinVascularNetworks:Relation volvedinthedriving,andameasurementoftheresistancetoflow.Thisresponsefunction BetweenNetworkMorphologyandBloodSupply. allowsthestudyofthehemodynamicsofthesystem,withouttheknowledgeofaparticular PLoSONE10(6):e0128111.doi:10.1371/journal. pone.0128111 pressuregradient.Wefindanalyticalexpressionsforthenetworkresponse,whichexplicitly AcademicEditor:AlanStitt,Queen’sUniversity showtherolesplayedbythenetworkstructure,thedegreeofobstruction,andthegeometri- Belfast,UNITEDKINGDOM calplaceinwhichobstructionsoccur.Notably,wefindthatthesequenceofresistancesof thenetworkwithoutocclusionsstronglydeterminesthetendenciesthattheresponsefunc- Received:October2,2014 tionhaswiththeanatomicalplacewhereobstructionsarelocated.Weidentifyanatomical Accepted:April22,2015 sitesinanetworkthatarecriticalforitsoverallcapacitytosupplybloodtoatissueafterob- Published:June18,2015 structions.Wedemonstratethatrelativelysmallobstructionsinsuchcriticalsitesareableto Copyright:©2015TorresRojasetal.Thisisan causeamuchlargerdecreaseonflowthanlargerobstructionsplacedinnon-criticalsites. openaccessarticledistributedunderthetermsofthe Ourresultsindicatethat,toalargeextent,theresponseofthenetworkisdeterminedlocally. CreativeCommonsAttributionLicense,whichpermits Thatis,itdependsonthestructurethatthevasculaturehasaroundtheplacewhereocclu- unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare sionsarefound.ThisresultismanifestinanetworkthatfollowsMurray’slaw,whichisin credited. reasonableagreementwithseveralmammalianvasculatures.Forthisone,occlusionsin DataAvailabilityStatement:Allrelevantdataare earlygenerationvesselshavearadicallydifferenteffectthanocclusionsinlategeneration withinthepaper. vesselsoccludingthesamepercentageofareaavailabletoflow.Thislocalityimpliesthat Funding:AMTRacknowledgesfinancialsupport wheneverthereisatissueirrigatedbyatree-likeinvivovasculature,ourmodelisabletoin- fromConsejoNacionaldeCienciayTecnología terprethowimportantobstructionsarefortheirrigationofsuchtissue. (CONACYT)throughfellowship245675(http://www. conacyt.mx/).IPacknowledgesfinancialsupportfrom MinisteriodeEconomíayCompetitividad(MINECO) underProjectNo.FIS2011-22603(http://www. mineco.gob.es/portal/site/mineco/).IPalso acknowledgesfinancialsupportfromDepartament d’UniversitatsRecercaiSocietatdelaInformació (DURSI)underProjectNo.2009SGR-634(http://web. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 1/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply gencat.cat/ca/inici/index.html).RDMTacknowledges Introduction financialsupportfromFondoEuropeodeDesarrollo Occlusionoftubeshasalwaysrepresentedaproblem.Fromenginesandfilterstoarteriesand Regional(FEDER)throughCOMPETEprogramand byFCTthroughprojectFCOMP-01-0124-FEDER- bronchia,wecanfindcountlesssystemswhereareductionofthefluidflowinaparticularsite 015708(http://ec.europa.eu/regional_policy/thefunds/ duetothepresenceofanobstacle,resultsinthepartialortotalfailureofaprocess.Occlusion regional/index_es.cfm).ECPdeclaresthatthe ofbio-tubesinthehumanbodyrepresentanimportantissueinmanydiseases,andthecircula- researchleadingtotheseresultshasreceived toryvascularnetworkisparticularlyvulnerabletoobstructions.Forinstance,afteranocclusion fundingfromtheEuropeanUnionSeventh inthearteries,bloodflowdecreases,and,incriticalcases,iseffectivelysuppresseddownstream. FrameworkProgramme(FP7-PEOPLE-2011-IIF) undergrantagreementno.301214(http://ec.europa. Suchdecreaseofflowmayhaveseriousconsequencesatdifferentlevels,affectingoxygenand eu/research/fp7/index_en.cfm).ECPalso nutrientdeliverytoatissue,orimplyinganincreaseinthestressovertheheartmuscle[1]. acknowledgesfinancialsupportfromConsejo Onedramaticexampleofthepathologicaleffectofvascularobstructionsisaretinalarteryoc- NacionaldeCienciayTecnología(CONACYT) clusion.Suchanocclusionbyabloodclotwithdrawsthenutrientandoxygensupplyfromthe throughproject219584(http://www.conacyt.mx/).The retinalcellsandmayrenderanindividualblindfromaneyewithinafewhours[2,3].Inthis fundershadnoroleinstudydesign,datacollection scenarioisoftheutmostimportancetoidentifyspecificsitesinavasculaturewhereapartial andanalysis,decisiontopublish,orpreparationof themanuscript. obstructioncandramaticallyaffectbloodsupply. Varioussimulationsofflowaroundpartialobstructionsinvesselsexistintheliterature CompetingInterests:Theauthorshavedeclared [4–12].Suchanalysesaimatdescribingindetailtheflowpatternsaroundocclusions,suchas thatnocompetinginterestsexist. thevelocityatdifferentpointsinsideavessel,theexistenceofvortices,orthevaluesofwall shearstressatdifferentlocations[5–7,9–12].Dependingontheinterestofeachparticular study,theymayaccountfor3-dimensionality,elasticityorviscoelasticityofthevessels,inclu- sionofnon-linearconvectiveterms,andtheeffectsonflowofbifurcations,tonameafew. Theenormousamountofworkinvolvedinsuchcomputationsisnecessarywhenonewants todescribespecificzonesofavasculature,andtoanswerdetailedquestionsregardingflowpro- filesaroundobstacles,stenosis,bypasses,bifurcations,orflowintheaorticarch.Thesecomplex computationsareabletopredicthowthewaveformsofpressureandflowchangeincertain vesselsduetoobstructions,stenosisorvesselsuppressionatparticularsites[4,8,13].Sophisti- catedmodelsarealsoveryinterestingfromatheoreticalandcomputationalpointofview. However,theyinvolvetoomanyvariablestoallowforthederivationofanalyticalexpressions whenoneisinterestedinknowingtheeffectthatobstructionshaveontheoverallflowthrough- outanentirenetwork.Analyticalexpressionsmightbeverypowerfulandarepotentiallyuseful clinically,whereareducednumberofparametersisoftenappreciated. Knowledgeaboutthestructureofvascularnetworks,iskeytopredicttheflowafteralter- ationsinthevasculature,e.g.afterthegrowthorintroductionofnewvessels[14,15]orafter thepartialocclusionofvesselsinthesystem[8,11,12,16].Thecorrespondencebetweenlocal structuralnetworkinformationandglobalflowthroughanetworkaftervascularalteration, wasputforwardintheworkofFloresetal[14];thesimplicityofthemodelallowedforanalyti- calexpressionsthatinturnleadtoconclusionsnotattainableotherwise.Forinstance,itwas demonstratedthattheincreaseofflowinthenetworkafterthegrowthofnewvesselsinthe formofanastomosis,isdeterminedbythemorphologyofthevasculatureinasmallneighbor- hoodaroundtheplacewherethenewvesselsareincluded.Otherprocessesthatregulatevessel width,suchasthemyogeniceffect,wereshowntohaveaverysmallqualitativeeffectinhow theincreaseinresponsedependsonthelocalizationoftheanastomoses. Thepurposeofthepresentstudyistorelatethebasic,genericcharacteristicsofanarterial vasculaturewiththeflowthatgoesthroughitafteranatomicalvariationscausedbyobstruc- tionsorvesselsuppressionoccur.Wedeliberatelykeepareductionistapproachinordertoob- tainanalyticalexpressionsforthesystemresponseinwhichtherolesplayedbythenetwork structure,thedegreeofobstruction,andthegeometricalplacewhereobstructionsoccur,can beclearlyidentified. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 2/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Westudyflowinthreetypesofnetworks:oneconstitutedbyidenticalvessels,asecondone inwhichradiiaregivenbyMurray’slaw,andathirdcaseinwhichlargechangesinresistance existwithinthenetwork.Weshowhowtheunderlyingnetworkcanleadtoradicallydifferent behaviorsofthehemodynamicresponseandidentifystructuralfeaturespresentintree-like vasculaturesthatarecriticalfortheoverallcapacityofthenetworktosupplybloodafterob- structions.Wedemonstratethatourresultsarelocalinthesensethattheydependonthenet- workstructurearoundtheplacewhereobstructionsoccur.Thisimpliesthatwheneverthereis atree-likenetworkinanin-vivovasculature,ourmodelisabletointerprettheeffectthatan obstructionhasonflow. Background Recently,amodelhasbeenintroducedinordertostudyviscoelasticflowinanetworkoftubes [17].Thismodelconsistsofatree-likenetworkinwhichrigidvesselsbifurcatealwaysinto identicalvesselsgivingrisetoidenticalbranchesofthenetwork.Ateachbifurcationstep,the possibilityofchangesinthecrosssectionalareaandthelengthofthevesselsisallowed.Each level(orgeneration)ofthenetworkisconstitutedbyvesselswiththesamelengthandcrosssec- tion.Segmentsbelongingtothesamelevelarelabeledwiththesameindex.Outerlevelsofthe networkaretheonesthatareclosertothemainbranch,innerlevelsaretheonesthatarethere- sultofseveralsuccessivebifurcations. Themodelconsidersalinearviscoelasticfluidwiththerheologicalcharacteristicsofblood [18]inarangeofshearrateswherethereisnoshearthinning,andanalyzesthenetworkhemo- dynamicresponsetoatime-dependentperiodicpressuregradient.AMaxwellfluid[19]isused forthisstudy,buttheformalismcanbeeasilygeneralizedtoconsideranylinearviscoelastic fluid[20].Byconsideringmassconservation,andassumingthatthetotalpressuredropisthe sumofindividualpressuredrops,thedynamicresponseofthenetwork,χ(ω),iswrittenin termsofthedynamicpermeabilityofindividualvesselsKi(ω)as 1 1XN l ¼ i ð1Þ w L 2i(cid:2)1AK i¼1 i i Thesumisoverthenetworklevels,Aiandliarerespectivelythecrosssectionalareaandthe lengthofthevesselsatthei-thlevel,LandNarethetotallengthofthenetworkandthetotal numberoflevels,respectively.ThedynamicpermeabilityforavesselofradiusriisKi ¼ h i iZ 1(cid:2) 2J1ðbriÞ whereJ andJ areBesselfunctionsoforderzeroandone,respectively,and or briJ0ðbriÞ 0 1 b2 ¼rZðtro2þioÞ,whereρ,tr,andηarethedensity,relaxationtimeandthefluidviscosityre- spectively.InordertoapplyEq(1)toaparticularnetworkofvessels,thenetworkgeometrical characteristics,namely,thenumberoflevels-thatdeterminethenumberofvessels-,lengths andradii,arerequired. Thenetworkhemodynamicresponserelatesviscoelasticflowandpressuredropinfrequen- cydomain[14,17].Inordertohaveitexplicitlyintimedomainoneneedstospecifyatimede- pendentpressuregradient.Astheequationsarelinear,wecanobtainthefluidresponsetoany time-dependentpressuregradientasalinearsuperpositionofsinusoidalmodes.Forasingle- modetime-dependentpressuredropΔp=Δp cos(ω t),thevolumetricflowasafunctionof 0 0 timeisgivenby 1 Dp QðtÞ¼(cid:2) ½Re½wðo Þ(cid:3)cosðo tÞþIm½wðo Þ(cid:3)sinðo tÞ(cid:3) 0 ð2Þ Z 0 0 0 0 L PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 3/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply wheretherealandtheimaginarypartsoftheresponsefunctionχ(Eq(1))givetheflowin- phaseandout-of-phasewiththepressuregradient,respectively[21].Eq(2)putsforwardthe importanceofthedynamicresponseasameasurementoftheresistancetoflow.Forsystems drivenatbiologicallyrelevantfrequenciesliketheonesimposedbytheheart,theimaginary partoftheresponseisoftennegligiblecomparedtoitsrealpartandtherealpartofthere- sponsegivesonetheproportionalityfactorbetweenpressuregradientandflowintimedomain. Theresponsefunctionallowsonetostudythehemodynamicsofthesystem,withoutthere- quirementofconsideringaparticularpressuregradient.Ourresultsarepresentedat1.5Hz, whichistherestingheartrateofthedog[22].Atsuchlowfrequenciesthenetworkresponseis almostindistinguishablefromthesteady-stateregimewheretheresponseisreal.However,we keeptheformalismasgeneralaspossibletomakeitapplicablewhenexternalfrequenciesare imposed[21].Weuseparametersfornormaldogblood[23],ρ=1050kg/m3,η=1.5×10−2 kg/(ms)andassumethattherelaxationtimeissimilartotheonereportedforhumanblood:tr =1×10−3s.Thisone,mightvaryseveralordersofmagnitude,dependingonconfinementand dynamicconditions[18].However,forthestudiespresentedinthispaper,thedynamicre- sponseisalmostindependentonthechoiceofthisquantitysinceweworkatlowfrequencies. Modelforobstructionsinatree-likenetwork Thevascularsystemofmammalshasacomplextopology.However,thereareseveralplacesin thebodyinwhichtree-likenetworksatdifferentscalesirrigatecertainregionsortissues,from thetree-likenetworksresultingfromsuccessivebifurcationsoflargearteriesthatirrigatethe limbs,tothetree-likenetworkscharacteristicofthemicrovasculaturethatirrigatestheeyes. WeuseanelectricalanalogyinwhichtheresistanceofeachvesselisgivenbyR ¼ li .Med- i AiKi icalandbiologicalliteraturefrequentlyreportthefraction,f,ofthetotalcrosssectionalarea thathasbeenobstructed.Accordingly,weconsidertheareaofanobstructedvessel, pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Aobs ¼ð1(cid:2)fÞA.Theradiusoftheobstructedvessel,robs ¼ ð1(cid:2)fÞr,modifiesitsperme- i i i i abilityanditscorrespondingresistance.Weconsiderthatobstructionsoccurinhalfofthe branchesofthesametreelevelasillustratedinFig1A.Althoughsuchanobstructionpattern doesnotcorrespondgenericallytophysiologicalconditions,ithelpstohighlighttheimpactof vesselgeometryforequivalentobstructions,thatis,thosewhichblockthesamepercentageof crosssectionalarearegardlessofthelevelinwhichtheyoccur. ThetotalresistanceforanN-levelnetworkobstructedatlevelnisgivenby L Xn(cid:2)1 R 1 R2 þR ðRobsþR ÞþRobsR ¼ i þ int int n n n n ð3Þ w 2i(cid:2)1 2n(cid:2)2 2R þRobsþR i¼1 int n n P whereR ¼ N Ri andRobs ¼ ln ,whereKobsisthepermeabilityofanobstructed int i¼nþ12i(cid:2)n n ð1(cid:2)fÞAnKnobs n vessel;Fig1Bshowstheelectricanalogyforasegmentofanetworkwithobstructionsatleveln. Althoughwewillfocusontheoverallbehaviorofthenetwork,theanalyticalapproachcan predictthelocalflowateachofthenetworkvessels.Wewillcharacterizetheimpactofvessel obstructionontree-likenetworksbyfocusingontwodifferenttypesofpaths.Wewillconsider unobstructedpaths,thosewhichcrossthenetworkwithoutmovingalonganyobstructedvessel, andobstructedpaths,whenanobstructedvesseliscrossedatsomepointinthenetwork. Obstructionsinanetworkwithequalvessels Wefirsttreatthecaseofanetworkinwhichallvesselshaveapproximatelythesameradius, whichisthecaseofseveralnetworksatthearteriolelevel,andapproximateitwithabifurcating networkofequalvesselswithresistanceR .Wefindthatinthiscase,theeffectcausedby 1 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 4/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig1.Modelforobstructionsinatree-likenetwork.A:Illustrationofanetworkwithobstructionsatleveln, indicatedbycrosses.B:ElectricalanalogyforaN-levelnetworkwithocclusionsatleveln. doi:10.1371/journal.pone.0128111.g001 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 5/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig2.Dynamicresponseforobstructednetworkswithequalvessels.Dynamicresponseforan11-level networkasafunctionofthelevelninwhichobstructionsoccur.Itisimportanttonotethateachpointinthis figurecorrespondstoadifferentnetworksinceweobstructonlyonelevelatatime.Thenormalizationisdone withthenetworkresponsewithoutocclusions.Theeffectoftheobstructionismoredramaticintheouter levelsofthenetwork.Inthiscalculation,thevesselshavethetypicaldimensionofthedogarterioles (r=1×10−5mandl=2×10−3m). doi:10.1371/journal.pone.0128111.g002 occlusionsisrelativelysmallwhenithappensintheinnervessels,anditisrelativelylargewhen ithappensintheoutervessels.Thenetworkresponseincreasesmonotonicallywiththelevel numberninwhichocclusionsoccur(seeFig2). Physically,thisimpliesthatforahealthytissueirrigatedbyatree-likenetwork,occlusions aremoredangerouswhentheyoccurinvesselsofearlygenerationssincebloodsupplyisdra- maticallydecreased,asillustratedinFig3. Amathematicalanalysissimilartotheonepresentedin[14]foranastomosis,allowsusto haveananalyticalapproximatedexpressionforthedynamicresponseofanetworkofequal vessels,χ,obstructedbyafractionofareafatleveln, (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:4) R w2 2f (cid:2)f2 1 lnðw (cid:2)wÞ(cid:4) ln 4 1 un þ ln þnln ð4Þ un L 4(cid:2)6f þ3f2 2 Inthisexpressionχunistheresponseoftheunobstructednetwork.ThelastterminEq(4)isre- latedtotheanatomicalplace,n,wheretheobstructionsoccurandlnð1Þisduetothebifurcation 2 natureofthetree.TheconstanttermsontherighthandsideofEq(4),areindependentofn anddependonlyontheunobstructednetworkfeaturesandonthefractionoftheoccluded areaf.Fig4displaystheremarkablegoodagreementbetweenthenumericalexactresultsand theanalyticalapproximationforthedynamicresponseofa20-levelnetwork,regardlessofthe levelwheretheobstructiontakesplace. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 6/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig3.Time-dependentflowforobstructednetworkswithequalvessels.Bloodflowforan11-level networkwithobstructionsof90%atlevels3,8andwithnoobstruction(reference).Thesharpdecreasein flowafterobstructionsattheouterlevelisclear.ThenetworkusedwasthesameasinFig2.Thetotal pressuredropwassetto110Pa. doi:10.1371/journal.pone.0128111.g003 Fig4.Analyticalapproximationandnumericalsolutionoftheresponseforobstructednetworkswithequalvessels.Analyticalapproximationand numericalsolutionofthequantityln(Re[χun−χ])for20-levelnetworksobstructedatlevelnasdescribedinthetext.Thevesselshavethetypicaldimensionof thedogarterioles(r=1×10−5mandl=2×10−3m). doi:10.1371/journal.pone.0128111.g004 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 7/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig5.Flowinsinglevesselsofanobstructednetworkwithequalvessels.Flowinsinglevesselsin logarithmicscaleasafunctionoftheleveltheybelongtoforanetworkconstitutedby11levelsandwith obstructionsof60%inareaatlevel3.Thecurvesshownare:theflowintheunobstructedpath,theflowinthe obstructedpathandareferencecurvefortheflowinapathofanunobstructednetwork.Forlanguage clarificationseeFig1.Eventhoughthetotalflowdecreaseswiththeobstructions,theflowinthenon- obstructedvesselsincreases.ThenetworkusedwasthesameasinFig2.Thepressuredropwassetto110 Pa. doi:10.1371/journal.pone.0128111.g005 Thetheoreticalpredictionprovidesinsightintheimpactthatthedegreeofobstructionand itslocationinsidethenetworkhasinitsglobalresponse;inparticulartheexpressionderived clearlyshowsthatthechangeinthenetwork’sresponseduetothepresenceofobstructionsis highlydeterminedbythestructureoftheunobstructednetwork. Itisveryimportanttokeepinmindthataglobaldecreaseofthetotalflowinanetwork, doesnotimplythatallvesselshaveasmallerflowthanintheabsenceofobstructions.Forin- stance,Fig5showsthelocalflowthroughtheunobstructedandobstructedpathswhenob- structionsthatocclude60%ofthevesselsectionareplacedinhalfofthevesselsatleveln=3of an11-levelnetwork.Thefigurequantifiestherelativeincrease(decrease)ofthelocalflow throughtheunobstructed(obstructed)path.Becauseofflowconservation,theslopesinthe log-linearplotinFig5fortheflowthroughobstructedandunobstructedpathsareidentical.It isworthpointingoutthatatleveli+1,therearetwicethenumberofvesselsthanatleveliand theflowishalved.Flowintheouterlevelsoftheobstructednetworkissmallerthantherefer- encecurve,becausethetotalflow(equaltoflowatlevel1)issmallerforanobstructednetwork thanforanunobstructedone. ObstructionsinanetworkwithvesselradiithatfollowMurray’slaw Realvascularnetworksarecomposedofvesselsofdifferentradiiandlengths;accordingly,they arecharacterizedbychangesinresistancefromoneleveltothenextone.Foranimaltree-like vasculatures,thisnormallyimpliesanincreaseinresistancefromonebifurcationleveltothe nextone,becauseinnerlevelshavesmallerradii. PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 8/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Assumingthatthevascularsystemevolvedtominimizethepowerrequiredtomaintainand circulateblood[24],Murrayderived,in1926,therelationshipknownasMurray’slaw.This onerelatestheparentradius,rp,andthetwodaughtersvesselsradii,rd1,rd2,beforeandaftera bifurcation,as r3 ¼r3 þr3 ð5Þ p d1 d2 AccordingtoanextensivestudyonthevalidityofMurray’slaw[25]andareviewonvascu- larflowofreference[26],physiologicalstudiesshowedthat,barringsomeanomalies,alarge partofthemammalianvasculatureshavereasonableagreementwithEq(5).Accordingto[26], thereisalsoaconsiderablemassofliteraturecomparingphysiologicalstudiesinanimalsother thanmammals,andeveninplants[27–30],thatshowgoodagreementwithMurray’slaw. WethereforeconsiderMurray’slawasanexampleofphysiologicalrelevance,inwhichour analyticalresultsillustratehowtoexplainthedifferenttendenciesinthedynamicresponsein differentsectionsofthenetwork. Forourstudies,weconsidersymmetricalbranching,sointhiscase,radiiofsubsequentlev- elsaregivenby 1 (cid:3) (cid:4) r ¼ 1 3r ð6Þ i 2 i(cid:2)1 Forlengths,weconsiderapowerlawdecaywithparametersthatmatchtheactuallengthofthe aortaandthelengthofthecapillariesofthedogcirculatorysystem. Figs6Bleftand6Bright,showtherealandimaginarypartsoftheratiooftwosequentialre- sistancesoftheunderlyingnetwork,ai ¼RRi(cid:2)i1,whereRi ¼AiliKi.Thecomplexcharacterofaiis duetothefactthatwearenotworkinginasteadystate,butatthefrequencyoftheheartrateof thedogatrest.Asforanyrealisticvasculature,thevalueofachangesalongthenetworkac- cordingtothelengthsandradiiofthevesselsthatcomposeit.Adecreaseinradiibetweensub- sequentlevelsproducesanincreaseinresistance,ontheotherhandadecreaseinlength betweensubsequentlevels,producesadecreaseinresistance.Itisthereforetheinterplaybe- tweenthistwoquantitieswhichwilldeterminethevalueofa.Itturnsoutthatforabifurcating network,theresponsewillbequalitativelydifferentwheneveraissmallerorlargerthan2,as wewillseebelow. Figs6Aleftand6Aright,showtherealandimaginarypartsoftheresponseasafunctionof thelevelninwhichobstructionsoccur.AswecanseefromFig6Aleftforlargearteries,the realpartoftheresponseasafunctionofthelevelninwhichobstructionsoccur,increaseswith increasingn.Ontheotherhand,forthesectionofsmallervessels,therealpartoftheresponse asafunctionofthelevelninwhichobstructionsoccurdecreaseswithincreasingn. Inordertogaininsightintotheseresults,wepresentanalyticalapproximationsfornetworks inwhichtheratioofsubsequentresistancesislessthantwoorlargerthantwo.Theseones agreewellwithnumericalresultswhenevertherealpartofaisconsiderablylargerthanits imaginarypart.Theyaregivenby: (cid:3) (cid:4) (cid:3) (cid:4) (cid:5) (cid:6) R w2 2f (cid:2)f2 a lnðw (cid:2)wÞ(cid:4) ln 4 1 un þ ln þnln ð7Þ un L a½4þð2þaÞðf2(cid:2)2fÞ(cid:3) 2 PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 9/17 ObstructionsinVascularNetworks:CriticalSitesforBloodSupply Fig6.DynamicresponseforanetworkwithvesselradiithatfollowMurray’slaw.A:Realandimaginarypartsoftheresponseofthenetwork(inm4)as afunctionofthelevelnatwhichobstructionsoccur.B:Realandimaginarypartsoftheratiooftwosequentialresistancesa ¼ Ri asafunctionoftheleveliof i Ri(cid:2)1 theunderlyingnetwork.Notethatweusethesubindexi,wheneverwerefertoapropertyoftheunderlyingnetwork,weusethesubindexnwheneverwerefer totheresponseofthewholenetworkwhenobstructionsoccuratleveln. doi:10.1371/journal.pone.0128111.g006 fora<2,whichreducestoEq(4)whena=1,and ! (cid:3) (cid:4) (cid:5) (cid:6) R w2 2f (cid:2)f2 a lnðw (cid:2)wÞ(cid:4) ln 4 1 un þ ln þnln ð8Þ un L 4að1(cid:2)fÞ2 2 fora>2. Thestrongestinfluenceoftheunderlyingnetworkwithoutobstructions,onthenetworkre- (cid:7) (cid:8) sponsewhenobstructionsarepresent,comesfromthetermn ln a whichgivesaqualitatively 2 differenttrendfora<2andfora>2.Inthefirstcasea<2,theresponseincreaseswithin- creasingn.Ontheotherhand,whena>2,theresponsedecreaseswithincreasingn. AswecanseefromFig6Aleftfortheouterlevels,theresponseincreaseswithincreasingn, andasFig6Bleftshowsa<2onthesamerange.Likewise,fortheinnervessels,theresponse PLOSONE|DOI:10.1371/journal.pone.0128111 June18,2015 10/17
Description: