ebook img

Observations of ultraluminous X-ray sources PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Observations of ultraluminous X-ray sources

Observations of ultraluminous X-ray sources Jeanette C. Gladstone DepartmentofPhysics,UniversityofAlberta,Edmonton,Alberta,T6G2G7,Canada 1 1 Abstract. 0 UltraluminousX-raysources(ULXs),firstobserved∼30yearsago,havebeenarguedasextremestellarmassblackhole 2 binariesoranew classintermediatemassblackhole. Inorder tosettlethisdebate,scientistshaveutilisedawiderangeof n telescopes,exploitinglargesectionsoftheelectro-magneticspectrum.Herewereviewsomeoftheinsightgainedfromthese a observationalstudies,collatinganoverviewofourcurrentpositioninULXresearch. J Keywords: accretion,accretiondisks-blackholephysics-X-rays:binaries-galaxies-stars-ISM:jetsandoutflows, 7 PACS: 95;98 2 ] E INTRODUCTION H UltraluminousX-raySources(ULXs)arepointlike,extragalactic,non-nuclearobjectswithinferredX-rayluminosi- . h tiesinexcessoftheEddingtonlimit(LEdd≃1039ergs−1)forastellarmassblackhole(StMBH,3–20M⊙),radiating p isotropically.Thesimplestwaytoexplainthisistoassumealargermasscompactobject,withproposedmassesrang- - o ingfrom102 –104M⊙ (e.g.Colberts&Mushotzky1999),accretingatsub-Eddingtonrates.Blackholesofthissize r providean attractiveopportunitytoexplainthe ‘missinglink’inthemassscale of blackholes,andpresentpossible t s formation routes for super-massive black holes (SMBHs) and the formation of galaxies (e.g. Madau & Rees 2001; a Ebisuzakietal.2001). [ AnalternatetheoryisthatweareinsteadobservingStMBHs1thatappeartobeemittingabovetheEddingtonlimit, 1 circumventingtheEddingtonlimitviarelativisticorgeometricbeaming.Relativisticbeamingoccursasaconsequence v of the observerlookingdownthe funnelof a jet (Kördinget al. 2002),resulting in Dopplerboostedemission. This 7 occursineitherthelow/hard(LHS)or(occasionally)veryhighstate(VHS),whenjetemissionispresent.Geometric 8 beamingoccursathighermassaccretionratesasthediscapproachestheEddingtonlimitandwhenradiationpressure 3 5 becomessignificant(e.g.Kingetal.2001;King2008;2009).Theinflowingmaterial,beingfedthroughtheaccretion . disc reachesthe Eddingtonlimit (locally)at a pointknownas the spherizationor trappingradius.To keepthe local 1 radiationenergyreleaseclosetoEddington,theexcessenergyandmatterislostviaastrongoutflow.Thiscollimation 0 1 causesabeamingeffectthatbooststheapparentemissionfromthesourceforanobserveralongtheconeofemission. 1 The third option is that we are in fact observing super-Eddington accretion onto a StMBH, forcing a change in : the accretiongeometry.Thereare manysuggestionsforpossible geometriesat suchhighaccretionrates.One is the v slim disc model,where an increase in mass accretionrate causes the disc to becomeso opticallythick thatphotons i X areadvectedradiallyleadingtoadditionalcooling(Abramowiczetal.1988).Analternativetothiswasproposedby r Poutanenetal.(2007),inwhichitispredictedthatwewouldobserveacoolaccretiondiscandaphotosphere(radiating a ablackbody-likespectrum)emittingacool(∼1keV)thermalcomponentalongwithapossibleoutflow/wind. AbovewehaveoutlinedsomeofthecurrenttheoriesproposedtoexplaintheemissionfromULXs.Throughoutthis paperwewilldiscussmulti-wavelengthobservationsofthesesources,focussingontheinsightsthatcanbeobtained withregardtotheunderlyingcompactobject,inanattempttounlockthenatureofthesesystems. EARLY ULX SURVEYS ThefirstcataloguesofULXswerecreatedusingROSAT(e.g.Colbert&Mushotzky1999;Roberts&Warwick2000; < Colbert&Ptak2002).Thesesurveysshowedthatnon-nuclearluminousX-raysourcesappearedin∼20percentthe 1 HerewedefineStMBHstobetheproductoftheendpointofasinglestellarevolution(∼<100M⊙),andusethisthroughoutthearticle. ObservationsofultraluminousX-raysources January28,2011 1 galaxiessampled(Miller&Colbert2004)andcoveredawiderrangeofluminosities(∼<afew×1040ergs−1). Althoughthesesourcesarerare,over-densitieshavebeenobservedin somegalaxiessuchastheAntennae,orthe > Cartwheel. In a survey of the Antennae, it was found that ∼ 10 sources emitting in the ultraluminousregime (e.g. Fabbianoetal.2003).ThemassoftheseobjectswasinitiallyestimatedbyassumingtheywereX-raybinarysystems containing a black hole emitting at the Eddington limit. The luminosity of these sources suggested that we were observingblackholesofmassMBH∼>10–(few×)100M⊙(assumingnobeaming;Miller&Colbert2004),however theiraccretionrateisunknown. OPTICALSTUDIES Starting from the largest size scales and moving inwards, ULXs have been found preferentially in actively star- forming galaxies (Kaaret 2005), along with starburst, interacting/merging and dwarf galaxies (Swartz et al. 2008) preferablywithlowmetallicities(Pakull&Mirioni2002;Zampieri&Roberts2009;Mapellietal.2009),intherange 16Z⊙<Z< 21Z⊙ (Ripamontietal2010).SuchlowmetallicitiesareimportantintheformationoflargeStMBHs.The lowmetallicityreducesthelossofmaterialviaawindduringastarslife,enhancingthemaximumpossibleblackhole mass(e.g.Mapellietal2010),italsoenhancestheprobabilityofformingHighMassX-rayBinaries(HMXBs;Linden etal2010). An observedcorrelationbetween the numberof ULXs and the globalstar-formationrate in spirals hasalso been noted (Swartz et al. 2004; Liu et al. 2006). The sheer number of sources observed in starburst galaxies together with their shortlifetimes (implied by their location in regionsof active star formation)meansthat, if these systems werealltocontainIMBHs,anunrealisticallylargeunderlyingpopulationmustbepresent(seeFigure1(Left);King 2004).InsteaditismuchmorelikelythatthebulkofthepopulationarethemostextremeexamplesofHMXBs,that somehowexceedorcircumventtheEddingtonlimit.Thesehighmasscompanionsprovideanaturaloriginforthehigh masstransferratesrequiredtopowertheobservedluminosities(Rappaportetal.2005). Anassociationwithstar-formingregions(Fabbiano,Zezas&Murray2001;Liraetal.2002;Gaoetal2003)andthe unbrokenluminosityfunctionconnectingULXstothestandardX-raybinarypopulation(Grimm,Gilfanov&Sunyaev 2003)alsoindicatesthatwemaybeobservingHMXBsystems. ULXnebulae Pakull&Mirioni(2002)presentedastudyofULXenvironmentsinwhichsomeULXsappeartoresideinemission nebulaeofafewhundredparsecsindiameter.Theyreportedevidenceofbothlowandhighionisationemissionlines withintheirspectra,indicatingthattheycouldbepoweredbyeithershockorphoto-ionisedradiation.Iftheselinesare signaturesofphoto-ionisation,thesefeaturescanbeusedtoplacelimitsontheX-rayemissionpoweringit.Bydoing thisPakull&Mirioni(2002)concludedthattheopticalemissionwasconsistentwithanisotropicX-rayemitter.This wouldindicatethepresenceofanIMBHatitscentre. ObservationofotherULXnebulae(e.g.HoIIX-1;Kaaretetal.2004)showedevidenceofX-rayionisation,with highlevelsofexcitationneartheULX.DespitethehigherimpactofX-rayemission,thesesourcesalsoshowalackof beamedemission,suggestingthatweareobservingeitherIMBHsorsomeformofsuper-Eddingtonaccretion. Further analysis of some systems revealed evidence of cavities in the nebulae of some systems, possibly cleared by shocks (e.g. NGC 5204 X-1; Roberts et al. 2002), while explorations of their spectra showed evidence of both photoionisationandshocks(e.g.Pakull&Mirioni2003).Also,someULXnebulaeshowsignaturesofstrongwinds and/or jets (Abolmasov et al. 2007). The presence of cavities/bubbles and winds/jets suggests a link to features observed around both StMBHs and SMBHs. Such comparisons can give us insights into the feedback that occurs withinthesesystems(Pakulletal.2010)andintothestrengthofoutflows(Russelletal2010).Althoughthisworkis stillintheearlystagesofdevelopment,resultsindicatethatULXscouldbeaheterogeneoussampleofsources. Stellarcounterparts The search for optical counterparts has revealed a number of faint blue potential counterparts (m ∼ 22 – 26; V Robertsetal.2008),suggestingOorBtypestars.Wemustalsoconsiderthattheemissioncouldbecontaminatedby reprocessedX-raysfromthe accretiondisc/stellarsurface(e.g.Copperwheatetal.2005;Madhusudhanetal. 2008). ObservationsofultraluminousX-raysources January28,2011 2 FIGURE 1. (Left) Cartwheel galaxy: purple - Chandra Observatory; ultraviolet/blue - Galaxy Evolution Explorer satellite; visible/green-HubbleSpaceTelescope;infrared/red-SpitzerSpaceTelescope.TheinserthighlightsthelargeX-raypopulation containedwithinthisgalaxy(Imagecomposite:NASA/JPL/Caltech/P.Appletonetal.X-ray:NASA/CXC/A.Wolter&G.Trinchieri etal.).(Right)PilotspectraoftheeULXstakenbytheGeminiObservatory(Robertsetal.2010),wenotethepresenceofstrong nebulaemissionlinesinallcasesandtheHeII4686Ålineintwocases(thoughttobeassociatedwiththeaccretiondisc). Models created to account of such X-ray irradiation can estimate the underlying stellar spectral type and the mass of the black hole, with the aide of colour-magnitudediagrams. However, studies using such models have provided conflicting values for black hole mass, Madhusudhan et al. (2008) indicated a slight preference for IMBHs, whilst anothershowssupportforStMBHs(Copperwheatetal.2007).Ineithercase,theemissionwasimpactedgreatlyby X-ray irradiation (increase of ∼ 0.5 – 5 magnitudes, depending on assumptions; Copperwheat et al. 2007). Such a dramaticeffectmustbetakenintoaccountinfuturestudiesofthesesystems. StudiesofthestellarenvironmentofULXshavealsoprovidedinsightintothenatureofthecompanion.Forexample, thecolour-magnitudediagramoftheneighbouringstarsofNGC1313X-2showthatthecompanionis∼20Myrsold with an uppermass limitof 12M⊙ (Grise et a 2008).Thisconfirmsthatthese systems are HMXBs, butit doesnot providethemassoftheblackhole.AnHSTphotometricstudyofthesameobjectrevealedapossible∼6dayorbital period(Liuetal.2009,althoughfurtheranalysisisrequiredtoconfirmthis).WhencombinedwiththeresultsofGrise etal(2008),Patruno&Zampieri(2010)indicatedthatMBH≃50–100M⊙,suggestingaStMBHresidinginaHMXB system. Spectroscopic studies of these systems have also recently been undertaken. Such studies are difficult due to the luminosity of these systems, but are possible with some of the worlds largest telescopes (e.g. Gemini, VLT; for an example of data received, see Figure 1 (Right). By obtaining a series of observations, it may be possible to obtain radialvelocitycurvemeasurementsfromemission/absorptionfeaturesassociatedwitheithertheaccretiondiscorthe companionstar.Thisprovidesadirectmassmeasurementbasedonconstraintsplacedbythebinaryorbit.Onlyasmall numberofopticalpilotspectrahavebeentakenandpublishedtodate.Robertsetal.(2001)studiedthecounterpartof NGC5204X-1,findingablue,featurelessspectrum.SimilarresultshavebeenfoundinNGC1313X-2(Zampieriet al.2004).Pilotspectraofothersourceshaverevealedalackofspectralfeatures,andslopesthatappearnon-stellarin origin(seeFigure1(Right);Robertsetal.2010;Gladstoneetal.inprep). Radialvelocitymeasurementsarebeginning,however,initialresultsfromasurveyoftwoULXs(NGC1313X-2 & Ho IX X-1)foundthatradialvelocityvariationsare observed,butthatthey maynotbesinusoidal(Robertsetal. 2010;Gladstoneetal.inprep),howeverfurtheranalysisisrequiredtoconfirmthis.Theanalysisofthesespectraalso indicatedthattheHeIIemissionline,whichisassociatedwiththeaccretiondisc,appearstobehighlyvariable(Pakull et al. 2006;Roberts et al. 2010).Such dramatic variationon short timescales implies that, at a minimum,the He II emission originateswithin 24 light-hoursof the ULX (Robertset al. 2010).Motch et al. (2010)reportedon studies ofULXP13,inNGC7793,statingthatvariationsintheHe II linearepresent,andsuperimposedonaphotospheric spectrum.Thisrevealsthe possible presenceof a late B typesupergiantcompanionof between10 – 20M⊙. Radial velocity variations were also detected for this source, but again further data and analysis is required to confirm its periodandnature. ObservationsofultraluminousX-raysources January28,2011 3 RADIOEMISSION Radio emission is observed regularly from sources residing in the LHS, and occasionally from those in the VHS (although the type of radio emission would vary depending on state). By combining this information with the luminosity of these systems, it would indicate the presence of an IMBH if these sources reside in the LHS (steady stateemission),oralargeStMBH–IMBHresidingintheVHS(morevariedemission). Todate,veryfewradiodetectionhavebeenmade,butsteadystateemissionhasbeenobservedintwooftheULXs within M82,and in oneof those locatedin NGC 4736(Kördinget al. 2005).In this case it wouldsuggestthe LHS thereforethe radioandX-rayemissionare relatedas followsL (cid:181) L1.38M0.81 (Falcke etal. 2004),implyinga mass X R ofMBH≃102−105M⊙ (althoughtheremaybesomesourceconfusion,furtherobservationsarerequiredtoconfirm this). A study by Miller etal. (2005)identifiedregionof diffuse resolvedradioemission in the area surroundingHo II X-1,coincidentwithanextendedHIIregion.Theirinvestigationindicatesthatthiscouldnotbepoweredbybeamed emission,andso wouldneedto bepoweredbyeithersomeformofsuper-Eddingtonaccretionontoa StMBH orby sub-Eddington accretion onto an IMBH. However, the nebula surrounding NGC 5408 X-1 also shows evidence of radio emission (Kaaret et al. 2003), although the authors note that this emission could be the result of relativistic beamingfromajet.Laterworkrevealedthisemissiontobeslightlyextended,withadiameterof35–46pc(Langet al.2007).Theirresultscouldnotruleoutrelativisticallybeamedemission,buthighlightedthefactthatthatthenature of the emission appearedto be comparable with SS 433. This would indicate that we are observingradio emission poweredbyoutflowsfromasuper-Eddingtonsystem,similartotheW50nebulaaroundSS433(Dubneretal.1998) X-RAY ANALYSIS ThestudyofULXsbeganwithobservationsintheX-rayband,andsincethentherehavebeenanumerousobservations. Studieshavefocusedonboththespectraandtimingforthesesystems,aswesearchforinsightsintotheirnature.These arediscussedinmoredetailbelow,however,foramoredetaileddiscussionofX-rayanalysisofULXs(pre-2007)we referthereadertoRoberts(2007)andreferencestherein. X-ray spectral studies Earlyspectralstudies,withthecurrentgenerationofX-raytelescopeswerefitwithastandardcanonicaldiscplus power-law continuummodel, a simple modelthat has been used extensively with Galactic X-ray binary systems to describe accretion in standard states. The resultant ULX fits indicated the presence of a remarkably cool disc (soft excess;kT∼150eV)temperature,implyingaMBH ∼few×104M⊙ (e.gMilleretal.2003).However,recentresults indicatedthepresenceofaspectralbreakabove∼3keV(Stobbartetal.2006;Gladstoneetal.2009),afeaturethatis notpresentinthestandardaccretionstates,andsoshouldnotbepresentifwewereobservingIMBHs.Re-evaluation ofsomeofthehighestqualityULXspectraalsorevealedthattheycouldbeequallywellexplainedbymodelsthatinfer extreme accretion rates onto a StMBH (e.g. Stobbart et al. 2006, Goncalves& Soria 2006) and found a potentially newstate-theultraluminousstateinwhichasourceexhibitthepresenceofbothasoftexcessandabreakathigher energies(inthe0.3–10keVbandpass;Gladstoneetal.2009). Gladstone et al. (2011)discussed some of the currentphysicalmodelsfor ULXs; the slim disc, disc plus Comp- tonisation,the energeticallycoupleddisc-coronaandthe reflectiondominatedmodel.A simplifiedslim disc models hasbeenappliedtoULXspectraonanumberofoccasions(e.g.Vierdayantietal.2006).However,whenappliedto thehighestqualitydata,Gladstoneetal.(2009)findsitaninadequatedescriptor.Itisproposed,therefore,thatamore complexversionoftheslimdisc(e.g.Sadowskietal.2010)shouldinsteadbeappliedtoinvestigatethistheoryfurther. Comptonisationmodelsrevealedapreferenceforacooldiscwithanopticallythickcorona(t >8,Stobbertetal. 2006; t > 6, Gladstone et al. 2009). This is very different from standard black hole systems (LHS - t ∼< 2, kTe ∼ 50 keV; VHS - t ∼ 3, kT ∼ 20 keV), indicating that ULXs may be residing in a state that is more extreme than e eventheVHS,andthatwemaybeobservingsuper-Eddingtonaccretion.However,thediscsremaincool,whichcould alsobeusedassupporttheargumentforIMBHs(Gladstoneetal.2009).Themodelassumedthatanopticallythick coronadoesnotinterceptthelineofsighttoinnerregionsoftheaccretiondisc,andthattheunderlyingdiscspectrum is independentof the presence of a corona (Kubota & Done 2004). These flawed assumptions can be overcomeby ObservationsofultraluminousX-raysources January28,2011 4 FIGURE2. (Left)XMM-NewtonEPIC-pnX-rayspectraforthreeULXsfromGladstoneetal.(2009).Thespectraarede-absorbed &unfolded and show onespectrumfromeachsuggested spectral regime:thehigh(M33 X-8);ultraluminous(HoIXX-1);and extremeultraluminous(possiblyphotosphere-dominated;HoIIX-1)states.Theintrinsicdiscspectrum,recoveredwhenthecorona isaccountedfor,isshowninred(seeGladstoneetal.2009formoredetails).(Right)Comparisonoftheultraluminousstatemodel andtheX-rayreflectionmodelextendedto100keV.Thetwoshortsimilaritiesbelow10keV,butthedifferenceinfluxlevelabove 10keVcoversmanyordersofmagnitude(seeWaltonetal.2011formoredetails). applyingthe energeticallycoupleddisc plus coronamodelto the sample. Resulting fits indicate that there are three possibleregimes(seeFigure2(Left));thehigh/VHSorsomeformofhighmassaccretionratemodifieddisc-dominated state,theultraluminousstateandtheextremeultraluminousstate(whereweseepossibleevidenceforaphotosphere and/oroutflow(e.gBegelman,King&Pringle2006;Poutanenetal2007). AnalternativescenarioistheX-rayreflectionmodel(Caballero-García&Fabian2010).Theauthorschosetoapply thismodelforsimilarreasonstothoseoutlinedabove,reflectedironlineshavebeenobservedinthespectrumofboth StMBHs(e.g.Miller2007)&SMBHs(e.g.Tanakaetal.1995).InthiscasetheauthorsproposethatULXspectracan beexplainedbyanX-rayirradiateddiscarounda rapidlyspinningblackhole.ResultsindicatedthatULXsfallinto twomajorgroups,areflectiondominatedorpower-lawdominatedstate.Itisarguedthatthesecorrespondtotwoof the regimesdiscussed in Miniutti & Fabian (2004),in which heightof the primarysource of X-raysis varied.This allowstheobservertoseedifferingamountsofthecontinuumandreflectioncomponents. Walton et al. (2011) also compared two of these leading (energetically coupled disc-corona & X-ray reflection) models.Theauthorsfoundthatthe fitsare statistically similar with moderatequalitydata, highlightingtheneedfor a wider band-pass to differentiate between models (see Figure 2 (Right)). The ultraluminousstate model continues fallingoffinflux,whilstthereflectionmodelcontinuesitspower-lawslopeouttolargerenergies.Theabilitytolook to higherenergieswouldalso settle thedebateoverthemassofthese sources,byclearlydemonstratingthe spectral stateofthesesystems.Althoughwestillcannotconfirmstatisticallythestructureoftheaccretiongeometry,itseems that the majority of the current physical models indicate the presence of StMBHs when using the highest quality spectraldata. X-rayspectralvariability Spectral variability of StMBHs have proved invaluable in understanding of accretion states (e.g. McClintock & Remillard2006),yetitisanavenuethatremainsunder-exploredinULXs.Somesimplesurveyshavebeenperformed, revealing that the majority of ULXs display a general hardening as the luminosity of the system increases (e.g. Antennae population,Fabbiano et al. 2003; HombergII X-1, Dewangan et al. in 2004;NGC 5204 X-1, Roberts et al.2006).Thisistheoppositeofwhatisseenintheevolutionofthestandardaccretionstates,thiscouldsupportthe ideaofanewaccretionstate.However,recentstudieshavehighlightedaheterogeneityinULXs.AstudyoftheULX population of NGC 4485 & 4490 (Gladstone & Roberts 2009), along with a survey of some of the most observed ULXs(Kajava&Poutanen2009),revealedthatnotonlyaL vs.G correlation,butalsoaninversecorrelationinsome X sources,withGladstone&Roberts(2009)notingthechangeinbehaviourcoincidedwithapossiblechangeinspectral shape(andpossiblechangeinstate). Kajava&Poutanen(2009)alsonotedthatthecooldisc(softexcess)componentvariedasL(cid:181) T−3.5.Thisimplies thatthe innermostradiusof the disc movesoutand the luminosityincreases, which is strikinglydifferentfrom the standarddecreasein innerradiusobservedin Galactic StMBH systems(L(cid:181) T4). Thiscouldbedue to materialand ObservationsofultraluminousX-raysources January28,2011 5 energybeinglostattheseradiiasaresultoflaunchingawind/outflow. Recent work attempted to test the findings of Gladstone et al. (2009) by studying a series of reasonable quality spectraof NGC1313X-2 (Pintore& Zampieri2010)andHoIX X-1(Vierdayantietal. 2010).Pintore& Zampieri (2010)presentedanalysisofmoderatequalityXMM-Newtonobservations,while Vierdayantietal. (2010)presented XMM-Newton and Swift data (grouped by count rate) to study spectral variations over long timescales. When the dataisfitwithacombineddiscandComptonisingcoronamodel,theauthorsfoundthatthespectraarewellfitbya coolopticallythickcorona,whichshoweda decreasein thecoronaltemperatureandincreasingopticaldepthasthe luminosityofthe system increases. Thisappearsto bein agreementwith thepredictionsofGladstoneet al. (2009). However,whenKongetal.(2010)fitgroupedSwiftdataofHoIXX-1inasimilarwaytoVierdayantietal.(2010), they did not see the same trends. They found that all the spectra are well fit by a duel thermal model, which they arguedindicatessuper-Eddingtonaccretion.Clearlyfurthervariabilitystudiesarerequiredtodisentanglethespectral evolutionofthesesystems,andprovidefurtherinsightsintotheaccretiongeometryofthesesystems. X-ray temporal studies Long-term temporal variability studies have suffered, in part, due to ULXs being too faint to be picked up by monitoringmissionssuchasRXTE(withtheexceptionofM82X-1,Kaaretetal.2006),andsocanonlybeobserved duringpointedobservations.Thisleadstolargegapsinthelightcurves,makingitdifficulttotrackthetrendsofthese systems. Someauthorshavemanagedto find evidenceforvariation(upto ∼ an orderof magnitude)ontime-scales ofmonthsto years,withthe useofmulti-missiondata.ExamplesincludetheULXsin M81(LaParolaetal. 2001), HoII(Miyajietal2001),NGC4485&4490(Robertsetal.2002a;Gladstone&Roberts2009)andM51(Terashima &Wilson2003).Ifweconsidershortertime-scales,ofdaystoweeks,wefindthatfewerstudieshavebeenreported. Robertsetal.(2006)presentedastudyofNGC5204X-1inwhichfactor5variationswereobservedoveratime-scales ofdays.However,nosignofvariabilitywereobservedovertimescalesofhoursorless. Intra-observational analysis for both StMBHs and SMBHs is explored using power spectral densities (PSD). It hasbeenshownthatmanyfeaturesarecommontobothStMBHsandSMBHs(McHardyetal.2006;McClintock& Remillard2006;vanderKlis2006).However,ULXsseemtohavesuppressedvariability(Heiletal.2009),withonly a small number of features observed.These include a break at 2.5 mHz in the PSD of NGC 5408 X-1 (Soria et al. 2004)indicatingamassof∼100M⊙ (seeHeiletal.2009formoredetaileddiscussionsandanalysis). Quasi-periodicoscillations(QPOs)havealsobeendetectedinonlythreecases;M82X-1(Strohmayer&Mushotzky 2003),anothersourceinM82(Fengetal.2010),&NGC5408X-1(Strohmayeretal.2007;2010).TheseQPOshas beenusedasevidenceforIMBHs,byusingblackholemass-QPOfrequencyscaling.Recentre-analysisofthedata ofNGC5408X-1hasshownadifferentinterpretation,however,Middletonetal.(2010)hasshownthatthespectra, PSDandvariabilityofthissourceisbettermatchtoamodelofsuper-EddingtonaccretionthanthatoftheLHS.This wouldindicatethattheQPOpresentinthissourceismoreanalogoustothemHzQPOobservedinGRS1915+105, indicatingthepresenceofaStMBH. THENATUREOFTHESE SYSTEMS? Since the adventof XMM-Newton & the Chandra Space telescopes, the study of ULXs had advanceddramatically. Initial results from these telescopes indicated the presence of massive black holes, more massive than could be explainedby the end pointof (single) stellar evolution (implyingIMBHs). Early X-ray emission providedtentative support,but the strongestX-rayevidenceforIMBHs to date comesfromthe observationsof hyper-luminousX-ray source (HLXs). These are ULXs emitting at ∼>1041 erg s−1. The brightest of these sources is ESO 243-49HLX-1 (Farrelletal.2009;2010)withalowermasslimitof∼500M⊙.Opticalobservationsofthenebulaeassociatedwith some ULX systems also lentsupportto IMBHs, by indicatingthat the X-rayemission poweringthese systems was not strongly beamed. There have been few Radio observationsof these source, with many only revealing limits on possibleemission.InthefewinstanceswhereRadioemissionhasbeenobserved,scalingrelationsindicatethatthese ULXscontainIMBHs.ThepresenceofQPOsinthreeULXhasbeenpointedtoassomeofthestrongestevidencefor thepresenceofIMBHsinULXsystems. Morerecentstudiesinmanyofthesewavebandshaverevealedadifferentscenario.StudiesoftheX-rayspectraof thesesystemshasrevealedthepresenceofabreakat∼3–7keV,afeaturenotpresentintheLHS,whiletheleading ObservationsofultraluminousX-raysources January28,2011 6 physicalmodels used to describe these systems indicate that we are observingsuper-Eddingtonaccretion flows. X- raytimingstudieshavealsorevealedsuppressedvariabilityinmanysources,againafeaturenotseeninthestandard accretionstates.Thiscombinedwiththerecentre-analysisofoneQPOsource,whichindicatesabettermatchtosuper- EddingtontheorythantheLHS,suggestthatweareinfactobservingsomeofthemostextremeStMBHX-raybinary systemsinthe Universe.Itis notjustX-rayanalysisthatsupportsthistheory.Opticalphotometrystudiesrevealthe presenceofhighmasscompanionstars,andanassociationwithyoung,lowmetallicity,starformingregions(regions inwhichlargeStMBHsarethoughttoform).Theover-abundanceinsomegalaxieshasalsobeenusedasevidenceto supportthepresenceofStMBHs. Although there appears to be mounting evidence for extreme StMBHs powering ULXs, we must note that each ofthesemassestimatesaredegenerate,relyingonassumptionto gainmassestimates. Tosettle the debate,we must instead turn to more direct estimates of the mass, and for this we need to gain dynamical mass estimates of these systems,achallengingtaskthatisstillintheearlystagesatpresent,butmayyetrevealtheunderlyingnatureofthese systems. ACKNOWLEDGMENTS JCG would like to thank the organisersof this meeting for inviting her to present this review. She would also like to thank her collaborators for some of the work presented here, as well as colleagues and researchers in this and relatedfieldsfortheirdiscussionsandguidance.JCGwouldalsoliketoapologisetothoseauthorswhoseworkisnot mentionedhere,duetothelackofspaceandthewealthofinformationavailableonthesefascinatingsources. REFERENCES 1. AbolmasovP.,FabrikaS.,SholukhovaO.,AfanasievV.,2007,AstBu,62,36 2. AbramowiczM.A.,CzernyB.,LasotaJ.P.,SzuszkiewiczE.,1988,ApJ,332,646 3. BegelmanM.C.,KingA.R.,PringleJ.E.,2006,MNRAS,370,399 4. Caballero-GarcíaM.D.,FabianA.C.,2010,MNRAS,402,2559 5. ColbertE.J.M.,MushotzkyR.F.,1999,ApJ,519,89 6. ColbertE.J.M.,PtakA.F.,2002,ApJS,143,25 7. CopperwheatC.,CropperM.,SoriaR.,WuK.,2005,MNRAS,362,79 8. CopperwheatC.,CropperM.,SoriaR.,WuK.,2007,MNRAS,376,1407 9. Dewangan,G.C.,Miyaji,T.,Griffiths,R.E.,&Lehmann,I.2004,ApJL,608,L57 10. DubnerG.M.,HoldawayM.,GossW.M.,MirabelI.F.,1998,AJ,116,1842 11. Ebisuzaki,T.,etal.2001,ApJL,562,L19 12. FabbianoG.,ZezasA.,MurrayS.S.,2001,ApJ,554,1035 13. FabbianoG.,etal.,2003,AAS,35,1409 14. FalckeH.,KördingE.,MarkoffS.,2004,A&A,414,895 15. FarrellS.A.,etal.,2009,Natur,460,73 16. FarrellS.,etal.,2010,AN,submitted,arXiv,arXiv:1011.1254 17. FengH.,KaaretP.,RaoF.,JinJ.,2010,AN,submitted 18. GaoY.,WangQ.D.,AppletonP.N.,LucasR.A.,2003,ApJ,596,L171 19. GladstoneJ.C.,RobertsT.P.,2009,MNRAS,397,124 20. GladstoneJ.C.,RobertsT.P.,DoneC.,2009,MNRAS,397,1836 21. GladstoneJ.C.,RobertsT.P.,DoneC.,2010,AN,accepted,arXiv,arXiv:1101.4859 22. GrimmH.-J.,GilfanovM.,SunyaevR.,2003,MNRAS,339,793 23. GriséF.,PakullM.W.,SoriaR.,MotchC.,SmithI.A.,RyderS.D.,BöttcherM.,2008,A&A,486,151 24. GonçalvesA.C.,SoriaR.,2007,AIPC,924,741 25. HeilL.M.,VaughanS.,RobertsT.P.,2009,MNRAS,397,1061 26. KaaretP.,CorbelS.,PrestwichA.H.,ZezasA.,2003,Sci,299,365 27. KaaretP.,WardM.J.,ZezasA.,2004,MNRAS,351,L83 28. KaaretP.,2005,ChJAS,5,139 29. KaaretP.,SimetM.G.,LangC.C.,2006,ApJ,646,174 30. KajavaJ.J.E.,PoutanenJ.,2009,MNRAS,398,1450 31. KingA.R.,DaviesM.B.,WardM.J.,FabbianoG.,ElvisM.,2001,ApJ,552,L109 32. KingA.R.,2004,MNRAS,347,L18 33. KingA.R.,2008,MNRAS,385,L113 34. KingA.R.,2009,MNRAS,393,L41 ObservationsofultraluminousX-raysources January28,2011 7 35. KongA.K.H.,YangY.J.,YenT.-C.,FengH.,KaaretP.,2010,ApJ,722,1816 36. KördingE.,FalckeH.,MarkoffS.,2002,A&A,382,L13 37. KördingE.,ColbertE.,FalckeH.,2005,A&A,436,427 38. KubotaA.,DoneC.,2004,MNRAS,353,980 39. LaParolaV.,PeresG.,FabbianoG.,KimD.W.,BocchinoF.,2001,ApJ,556,47 40. LangC.C.,KaaretP.,CorbelS.,MercerA.,2007,ApJ,666,79 41. LindenT.,KalogeraV.,SepinskyJ.F.,PrestwichA.,ZezasA.,GallagherJ.,2010,arXiv,arXiv:1005.1639 42. LiraP.,WardM.,ZezasA.,Alonso-HerreroA.,UenoS.,2002,MNRAS,330,259 43. LiuJ.F.,BregmanJ.N.,IrwinJ.,2006,ApJ,642,171 44. LiuJ.,BregmanJ.N.,McClintockJ.E.,2009,ApJ,690,L39 45. Madau,P.,Rees,M.J.2001,ApJL,551,L27 46. MadhusudhanN.,RappaportS.,PodsiadlowskiP.,NelsonL.,2008,ApJ,688,1235 47. MapelliM.,ColpiM.,ZampieriL.,2009,MNRAS,395,L71 48. MapelliM.,RipamontiE.,ZampieriL.,ColpiM.,BressanA.,2010,MNRAS,408,234 49. McHardyI.M.,KoerdingE.,KniggeC.,UttleyP.,FenderR.P.,2006,Natur,444,730 50. McClintock J.E.,Remillard R.A.,2006. in:“Compact StellarX-ray Sources”, eds. Lewin W.and va der KlisM., CUP, Cambridge,p.157 51. MiddletonM.J.,RobertsT.P.,DoneC.,JacksonF.E.,2010,MNRAS(inpress),arXiv,arXiv:1009.2686 52. Miller,J.M.,Fabbiano,G.,Miller,M.C.,&Fabian,A.C.,2003,ApJ,585,L37 53. MillerJ.M.,2007,ARA&A,45,441 54. MillerM.C.,ColbertE.J.M.,2004,IJMPD,13,1 55. MillerN.A.,MushotzkyR.F.,NeffS.G.,2005,ApJ,623,L109 56. MiniuttiG.,FabianA.C.,2004,MNRAS,349,1435 57. MiyajiT.,LehmannI.,HasingerG.,2001,AJ,121,3041 58. MotchC.,PakullM.W.,GriseF.,SoriaR.,2010,AN,submitted.arXiv,arXiv:1011.4215 59. PakullM.W.,MirioniL.,2002,astro,arXiv:astro-ph/0202488 60. PakullM.W.,MirioniL.,2003,RMxAC,15,197 61. PakullM.W.,GriséF.,MotchC.,2006,IAUS,230,293 62. PakullM.W.,SoriaR.,MotchC.,GriseF.,2010,AN,submitted 63. PatrunoA.,ZampieriL.,2010,MNRAS,403,L69 64. PintoreF.,ZampieriL.,2010,AN,submitted,arXiv,arXiv:1011.2026 65. PoutanenJ.,LipunovaG.,FabrikaS.,ButkevichA.G.,AbolmasovP.,2007,MNRAS,377,1187 66. RappaportS.A.,PodsiadlowskiP.,PfahlE.,2005,MNRAS,356,401 67. RipamontiE.,MapelliM.,ZampieriL.,ColpiM.,2010,AN,submitted,arXiv,arXiv:1009.5708 68. RobertsT.P.,WarwickR.S.,2000,MNRAS,315,98 69. RobertsT.P.,GoadM.R.,WardM.J.,WarwickR.S.,O’BrienP.T.,LiraP.,HandsA.D.P.,2001,MNRAS,325,L7 70. RobertsT.P.,etal.,2002,in:ProceedingsofNewVisionsoftheX-rayUniverse,ESTEC,TheNetherlands 71. RobertsT.P.,WarwickR.S.,WardM.J.,MurrayS.S.,2002a,MNRAS,337,677 72. RobertsT.P.,KilgardR.E.,WarwickR.S.,GoadM.R.,WardM.J.,2006,MNRAS,371,1877 73. RobertsT.P.,2007,Ap&SS,311,203 74. RobertsT.P.,LevanA.J.,GoadM.R.,2008,MNRAS,387,73 75. RobertsT.P.,etal.,2010,AN,submitted,arXiv,arXiv:1011.2155 76. RussellD.M.,YangY.J.,GladstoneJ.C.,WiersemaK.,RobertsT.P.,2010,AN,submitted,arXiv,arXiv:1011.0598 77. SadowskiA.,AbramowiczM.A.,BursaM.,Kluz´niakW.,Róz˙an´skaA.,StraubO.,2009,A&A,502,7 78. SoriaR.,MotchC.,ReadA.M.,StevensI.R.,2004,A&A,423,955 79. StobbartA.M.,RobertsT.P.,WilmsJ.,2006,MNRAS,368,397 80. StrohmayerT.E.,MushotzkyR.F.,2003,ApJ,586,L61 81. StrohmayerT.E.,MushotzkyR.F.,WinterL.,SoriaR.,UttleyP.,CropperM.,2007,ApJ,660,580 82. StrohmayerT.E.,2010,AN,submitted 83. SwartzD.A.,GhoshK.K.,TennantA.F.,WuK.,2004,ApJS,154,519 84. SwartzD.A.,SoriaR.,TennantA.F.,2008,ApJ,684,282 85. TanakaY.,etal.,1995,Natur,375,659 86. TerashimaY.,WilsonA.S.,2003,ApJ,583,145 87. vanderKlisM.,2006.in:“CompactStellarX-raySources”,eds.LewinW.H.G.andvaderKlisM.,CUP,Cambridge,p.39 88. VierdayantiK.,MineshigeS.,EbisawaK.,KawaguchiT.,2006,PASJ,58,915 89. VierdayantiK.,DoneC.,RobertsT.P.,MineshigeS.,2010,MNRAS,403,1206 90. WaltonD.J.,etal.,2011,MNRAS,accepted,arXiv,arXiv:1101.4541 91. ZampieriL.,MucciarelliP.,FalomoR.,KaaretP.,diStefanoR.,TurollaR.,ChieregatoM.,TrevesA.,2004,NuPhS,132,387 92. ZampieriL.,RobertsT.P.,2009,MNRAS,400,677 ObservationsofultraluminousX-raysources January28,2011 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.