ebook img

Observational Evidence of AGN Feedback PDF

35 Pages·2012·1.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Observational Evidence of AGN Feedback

Observational Evidence of AGN Feedback A.CFabian InstituteofAstronomy,MadingleyRoadCambridgeCB30HA,UK 2 1 0 2 Abstract r Radiation, winds and jets from the active nucleus of a massive galaxy can interact with its interstellar p medium leading toejectionor heating of the gas. Thiscan terminatestar formation inthegalaxy and stifle A accretion onto theblack hole. Such ActiveGalacticNucleus (AGN) feedback can account for the observed 8 proportionalitybetweencentralblackholeandhostgalaxymass.Directobservationalevidencefortheradiative 1 or quasar mode of feedback, whichoccurs whenthe AGNisveryluminous, has beendifficult toobtainbut is accumulating from a few exceptional objects. Feedback from the kinetic or radio mode, which uses the ] mechanical energyofradio-emittingjetsoftenseenwhentheAGNisoperatingatalower level, iscommon O inmassiveellipticalgalaxies. Thismodeiswellobserveddirectlythrough X-rayobservationsofthecentral C galaxiesofcoolcoreclustersintheformofbubblesinthehotsurroundingmedium.Theenergyflow,whichis . roughlycontinuous,heatsthehotintraclustergasandreducesradiativecoolingandsubsequentstarformation h by an order of magnitude. Feedback appears to maintain a long-lived heating/cooling balance. Powerful, p jettedradiooutburstsmayrepresentafurthermodeofenergyfeedbackwhichaffectthecoresofgroupsand - o subclusters. NewtelescopesandinstrumentsfromtheradiotoX-raybandswillcomeintooperationoverthe r nextfewyearsandleadtoarapidexpansioninobservationaldataonallmodesofAGNfeedback. t s a [ Contents 1 v 1 Introduction 2 4 1 2 TheRadiativeorWindMode 3 1 2.1 Radiationpressureondust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 2.2 AGNwinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 4 2.3 Galaxyoutflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0 2.4 FromthepeaktothelateevolutionofAGNandquasars . . . . . . . . . . . . . . . . . . . . . . 7 2 1 2.5 Mergersorsecularevolution?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 : v 3 TheKineticMode 8 i X 3.1 Heating/Coolingbalance–Maintenancemodefeedback . . . . . . . . . . . . . . . . . . . . . 16 r 3.2 Cool,ColdGasandStarFormation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 a 3.3 Theevolutionofcoolcoresinclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Themostluminousclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Hotgasingroupsandellipticalgalaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6 TheKineticluminosityfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 BaryonprofilesatdifferentmassscalesandAGNfeedback 22 4.1 PowerfulRadioGalaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 SimilaritieswithGalacticBlackHoleBinaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Futurestudies 24 6 Summary 25 7 Acknowledgements 25 1 1 Introduction Ithasbeenrealisedoverthepastdecadethattheblackholeatthecentreofagalaxybulgeisnomereornament butmayplayamajorroleindeterminingthefinalstellarmassofthebulge. Theprocessbywhichthisoccursis knownasAGN(ActiveGalacticNucleus)feedbackandittakesplacethroughaninteractionbetweentheenergy andradiationgeneratedbyaccretionontothemassiveblackhole(theAGN)andthegasinthehostgalaxy. The possibilityariseswheretheintensefluxofphotonsandparticlesproducedbytheAGNsweepsthegalaxybulge cleanofinterstellargas,terminatesstarformation,andthroughlackoffuelforaccretion,terminatestheAGN. Theratioofthesizeoftheblackholetoitsmassivehostgalaxyistinyandsimilartoacoinincomparison totheEarth.Thefeedbackprocessmustthereforeoperateoverahundredtothousandmillionfoldrangeofscale (i.e. 108−109). Thedetailsofthefeedbackarecomplexandtheobservationalevidenceisnotalwaysclear. Theoverallpicturein termsof energeticsisfairly straightforwardand atleast two majormodeshavebeen identified,differentiatedbythenatureoftheenergyoutflowneartheblackhole. Thefirstistheradiativemode, alsoknownasthequasarorwindmode,whichoperates,oroperated,inatypicalbulgewhentheaccretingblack holewasclosetotheEddingtonlimit. Itismostconcernedwithpushingcoldgasabout.Thesecondmodeisthe kineticmode,alsoknownastheradiojet,ormaintenancemode. Thistypicallyoperateswhenthegalaxyhasa hothalo(orisatthecentreofagrouporclusterofgalaxies)andtheaccretingblackholehaspowerfuljets. At thepresentepochittendstooccuratalowerEddingtonfractionandinmoremassivegalaxiesandinvolveshot gas. Afurther,ill-understood,modemaybeassociatedwithgiantradiosources,whichrangeinsizeuptoafew Mpc. The energies in these sources are prodigiousand approach the binding energy of the gas in groupsand subclusters. Itiseasytodemonstratethatthegrowthofthecentralblackholebyaccretioncanhaveaprofoundeffecton itshostgalaxy. Ifthevelocitydispersionofthegalaxyiss thenthebindingenergyofthegalaxybulge,which isofmassM ,isE ≈M s 2. ThemassoftheblackholeistypicallyobservedtobeM ≈1.4×10−3M gal gal gal BH gal (Kormendy&Gebhardt2001;Merritt&Ferrarese2001;Ha¨ring&Rix2004). Assumingaradiativeefficiency for the accretion processof 10%, then the energyreleased by the growthof the black hole is givenby E = BH 0.1M c2. ThereforeE /E ≈1.4×10−4(c/s )2. Most galaxieshave s <400kms−1, so E /E >80. BH BH gal BH gal Theenergyproducedbythegrowthoftheblackholethereforeexceedsthebindingenergybyalargefactor. If evenasmallfractionoftheenergycanbetransferredtothegas,thenanAGNcanhaveaprofoundeffectonthe evolutionofitshostgalaxy. Fortunatelyaccretionenergydoesnotsignificantlyaffectthestarsalreadyexistinginthehostgalaxy,orthere wouldnotbeanygalaxiesasweknowthem. Nevertheless,observationalevidenceisreviewedherethatenergy andmomentumfromaccretionontothecentralblackholecancouplestronglywiththegasfromwhichnewstars forms. AGN feedback is a relatively young topic and a wide range of argumentand opinion has been expressed. One opinion holds that AGN feedback locks the mass of the black hole to that of its host galaxy bulge, and determines the ultimate stellar mass of the bulge. Another opinion has it as just one of many processes of comparableimportancein galaxyevolution;with the blackhole – galaxybulgemass correlationmerelybeing aresultofrepeatedmergers(e.g. Jahnke&Maccio´ 2011). Thereislittleornoevidenceatthepresenttimefor AGNfeedbackoperatinginlowmassgalaxieswherestellarfeedbackisimportant,orthatitsignificantlyaffects galaxydisks,orpseudobulges. TheclearestobservationalevidenceforAGNfeedbackisfoundinthemostmassivegalaxiesknown,Brightest ClusterGalaxies(BCGs)incoolcoreclustersofgalaxies.Withoutenergyinputthroughkineticfeedback,many BCGswouldbeyetmoremassiveandappearasbrilliant,giantstarbursts. AGNfeedbackfeaturesinmanytheoretical,numericalandsemi-analyticsimulationsofgalaxygrowthand evolution(e.g. Kauffmann&Haehnelt2000;Granatoetal2004;DiMatteoetal2005;Springel,DiMatteo& Hernquist2005; Boweretal2006;Crotonetal2006;Ciottietal2010;Hopkinsetal2006,Scannapiecoetal 2011). Theyarenotreviewedhere. The9ordersofmagnitudeinphysicalscalemeansthatallsuchsimulations includesubgridassumptionsandapproximations. Thereviewbeginswithabriefoutlineofthephysicsbehindtheradiativemode,thendiscussestheeffectsof radiationpressureondustygas, followedbyAGNwinds, outflowsandAGN evolution. Theradiativemodeis themostlikelyAGNfeedbackexplanationfortheblackholemass–stellarvelocitydispersionrelation(M−s , seeSection2),sinceitreliesontheaccretionbeingradiativelyefficientandclosetotheEddingtonlimit. Itwas 2 probablymosteffectivebackatz∼2−3whenquasaractivitypeakedandgalaxiesweremostgasrich. Much of the feedback action involves absorption of the quasar radiation, which obscures the AGN itself, so direct observationalevidenceispatchyatthemoment. If feedback empties a massive galaxy of gas it will then refill with at least stellar mass loss if isolated, or withintraclusterplasmaifinaclusterorgroup. Keepingitempty,oratleastkeepingthegashotsoitdoesnot cool, appears to be the role of the kinetic mode, which is discussed next. This mode gives the most dramatic observationalexamplesofAGNfeedbackintermsofbubblesinthecoresofclusters. Energyinjection from powerfulgiantradio galaxiesis treated last. This may have a drastic impact on the gasingroupsandsubclusters. Observationalevidenceispoor,however,sincemuchofthepowerinrelativistic electrons (but not protons) is lost in Compton scattering of the Cosmic Microwave Background, the energy densityofwhichwasmuchhigherinthepast. The review finishes by consideringwhetherthe long term behaviourof AGN, and the modesof accretion, parallels the outbursts of Galactic, stellar mass, binary black holes which tend to be radiatively efficient and windyathighluminosity,andradiativelyinefficientandjettedatlowluminosity.Futureobservationalprospects forAGNfeedback,whichareverybright,aretreatedinaconcludingsection. 2 The Radiative or Wind Mode Silk&Rees(1998,seealsoHaehnelt,Natarajan&Rees1998)pointedoutthataquasarattheEddingtonlimit canpreventaccretionintoagalaxyatthemaximumpossiblerateprovidedthat fs 5s M ∼ T , BH 4p G2m c p wheres isthe Thomsoncrosssectionforelectronscatteringand f is thefractionof thegalaxymassin gas. T Thegalaxyisassumedtobeisothermalwithradiusr,sothatitsmassisM =2s 2r/G.Themaximumcollapse gal rate,∼2fs 3/G,isequivalenttothegascontent, fM ,collapsingonafreefalltime,r/s ,requiringapowerof gal ∼ fs 5/G to balanceit which is limited by the Eddingtonluminosity L =4p GM m c/s . The argument Edd BH p T is based on energy which is necessary but may not be sufficient for ejecting matter (the rocket equation, for example,isbasedonmomentum). Momentumbalancegivesanexpression(Fabian1999,Fabian,Wilman&Crawford2002,King2003,2005, Murray,Quataert&Thompson2005) fs 4s T M = , BH p G2m p whichisaboutc/s timeslargerandinstrikingagreementwiththeobservedblackholemassvsstellarvelocity disperson(M −s )relation(e.g.Gu¨ltekinetal2009)foraplausiblegasmassfraction f ∼0.1. BH Thereare severalways to derive the aboveformula. A simple one is to assume that the radiationpressure fromthe Eddington-limitedquasarL /chassweptthegas, ofmass M = fM , to theedgeofthe galaxy. Edd gas gal Balancingtheoutwardradiationforcewiththeinwardoneduetogravitygives 4p GM m L GM M fGM2 fG 2s 2r 2 BH p Edd gal gas gal = = = = s c r2 r2 r2 (cid:18) G (cid:19) T i.e. 4p GM m f4s 4 BH p = , s G T fromwhichtheresultfollows. Thecancellationoftheradiusintheformulameansitapplieswithinthegalaxy. TheagreementthatthissimpleformulagiveswiththeobservedM −s relationcanbeinterpretedas(weak) BH observationalevidenceforAGNfeedback. 3 2.1 Radiationpressure ondust TheinteractioncannotrelyonradiationpressureonelectronsasinthestandardEddington-limitformula,since ifthequasarislocallyatitsEddingtonlimitthenitmustbefarbelowtheEddingtonlimitwhenthemassofthe galaxyisincluded. QuasarsappeartorespecttheEddingtonlimit, see e.g. Kollmeier(2006)andSteinhardt& Elvis(2010). (King2003doeshoweverinvokesuper-Eddingtonluminosities.) Theinteractionhastobemuch stronger, either due to a wind generated close to the quasar which then flows through the galaxy pushing the gas out, or to dust embedded in the gas, as expected for the interstellar medium of a galaxy (Laor & Draine 1993,Scoville&Norman1995,Murray,Quartaert&Thompson2005).Dustgrainsembeddedinthegaswillbe partiallychargedintheenergeticenvironmentofaquasar,whichbindsthemtothesurroundingpartially-ionized gas.L isreducedbyafactorofs /s ,wheres istheequivalentdustcrosssectionperproton,appropriately Edd d T d weightedforthedustcontentofthegasandthespectrumofthequasar. We find that s /s is about 1000 for a gas with a Galactic dust-to-gas ratio exposed to a typical quasar d T spectrum(Fabian, Vasudevan& Gandhi2008a), droppingto 500for low Eddingtonratio objects. This means thataquasaratthestandardEddingtonlimit(forionizedgas)isattheeffectiveEddingtonlimit(fordustygas), L′ , of a surrounding object 1000 times more massive. Both AGN and galaxy are then at their respective Edd Eddingtonlimits. IsthisjustacoincidenceortheunderlyingreasonwhyM /M ∼1000? gal BH AGNshowindicationsofaneffectiveEddingtonlimitinthedistributionofabsorptioncolumndensities,N , H asafunctionofEddingtonratio,l =L /L foundinseveralsurveys(Raimundoetal2010). Thereisalack bol Edd ofobjectswithcolumndensities,N ,intherange3×1021−3×1022cm−2 andl >0.1. Thisisunlikelytobe H anobservationalselectioneffectsincesuchobjectswouldbeX-raybright. Anyobjectfoundinthatzonewould beofgreatinterestasitcouldtestradiativefeedbackondust. Thegasshouldbeoutflowing. Interstellargasin anAGN hostevolvessuchthatanywhich straysinto a regionwhereL′ >1 is pushed Edd outwarde. Gas which is introduced to a galaxy can remain, fuelling both the black hole and star formation, providedbothL′ andL remainbelowunity. RepititionofthisprocesscoulddriveM /M →s /s = Edd Edd BH gal T d 10−3. IftherepeatedactionofradiationpressureondustisresponsiblefortheM −s relationthenitmustcause BH thebulgemasstobes /s timestheblackholemass, d T fs 4s M ∼ d. gal p G2m p Foraconstantmass-to-lightratio,thiscorrespondstotheFaber–Jackson(1976)relation. SinceM =2s 2r/G,then gal s 2 2p Gm ∼ p. r fs d Feedbackshouldshapeboththeblackholeandthegalaxybulgeandmayevenleadtosomeaspects(e.g.s 2(cid:181) r) of the Fundamental Plane (Faber et al 1987; Djorgovski et al 1987). (It is curious that the above value for s 2 ∼10−8cms−2 isclosetothefiducialaccelerationa inMONDtheory(Sanders&McGaugh2002). r o Galaxiesoccurindarkmatterhaloes,whichdefinetheoutergravitationalpotentialwell. Thetotalmassof thehalocanbeanorderofmagnitudemorethanthatofthestellarpartofthegalaxy.Silk&Nusser(2010)have shownthatAGNfeedbackmaynotbeenergeticenoughtoejectallthegasfromthehalo,aswellasthegalaxy, ifthegasmovesatthe(local)escapevelocity. Inthespeculativeprocessdescribedabove,wherecyclesofAGNactivitypushthegasoutofthegalaxy,then thegasmayenduptrappedinthehalo. Itisplausiblehoweverthatthesqueezingofthegasduringtheejection processtriggersstarformation,leadingtoshellsofstarsoneverlarger(bound)radialorbitsasthegalaxygrows. Thisinside-outgrowthpatternsuperficiallymatchesobservationsof thedevelopmentofthe radiiofearly-type galaxiessincez∼2(VanDokkumetal2010)justafterquasaractivityhadpeaked. 2.1.1 Opticaldeptheffectsandanisotropy Theabovediscussionassumesthattheinfraredradiationproducedbytheabsorptionofquasarradiationbydust isnotheavilytrapped. Ifitisthenthenetradiationpressureisincreasedproportionaltotheopticaldepth,and therelationshipsbecomemorecomplicated. 4 Thebulkofquasarradiationoriginatesfromanaccretiondiscandhasabipolarradiationpattern. Thisboth allowsaccretiontoproceedalongthediscplane,fuelledbymergers,coldflows,orjustsecularevolutionofthe galaxy,whileatthesametimepushingmatteroutstronglyalongthediscaxis. Gasinthebodyofthegalaxyat 100pcormorewillbemostlysweptupalongthataxis,thegaparoundtheequatorpreventingsignificantlarge- scaletrappingoftheradiation. Thismeansthatgalaxiesgrowingunderstrongradiationfeedbackasenvisaged abovecouldappearelongatedalongtheradiationaxis. 2.2 AGNwinds If the main interaction is due to winds, not to radiation pressure, then the wind needs to have a high column densityN,highvelocityv,highcoveringfraction f,allatlargeradiusr. Thekineticluminosityofawindis L f r v 3 N w = , L 2r c N Edd g(cid:16) (cid:17) T wherer isthegravitationalradiusGM/c2 andN =s −1=1.5×1024cm−2.Forhighwindpower,L ∼L , g T T w Edd thenifv∼0.1cthenvaluesofr>103r andN∼N areneeded. Ifthewindispressuredriventhenitmightbe g T expectedthatthegasisacceleratedwherevisthelocalescapevelocitysor∼(c/v)2r . g To produceM (cid:181) s 4 scaling the thrustof the wind needsto be proportionalto the Eddingtonlimit. This BH seemsplausibleifthewindisdustyortheaccelerationisduetoradiationpressureactingonresonancelinesin thegas.Aproblemwithahighvelocitydust-drivenwindisthatdustisunlikelytosurviveclosetotheblackhole wheretheescapevelocityishigh. ItisnotclearthatwindstrengthisproportionaltotheEddingtonlimitifthe windisacceleratedmagneticallyby,say,theBlandford-Payne(1982)mechanism. The commonestway in which AGN winds are observed is by line absorption of the quasar continuum by intervening wind material. The X-ray warm absorbers commonly seen in Seyfert galaxies (Reynolds 1997, Crenshaw,Kraemer&George2003)flowingat∼1000kms−1 are insufficient,bya largefactor(Blustin etal 2005). Faster winds are required, such as those seen in UV observationsof BAL quasars (e.g. Ganguly et al 2007;Weymannetal1991)andinX-rayobservationsofsomeAGN(e.g.Poundsetal2003;Reevesetal2009; Tombesietal2010,Fig.1),withvelocitiesoftensofthousandsof kms−1. Establishingthatthekineticpower ofthewindissufficienthasprovendifficult:iftheevidenceofthewindisfromblueshiftedabsorptionlinesthen obtainingthecoveringfractionandradiusofthewindrequiresindirectarguments.Tombesietal(2012)estimate thatthemassoutflowrateexceeds5%ofthemassaccretionrateandthatthelowerlimitonthekineticpowerof theoutflowsinindividualobjectsrangesfrom1042.6−1044.6ergs−1. Careful work on some quasars (Dunn et al 2010, Moe et al 2010, Saez et al 2010) has established wind powersat 5–10 per cent of the accretion power, which is sufficientto eject gas from a galaxy. This is backed up by a range of less direct estimates. An understandingof the overalleffectof powerfulwinds also requires estimatesoftheirlongevity. Generally,goodevidenceforAGNwindsoccursinunobscuredAGN,wheretheUVspectrumcanbedirectly seen. Thereisthenlittle coldgasalongourlineofsightinthehostgalaxytobesweptout,eitherbecausethis hasalreadyoccuredorthereislittlecoldgasinthefirstplace.Wheresignificantcoldgasispresentinthegalaxy, the intrinsic AGN spectrummaybe blockedfromview and feedbackis inferredfromthe velocityfield ofany outflowinthegalaxy. 2.3 Galaxyoutflows EvidenceofAGNfeedbackisclearlyseeninsomegalacticoutflows. Galacticwindsandstarburstsuperwinds (Veilleux, Cecil & Bland-Hawthorn 2005; Heckman et al 2000, Strickland & Heckman 2009; Weiner at al 2009) can range from tens to over a thousand Solar masses per year with velocities of a few 100kms−1 for thecoolcomponents. Mostofthelowervelocitywindsareconsideredtobepoweredbystellarprocessessuch as supernovae. Identifyingthe effects of AGN feedback in outflows often relies on observing higher velocity (e.g. >500kms−1) componentsandan outflow powerexceedingthatpredictedbyany centralstarburst. The detailsarenoteasytodiscern,noristhereyetasimplecleardividinglinebetweenstar-andAGN-drivenoutflows. 500kms−1 is∼1keVperparticleanddifficulttoachievewithstellarprocessesinlargemassesofcoldmolecular gas. There should of course be a powerful AGN at the centre of the galaxy. High accretion requires a high 5 UFOs 0 3 5 n (%) 20 c 0 o cti a Fr 5 − 0 0.5 1 2 5 1 Observed Energy (keV) 0 0.1 0.2 0.3 0.4 Blue−shift velocity (v/c) Figure1:Left:DistributionofwindvelocitiesinferredfromfromX-rayabsorptionfeaturesinlowredshiftAGN (Tombesiet al 2010). Right: Blueshifted X-ray absorptionfeaturesin the most luminouslow redshift quasar, PDS456atz=(Reevesetal2009).Notethe9keVabsorptionfeatureintherestframeofthequasar,presumedto beduetoFeXXV(restframe6.7keV)blueshiftedby0.3.Lower:Neutralgasvelocitymapinthequasar/merger objectMrk231(Rupke&Veilleux2011). 6 fuellingratewhichoftenleadstohighobscurationoftheAGN.Theobscurationbythesurroundinggas,makes observationsoftheUVandsoftX-raybandswhereabsorptionfeaturesaremostreadilydetected,moredifficult. AnimportantobjectwhereboththeAGNandoutflowareseenisthelowredshift,z=0.04,quasar/merger Mrk231. Rupke&Veilleux(2011;Fig.1)mapastrongoutflowinitwithavelocityof∼1100kms−1 andan outflowrateof420M⊙yr−1,severaltimesgreaterthanthestarformationrate. Theoutflowpowerisaboutone percentofthebolometricluminosityoftheAGN(seealsoFerruglioetal2010;Fischeretal2010). Theoptical/UVspectrumofMrk231showsthatit is a lowionizationBAL (LoBal)quasarwith strongad- ditional absorption (Smith et al 1995). A study of FeLoBAL quasars at 0.8<z<1.8 by Farrah et al (2012) concludesthatradiativelydrivenoutflowsfromAGNacttocurtailobscuredstarformation(inferredfromtheIR luminosity)inthehostgalaxiesofreddenedquasarstolessthan∼25%ofthetotalIRluminosity. Sturmetal(2011)haveusedHerschel-PACStoobservethefar-infraredspectrumoftheOH79m mfeaturein severallowredshiftUltra-LuminousInfraredGalaxies(ULIRGs). Theyfindhighvelocitiesabove1000kms−1 andmassoutflowratesofupto1200M⊙yr−1 intheAGNdominantones. Thegasdepletiontimesrangefrom 106−108yr. TheirresultleaveslittledoubtthatmassiveoutflowsaregeneratedbyAGN. TherearemanyrecentreportsofoutflowsfromgalaxieshostingAGN.1000kms−1 outflowshavebeenseen either side of an obscured quasar at z=0.123 (Greene, Zakamska & Smith 2011), in massive post-starburst galaxiesatz∼0.6(Tremonti,Moustakas&Diamond-Stanic2007),andcovering4–8kpcofanUltraLuminous InfraredGalaxy hostingan AGN at z∼2 (Alexanderet al 2010). A regionovera luminousquasar at z=2.4 showsstarformationsuppressed,asinferredfromdecreasedHa emission,wheretheoutflowvelocity,deduced from[OIII]emission, is highest(Cano-D´ıazetal 2011). Absorptionfeaturesin the spectrumof a background quasarshiningthroughthehalo108kpcoutfromaz=2.4quasarrevealextremekinematicsinmetal-richcold gas(Prochaska&Hennawi2009). Aspectacularexampleisthe1300kms−1 outflowinaredshift6.4quasarrevealedbybroadwingsofthe[CII] emissionline(Maiolinoetal2012).Thekineticpowerintheoutflowis∼ 2×1045ergs−1 andthe2×1010M⊙ moleculargascontentofthehostgalaxy,inferredbyCOobservation,isejectedin<107yr. Strong outflows are also seen in radio galaxies at both low (e.g. Morganti et al 2007) and high redshifts (Nesvadbaetal2008,2011). Theaboveresultsareaforetasteofwhatcanbeexpectedoverthenextfewyears asinstrumentationandtechniquesimprove. 2.4 From the peak to thelateevolutionofAGNand quasars AnimportantdiscoveryofthepastdecadewasthecosmicdownsizingofAGN.Themostluminousandmassive AGN were mostnumerousatredshiftsof2–2.5,the less-luminouspeakedat successivelylowerredshiftswith the least luminous peaking around redshift one. Downsizing of AGN was first seen in X-ray surveys (Ueda et al 2003, Hasinger, Miyaji & Schmidt 2005; Barger et al 2005) where the nucleus stands out clearly above thesurroundinggalaxyineventhelow-luminosityobjects. Laterworkinopticalandotherbandsconfirmsthis picture.DownsizingisalsoseeinradioAGN(Rigbyetal2011). Thebehaviouris the oppositeof whatis simplypredictedin a hierarchicalCDM universe,wherethe most massiveobjects(clustersofgalaxies)formlast. Itindicatesthatsomethingisquenchingquasarbehaviourand themostwidelyacceptedsolutionisthatitisduetoAGNfeedback.Inmanymodels,massivegalaxiesmergeto generateamassiveblackholesurroundedbydensegas. Thegasfeedsbothstarformationandanactivenucleus (e.g. Sandersetal1988). ThepoweroftheAGNblowsthegasawayleavingared,deadellipticalgalaxy(e.g. Springel,DiMatteo&Hernquist2005). Studiesofthecoloursofellipticalgalaxiesindicatethatgalaxiesmoveonacolour–magnitudediagramfrom thebluecloudofstarforminggalaxiestotheredcloudofdeadones.InterestinglymostofthehostsofAGNare foundin the “greenvalley” betweenthese two extremes(Nandraet al 2007; Schawinskietal 2007). The rate atwhichthegalaxieshavechangedincolourcanbededucedfrompost-starburstsignaturesintheirspectra,and appearstobeafew100millionyears,significantlyfasterthanwouldbeexpectedfrompassiveevolution,where stellarmasslosswouldaccumulateandleadtolatestarformation. The observational details of this are however uncertain in local galaxy bulges (Wild, Heckman & Charlot 2010),withsignsthattheblackholefuellingmaylagbehindthestarburst(seeHopkins2011foramodel). Bell etal(2011)studyingmassivegalaxiesfrom0.6<z<2.2findquiescencetocorrelatepoorlywithstellarmass. A commonfactor of a quiescentgalaxy is that it has a bulge, with presumablya central black hole consistent withblackholefeedback. A possiblyimportantuncertaintyondistantAGNhostsiswhethertheyaredustyor 7 not (e.g. Brammer et al 2009). Correcting for dust may remove most AGN from the green valley altogether (Cardamoneetal2010). 2.5 Mergers orsecularevolution? Manytheoreticalmodelsforquasarevolutionarebasedongalaxy-galaxymergersbeingthetriggerforgasinfall onto a black hole. (This is a convenient assumption since the merger rate is predictable from the growth of large-scaledarkmatterstructure.) Althoughmergersmustoccur,theevidenceforthemtriggeringAGNisweak atmostredshifts. Searchesforpost-mergerdisruptionsignaturesoftengiveanullresultwhenthehostgalaxies ofAGNarecomparedwithacontrolsampleoffieldgalaxies(e.gCisternasetal2011;Schawinskietal2011). MergersarebestseenasatriggerfordistantSubMillimetreGalaxies(SMG,Tacconietal2008;Engeletal2010; Riechersetal2011)andsomelocalSeyferts(Kossetal2010).Secularprocessesmayneverthelessdominategas inflowinmassivebulgesatz∼2(Genzeletal2009). Theevidenceis buildingthatbetweenredshiftsof 2 andthe currentepoch,muchof the evolutionofAGN issecular(Kocevskietal2011,OrbandeXivryetal2011). Furtherevidenceforthisemergesfromastudyof theprobabilitythatagalaxyhostsanAGN.Airdetal(2011)findthistobeapower-lawinEddingtonrate,and largelyindependentofmass(seealsoKauffmann&Heckman2009foradiscussionofEddingtonratiosatlow redshiftandAlexander&Hickox2011forareviewofblackholegrowth). Secular evolution has implications for the spin of black holes, which are then likely to be high (Berti & Volonteri2007). Hints thatmost accretion takes place onto spinningblack holes, with consequenthighradia- tive efficiency, h , have emerged from application of Soltan’s (1982) argument relating the energy density of quasar/AGNradiationtothelocalmeanmassdensityinmassiveblackholes. E(1+z)=hr c2, BH whereE istheenergydensityinradiationfromaccretion,zisthemeanredshiftatwhichtheenergyisradiated and r is the mean smoothed-out density in black holes at the present epoch. The equation is independent BH ofcosmologicalmodelandreflectsthefactthatboththeblackholemassandenergyradiatedremainandscale togetherapartfromthe(1+z)redshiftfactorthatmustbeappliedtotheradiation. Applicationofthisformula to the X-ray backgroundor quasar counts etc, usually yield a value for h of 0.1 or more (Fabian & Iwasawa 1999;Elvis,Risaliti&Zamorani2002;Marconietal2004;Raimundo&Fabian2009). Thisishigherthanthe efficiencyofanon-spinningblackholeh =0.057andconsistentwithmoderatetohighspin. Mergersmaystillbethetriggerforthequasarpeakatredshiftsof2–3. Whetheramergeriswetordry(gas richorpoor)canhaveasignificanteffectonthefinalmergerproduct,ascanhowandwhetherthemassiveblack holesofthemerginggalaxiesscoursthefinalgalaxycoreornot(Kormendyetal2010). ThepictureemergingfrommanyobservationsofmassivegalaxiesandAGNisofradiativefeedbackbeing animportantprocesswhentheAGN/quasarwashighlyluminousandwithinabouttwoordersofmagnitudeof the Eddingtonlimit. For massive galaxies, this highlightsthe redshiftrangeof the quasar peak. We nowshift attention to low redshifts and the most massive galaxies at the centres of clusters and groups. They generally donothostluminousAGNorquasars. Theydohostthemostmassivesupermassiveblackholes,andareoften activeradiosources. Feedbacktakesplaceherethroughthekineticmodeinvolvingjetsactingonhotgas. 3 The Kinetic Mode The more massive galaxies at the centres of groups and clusters are often surrounded by gas with a radiative coolingtimeshortenoughthatacoolingflowshouldbetakingplace(Fabian1994). TheX-raysweseeindicate alargeradiativelossandmasscoolingratesoftens,hundredsoreventhousandsof M⊙yr−1: 2Lm m M˙ = , 5 kT witha(factorroughlytwo)downwardcorrectionforgravitationalinfallifthehotgasflowsinwardasaconse- quenceofcooling. m misthemeanmassperparticleofthegasoftemperatureT andListheluminosity(mostly emittedintheX-rayband). 8 SomerelevantgaspropertiesofasmallsampleofobjectsareshowninFig.2,rangingfromthehighlumi- nosity cluster A1835throughthe X-raybrightestcluster in the Sky, A426(the Perseuscluster), the low-mass cluster A262 cluster to the Milky-Way mass elliptical galaxy NGC720. All the clusters show a large central temperaturedropwithintheinner100kpcandallobjectsshowaradiativecoolingtimedroppingbelow109Gyr withintheinner10kpc. Anapproximatemasscoolingrate,intheabsenceofanheatsource,canbededucedby dividingthegasmasswithinachosenradiusbythecoolingtimeatthatradius.Ifacoolingflowisoperating,the masscoolingratesneedto beworkedoutcumulativelyincludinggravitationalworkdone, whichwillincrease theratesbyafactorof1.5–2,dependingonthedetailsoftheprofiles. The mass cooling rates are such that the clusters should be significantlygrowingtheir stellar mass now, if radiativecoolingisuninhibitedandthecooledgasformsstars.Observationsdorevealsomestarformationtaking place,andA1835mayhavethehigheststarformationrateinalowredshiftBCG(∼125M⊙yr−1;Egamietal 2006),butitdoesnotequaltheuninhibitedmasscoolingratewhichis∼1000M⊙yr−1. Onlyiftheinitialmass function(IMF)ofthestarformationprocessinthesesystemsfavouredlowmassstarscouldtherebesufficient stars. Thehighpressureenvironmentinaclustercore,wherethethermalpressureisabout1000timesthatofthe interstellarmediumoftheMilkyWayhasbeeninvokedasanexplanationforlowmassstars,duetoitseffecton theJeansmass(Fabianetal1982).MostobservationsoftheIMFinawidevarietyofobjectssupportauniversal IMFwhichdoesnothavemostofitsmassinverylowmassstars,whichwouldberequiredhere. VanDokkum &Conroy(2010)dohoweverfindanIMFrichinlow-massstarsinasmallsampleofnearbyellipticalgalaxies (seealsoCappellarietal2012),sothecasemaynotyetbecompletelyclosedforlow-massstarsplayingarole. ThecentresofA1835andthePerseusclusterdocontainextensivereservoirsofdustyatomicandmolecular gas,themassofwhichcouldbetheendresultofasignificantcoolingflow,exceptthatitwouldnotthenbeclear wherethedustandmoleculesformed. Itisgenerallyconsideredthatdustcannotformspontaneouslyindiffuse cooledgas,whichispresumablyrequiredfirstinordertothenformmolecules. TheX-rayrichenvironmentin clustersdoeshowevermeanthattheH− routemaybeopenformoleculeformationincoldgas. Dustformation fromcoldmoleculargashasbeenproposedinthissituation(Fabian,Johnstone&Daines1994)butnodetailed calculationhasbeenattempted. Thesituationmaychangenowthatsignificantamountsofdustandmolecules havebeenfoundinsomeveryyoungsupernovaremnants,suchasSN1987A(Matsuuraetal2011)andtheCrab (Loh,Baldwin&Ferlandetal2011). XMM-NewtonReflectionGratingSpectrometerobservationsprovidedcrucialinformationagainstasimple coolingflow modelin thattheyfailed toshow thestronglinesexpectedfromFeXVIIas thegascooledbelow 0.7 keV (Peterson et al 2001; Tamura et al 2001). Detailed fits (Peterson et al 2003)indicated that there was muchlessgasbelowonethirdoftheouterclustergastemperaturethanwouldbeexpectedin asteadycooling flow. Eithersomethingwasheatingthegas,orthegaswassomehowdisappearing. Aswillbediscussedbelow, bothoftheseoptionsareprobablyinvolved. ThelikelyheatsourceistheAGNintheBCGatthecentreofthecoolcore. Almostallhaveanactiveradio source(Burns1990,Sun2010). HeatingbythecentralAGNwassuggestedearlybyPedlaretal(1990),Baum & O’Dea (1991), Tabor & Binney (1994) and Tucker & David (1997). Later work shows that the correlation betweenradiopowerandcoolingluminosity(ameasureoftherateatwhichgascoolswithinafiducialcooling radiuswheret is7Gyr)ispoor(Voigt&Fabian2004)andthejetsandthusthekineticpowereitherhastobe cool highlysporadicorextremelyradiativelyinefficient(seelater). Thegeneralconsensusnowisthatthemassiveblackholeatthecentreofthegalaxyisfeedingenergyback intoitssurroundingsataratebalancingthelossofenergythroughcooling(forreviewsseePeterson&Fabian 2006,McNamara&Nulsen2007,Cattaneoetal2009). SeveralstepsinthisfeedbackprocessareclearlyseeninX-rayandradioobservations. Muchoftheaction is spatially resolvedand the gasoptically thin. The accretionflow ontothe blackhole generatespowerfuljets whichinflatebubblesofrelativisticplasmaeithersideofthenucleus.Thebubblesarebuoyantintheintracluster orintragroupmedium,separatingandrisingasanewbubbleforms(Churazovetal2000;McNamaraetal2000). A study of the brightest 55 clusters (Fig. 3; Dunn & Fabian 2006, 2008) originally showed that over 70% of thoseclusterswherethecoolingtimeislessthan3Gyr,thereforeneedingheat,havebubbles;theremaining30% haveacentralradiosource. Thisimpliesthatthedutycycleofthebubblingisatleast70%. Updatingthatwork now indicates (Fig. 3) that the bubble fraction is 19/20 objects (the odd one out – the Ophiuchuscluster – is undergoingamergerintothecore).Whenprojectioneffectsareconsidered,sincebubblesalongthelineofsight willbedifficulttodistinguish,thecorrespondingbubblingfractionis>95%. Notethatobjectscannotshiftto theleftinthisdiagramontimescaleslessthant ;theycanshifttotherightonashortertimescalebutthismust cool 9 ) V 1014 e A1835 10 Perseus 1012 G k 10 a ( s e 1013 m r u a rat 5 1012 5 1011 ss e ( p M m e 1011 1010 ☉) T 103 M ) r (y 1011 1010 gas e / m 102 ct o ti 1010 ol g ( n M i l ☉ oo 109 109 y C 102 101 r-1 ) 10 100 10 100 V) 1012 1012 e A262 1 NGC 720 G k 1011 a ( re 2 1010 109 s m u a t a 109 s er 106 s ( mp 1 108 M ☉ Te 107 0.1 103 ) 102 M r) 102 e (y 1010 1011010 101 gas / m 100 ct o ti 100 109 10−1 ol g ( n 109 10−2 M li 10−1 ☉ oo 108 10−3 y C 10−2 10−4 r-1 ) 1 10 100 0.1 1 10 100 Radius (kpc) Figure2:Gastemperature(+),cumulativegasmass(joineddots),M (<r),radiativecoolingtime(x),t (r), gas cool andmasscoolingrate(-),M˙ =M (<r)/t (r)),whererisradius,forA1835(Schmidtetal2001;McNamara gas cool etal2006),A426(thePerseuscluster;Fabianetal2006),A262(Blantonetal2004;Sandersetal2010a),and Milky Way mass elliptical galaxy NGC720 (Humphrey et al 2011), composite courtesy of J. Sanders. The temperaturesshownherearedeprojectedvaluesandassumesinglephasegas.Spatialandfurtherspectralstudies oftenshowittobemultiphasenearthecentre. 10

Description:
realised over the past decade that the black hole at the centre of a galaxy bulge is no mere ornament .. The bubbles are buoyant in the intracluster.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.