ebook img

Observation of Electromagnetically Induced Transparency for a Squeezed Vacuum with the Time Domain Method PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Observation of Electromagnetically Induced Transparency for a Squeezed Vacuum with the Time Domain Method

Observation of electromagnetically induced transparency for a squeezed vacuum with the time domain method M.Arikawa,1K.Honda,1,2D.Akamatsu,1Y.Yokoi1, K.Akiba,1 S.Nagatsuka,1A.Furusawa,3andM.Kozuma1,2,4 8 1DepartmentofPhysics,TokyoInstituteofTechnology, 0 2-12-1O-okayama,Meguro-ku,Tokyo152-8550,Japan 0 2 2InteractiveResearchCenterofScience,TokyoInstituteofTechnology, 2-12-1O-okayama,Meguro-ku,Tokyo152-8550,Japan n a 3DepartmentofAppliedPhysics,SchoolofEngineering, J TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-8656,Japan 7 2 4CREST,JapanScienceandTechnologyAgency,1-9-9Yaesu,Chuo-ku,Tokyo103-0028, Japan ] h [email protected] p - nt Abstract: Aprobelightinasqueezedvacuumstatewasinjectedintocold a 87Rb atoms with an intense control light in a coherent state. A sub-MHz u window was created due to electromagneticallyinduced transparency,and q the incident squeezed vacuum could pass through the cold atoms without [ opticalloss,aswassuccessfullymonitoredusingatime-domainhomodyne 2 method. v 1 © 2008 OpticalSocietyofAmerica 7 OCIScodes:(270.0270)Quantumoptics;(270.6570)Squeezedstates. 9 1 . Referencesandlinks 7 0 1. A.E.Kozhekin,K.Mølmer,andE.Polzik,“Quantummemoryforlight,”Phys.Rev.A62,033809/1-5(2000). 7 2. B. Julsgaard, J.Sherson, J. I.Cirac, J.Fiura´sˇek, and E.S.Polzik, “Experimental demonstration ofquantum 0 memoryforlight,”Nature(London)432,482-486(2004). : 3. M.Fleischhauer, and M.D.Lukin, “Quantum memoryforphotons: dark-state polaritons,” Phys.Rev. A 65, v 022314/1-12(2002). i 4. D.F.Phillips,A,Fleischhauer,A.Mair,R.L.Walsworth,andM.D.Lukin,“Storageoflightinatomicvapor,” X Phys.Rev.Lett.86,783-786(2001). r 5. T. Chanelie´re, D. N. Matsukevich, S. D. Jenkins, S. -Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage a andretrievalofsinglephotonstransmittedbetweenremotequantummemories,”Nature(London)438,833-836 (2005). 6. M.D.Eisaman,A.Andre´,F.Massou,M.Fleischhauer, A.S.Zibrov,andM.D.Lukin,“Electromagnetically inducedtransparencywithtunablesingle-photonpulses,”Nature(London)438,837-841(2005). 7. K.Akiba,K.Kashiwagi,T.Yonehara,andM.Kozuma,“Frequency-filteredstorageofparametricfluorescence withelectromagneticallyinducedtransparency,”Phys.Rev.A76,023812/1-5(2007). 8. M.Kitagawa,andM.Ueda,“Squeezedspinstates,”Phys.Rev.A47,5138-5143(1993). 9. J.Geremia,J.K.Stockton,A.C.Doherty,andH.Mabuchi,“QuantumKalmanfilteringandtheHeisenberglimit inatomicmagnetometry,”Phys.Rev.Lett.91,250801/1-4(2003). 10. D.Akamatsu,K.Akiba,andM.Kozuma,“Electromagnetically inducedtransparencywithsqueezedvacuum,” Phys.Rev.Lett.92,203602/1-4(2004). 11. D.Akamatsu, Y.Yokoi, M.Arikawa, S.Nagatsuka, T.Tanimura, A.Furusawa, andM.Kozuma, “Ultraslow propagation ofsqueezed vacuum pulseswithelectromagnetically inducedtransparency,” quant-ph/061109 (to appearinPhysicalReviewLetters). 12. J.S.Neergaard-Nielsen,B.M.Nielsen,C.Hettich,K.Mølmer,andE.S.Polzik,“Generationofasuperposition ofoddphotonnumberstatesforquantuminformationnetworks,”Phys.Rev.Lett.97,083604/1-4(2006). 13. N.Takei, N. Lee, D.Moriyama, J. S.Neergaard-Nielsen, and A.Furusawa, “Time-gated Einstein-Podolsky- Rosencorrelation,”Phys.Rev.A74,060101/1-4(2006). 14. T.Tanimura,D.Akamatsu,Y.Yokoi,A.Furusawa,andM.Kozuma,“Generationofasqueezedvacuumresonant onarubidiumD1linewithperiodicallypoledKTiOPO4”Opt.lett.31,2344-2346(2006) 15. M.Kourogi, B.Widiyatmoko, K.Imai,T.Shimizu, andM.Ohtsu, “Accurate relative frequency cancellation betweentwoindependentlasers,”Opt.Lett.24,16-18(1999). 16. E.S.Polzik,J.Carri,andH.J.Kimble,“Atomicspectroscopy withsqueezedlightforsensitivity beyondthe vacuum-statelimit,”Appl.Phys.B55,279-290(1992). 17. B.Yurke, “Squeezed-coherent-state generation viafour-wave mixers anddetection viahomodyne detectors,” Phys.Rev.A32,300-310(1985) 1. Introduction The coherenttransfer of quantum informationbetween light and atoms has been actively in- vestigated, and various methods for its implementation using several phenomena, including the Raman process [1], quantum non-demolition measurement [2], and electromagnetically inducedtransparency(EIT)[3,4],havebeenproposedandinvestigatedexperimentally.Exper- imentaldemonstrationofstorageandretrievalofasinglephotonstatewasfirstrealizedusing EIT [5, 6], and this method has attracted a great deal of attention for application to various non-classicallights[7].Thesqueezedvacuumhasbeenanimportantresourcefordeterminis- ticintricatequantuminformationprocessing.Storingandretrievingthesqueezedvacuumstate thusenablesustoapplysuchquantuminformationprotocolstothespatiallylocalizedatomic ensemble.Furthermore,storageofthesqueezedvacuumimpliesatomicspinsbeingsqueezed underthestandardquantumlimit[8],whichisusefulforprecisemeasurementssuchasmag- netometry [9]. The storage and retrieval of light with EIT is based on ultraslow propagation oflightbysteepdispersionwithinthetransparencywindow.Thegroupvelocityofanincident lightpulse canbedramaticallyreducedbysimplynarrowingthetransparencywindow.Thus, the establishmentof a techniquefordetectingthe squeezedvacuumpassed througha narrow transparencywindowformsthefoundationforstorageandretrievalofthesqueezedvacuum. ThefirstexperimentalconfirmationofEITwithasqueezedvacuum[10]employedtheho- modyne detection method with a monochromaticlocal oscillator (LO), where the homodyne detection signal was analyzed using a spectrum analyzer. Squeezing was observed when the frequency width of the transparency window was relatively large (2.6 MHz). It is noted that thespectrumanalyzermeasuresthepowerspectrumbymixingtheinputsignalwithanelectric localoscillator(eLO)andfrequencyfilteringthemixeroutput(IF).Practically,atinyamount of the eLO directlycouplesto the IF portof the mixerand this leakage is detected when the eLOfrequencyiswithinthefilterbandwidth.Eventually,asharppeakappearsatthelowfre- quencyregionreflectingthe’shapeofthefilter’,whichmainlylimitedthedetectableminimum frequencyofthesqueezing. In order to solve this problem and realize ultra-slow propagation of a squeezed vacuum, homodynedetectionwithbichromaticLOhavingthefrequencycomponentsofn ±e wasuti- 0 lized [11],wheren ande were the carrierfrequencyof thesqueezedvacuumandthe center 0 frequencyof the spectrumanalyzer,respectively.Since this methodis sensitiveto the degen- erate frequency component (n ), squeezing was observed within the sub-MHz transparency 0 windowandtheultra-slowpropagationofasqueezedvacuumpulsewasrealized.However,the bichromatic homodynemethod is also sensitive to the two-mode quadraturenoise consisting ofn ±2e ,whichareusuallypresentoutsidethetransparencywindow,sincee hastobesetto 0 a relativelyhighfrequencyto avoidthe specific peakreflectingthe ’shapeof thefilter’ ofthe spectrumanalyzer.Thus,theobservablesqueezinglevelinevitablydecreasesinthestorageand retrievalprocess. Mostrecently,squeezingwassuccessfullyobservedforthelow-frequencyregionbyFourier transform of the real-time homodyne detection signal [12, 13]. In this Letter, we report the successfulobservationofasqueezedvacuumthathaspassedthroughasub-MHzEITwindow usingthetimedomainmethod.Thehomodynedetectionwiththespectrumanalyzerprovides the power noise of the quadrature amplitude. In contrast, the time domain method acquires real-timesignalofthequadratureamplitudeandthuswecanextractfrequencyspectrumofthe quadraturenoisebysimplyperformingFourieranalysis.Itshouldbenotedthatthepreviously observed narrow band EIT spectrum [11] does not give us direct information about how the squeezedvacuumisdegradedbytheEITmediumundertheslowpropagationcondition.Inthe previousexperiment,thespectrumwasobtainedbymeasuringthesqueezinglevelforvarious detuningofthecontrollight,whiletheslowpropagationwascarriedoutforthefixedcontrol frequency.TheFFTanalysisenablesustoobtainthesqueezingspectrumforthefixedcontrol frequency,whichisdirectinformationabouttheresponseofthesqueezedvacuumfortheEIT mediumundertheconditionutilizedfortheultra-slowpropagationandstorageexperiments. 2. Experiment Our experimental setup is shown schematically in Fig. 1. We prepared magneto-optically trappedandlasercooled87RbatomsandemployedthemastheEITmedium.Onecycleofour experimentwas 10ms. Each cycle consisted of the preparationof cold atoms(9 ms) and the measurementofEIT(1ms).Duringthepreparationperiod,theRbgaswasmagneto-optically trappedfor5.5ms,afterwhichthemagneticfieldwasturnedoff.Aftertheeddycurrentceased (∼3ms),boththecoolingandrepumpinglightswereturnedoffanddepumpinglighttunedto F=2→F’=2transitionwasmadeincidentonthegastopreparecoldatomsintheF=1state. Fig.1.Schematicdiagramoftheexperimental setup.BS:beamsplitter,HBS:halfbeam splitter,AOM:acousto-opticmodulator,PD:photodetector,PZT:piezoelectrictransducer, Amp.:RFamplifier,Sq.Vac.:squeezedvacuum. We first evaluated the frequency width of the EIT window with a weak probe light in a coherentstate.Ti:Sapphirelaser1wastunedto52S ,F=1→52P ,F’=2,whichcorresponds 1/2 1/2 toaprobetransition.AweaklightfromthislaserwasmadeincidentontheOPOcavity,andthe outputbeamwasusedasaprobelight.Notethattheprobelightwasinacoherentstatebecause the second harmonic light in front of the OPO cavity was blocked. The proceduredescribed above enabled us to employ a coherent state of the probe light with a spatial mode that was identicaltothatofthesqueezedvacuumusedinthelaterexperiment.Ti:Sapphirelaser2was tunedto52S ,F=2→52P ,F’=2andwasusedforthecontrollight.Therelativefrequency 1/2 1/2 betweentheprobeandthecontrollightswasstabilizedwithasynthesizerandAOM1usinga feed-forwardmethod[11,15].Duringthemeasurementperiod,theprobeandthecontrollights wereincidentonthecoldRbgaswithacrossingangleof2.5◦.Thepowerofthecontrollight wasapproximately80m W.Thewaistsoftheprobeandthecontrollightswere150m mand550 m m,respectively.Theselightswerecircularlypolarizedinthesamedirectionbyusingquarter waveplates (l /4). It is noted that the atomic sample prepared here was hyperfine pumped, but unpolarized.Choosing the same circular polarizationsfor both the probe and the control lightsallowedustokeephightransparencywhiletheZeemandegeneracyoftheatomiclevels was concerned [5].The probe light that passed through the cold atoms was photon-counted usingasiliconavalanchephotodiode(Perkin-Elmer:SPCM-AQR).Thetransmissionspectrum obtained by scanning the frequency of the control light is shown in Fig. 2, where the atoms were almost transparent around two-photon resonance, and the half width at half maximum was approximately 300 kHz. The slight asymmetry of the signal originated from the atomic densityvariationduringthemeasurementtimeduetothermaldiffusion. Fig.2. Transmissionspectrumofthecoherentprobelightasafunctionofthetwo-photon detuning.Trace(A)indicatestransmissionspectrumwhentheprobelightwasincidenton the cold atoms with the control light. Trace (B) shows the spectrum without the control light. We next observed the EIT spectrum for the squeezed vacuum, which passed through the cold atoms under the EIT condition. We generated the squeezed vacuum resonant on the Rb D line using a sub-threshold optical parametric oscillator (OPO) with a periodically poled 1 KTiOPO crystal[14].Injecting85mWofthesecond-harmoniclightfromthedoublerintothe 4 OPO cavity, the squeezed vacuum was generatedand was incidenton the cold atoms during themeasurementperiod.TherelativephasebetweenthesqueezedvacuumandtheLOhadto befixedinordertoselectivelymonitoranti-squeezingandsqueezing.Westabilizedtherelative phase with the help of the weak coherent state of light, which was used as the probe in the aboveclassicalEITexperiment.Wehereinafterrefertothislightthelockingbeam.Therelative phasebetweenthelockingbeamandthesecondharmoniclightwasstabilizedusingaclassical parametric amplification signal and piezo transducer PZT1. The relative phase between the locking beam and the LO was also stabilized using the homodynedetector signaland PZT2. Eventually,therelativephasebetweenthesqueezedvacuumandtheLOwaslockedtoq =p /2 or0duringthecoldatompreparationperiod.ThefeedbackvoltagestoPZTswereheldinthe measurementperiodandtheweaklockingbeamwasturnedoffwithAOM2andAOM3,sothat wecouldmeasureanti-squeezingorsqueezinginthemeasurementperiod[13,16]. Duringthe measurementperiod,we importedsignalsfromthe homodynedetectorintothe high-speed digital oscilloscope and performed Fourier transform of the obtained real-time waveforms, where the signal sampling rate was 5 × 107 samples/sec. Vertical resolution of thedigitaloscilloscopewas8bitsandthusthedynamicrangeforthepowermeasurementwas almost50dB.Inordertominimizetheattributionoftheclassicalnoisestothehomodynesig- nal,weadjustedthepowerbalancebetweenthetwoLObeamsasmuchaspossible.Weapplied classicalpowermodulationtotheLOandminimizedthemodulationsignalfromthebalanced homodyne detector by changing the reflectivity of the half beam splitter, which was carried outbyadjustingtheangleofthesplitter.Eventuallywecouldachieve−58dBofsuppression for the classical modulation. Figure 3(a) indicates the frequency spectrum of the quadrature noise for the squeezed vacuum, where trace (A) indicates the shot noise and traces (B) and (C)indicatethequadraturenoiseswithoutthecoldatoms.Here,therelativephasesweresetto q =p /2and0,respectively.Eachdatawasaveragedover1,000times.ThesharppeaksinFig. 3(a)originatedfromtheelectriccircuitnoisesofthehomodynedetectorandthustheycouldnot be eliminated by balancingthe laser intensities. The quadraturenoise was approximatelyflat overthefrequencyrangeshowninFig.3(a)becausethespectrumwidthoftheOPO(15MHz) wasmuchbroaderthanthemeasurementfrequencyrange(1.5MHz).Traces(D)and(E)indi- catethemeasuredquadraturenoiseofthesqueezedvacuumpassedthroughthecoldatomswith the controllight, where the relative phase was set to q =p /2 and 0, respectively.Both anti- squeezingandsqueezingwereobservedwithinthesub-MHznarrowfrequencyregion,which correspondstothetransparencywindowcausedbyEIT. In a previous experiment [11], the squeezing and the anti-squeezing signals alternatively appearedwhenthefrequencyofthecontrollightwassweptwithinanarrowtransparencywin- dow,whichwasdueto atomsaddingan additionalphaseshiftto thesqueezedvacuum.Such acomplicatedstructuredidnotappearinthepresentexperimentasaresultofthecancellation ofthedispersioneffect.Notethatinthecurrentexperiment,thefrequencyofthecontrollight wasnotswept,butratherwasfixed,andthusthesidebandsconstructingthesqueezedvacuum alwayshavetheoppositesignoftheadditionalphaseshifts.Thetwomodequadratureoperator isdefinedas Xˆ(n ,q )=aˆn0+n exp(−iq )+aˆn†0−n exp(iq ), (1) wherethesidebandfrequenciesaren ±n [17].Nowweconsiderthesituationwheretheop- 0 positesignofthephaseshifts±f areaddedtothetwosidebands,i.e., Xˆ(n ,q ,f )=aˆn0+n exp(−iq )exp(if )+aˆn†0−n exp(iq )exp(−i(−f )). (2) Thequadraturenoiseisgivenby h|D Xˆ(n ,q ,f )|2i=h(Xˆ(n ,q ,f )−hXˆ(n ,q ,f )i)(Xˆ†(n ,q ,f )−hXˆ†(n ,q ,f )i)i Sym = 1hXˆ(n ,q ,f )Xˆ†(n ,q ,f )+Xˆ†(n ,q ,f )Xˆ(n ,q ,f )i−hXˆ(n ,q ,f )ihXˆ†(n ,q ,f )i 2 = 1hXˆ(n ,q )Xˆ†(n ,q )+Xˆ†(n ,q )Xˆ(n ,q )i−hXˆ(n ,q )ihXˆ†(n ,q )i 2 =h|D Xˆ(n ,q )|2i (3) Fig.3.(a)Quadraturenoiseoftheprobelightinthesqueezedstate.Trace(A)indicatesthe shotnoise.Traces(B)and(C)showthequadraturenoisesoftheprobelightwithoutcold atoms,wheretherelativephasewereq =p /2and0,respectively.Traces(D)and(E)show thequadraturenoiseswhentheprobelightwasincidentonthecoldatomswiththecontrol light,wheretherelativephasewereq =p /2and0,respectively.(b)Thenumericallysim- ulatednoisespectrumforthesqueezed vacuumpassedthroughthecoldatomsunder the EITcondition.Trace(A)indicatestheshotnoise.Traces(B)and(C)showthequadrature noisesforq =p /2and0,respectively. where hAˆBˆi =hAˆBˆ+BˆAˆi/2. (4) Sym Namely,additionalphasef doesnotaffectthepowernoiseofthequadratureamplitude. Figure3(b)showsthenumericalsimulationofthequadraturenoisesofthesqueezedvacuum thatpassedthroughthecoldatomsundertheEITcondition,where,forthesakeofsimplicity, we assumedtheincidentsqueezedvacuumexperiencedtheopticallosscorrespondingtoFig. 2andtheincidentanti-squeezingandsqueezinglevelswereconstantinallfrequencyregions. The absorption loss is represented by the model using a beam splitter whose transmittance T(n )isdependentonthefrequencyofthelight.Thequadraturenoiseofthesqueezedvacuum experiencedabsorptionlossisgivenby 1 h|D Xˆ(n ,q )|2i= {T(n )(cosh2r−cos2q sinh2r)+(1−T(n ))}, (5) 4 whereristhesqueezingparameter.Weusetheaverageofthetransmissionofthecoherentprobe lightpassingthroughtheatomswiththecontrollightwhosedetuningwas±n ,whichisshown in Fig. 2, as T(n ). The numerical simulation is in good agreement with the experimentally obtainednoisespectrum. 3. Conclusion In conclusion, we have succeeded in observing the EIT spectrum of the squeezed vacuum, wherebothsqueezingandanti-squeezingweremonitoredwithinsub-MHztransparencywin- dow.Theobservationofsqueezingforsuchalow-frequencyregionisanessentialstep inthe realizationofthestorageandretrievalofthesqueezedvacuum. Acknowledgment Theauthorswouldlike tothankN. Takeiforengagingin numeroushelpfuldiscussions.Two of the authors (D. A. and K. A.) were supported by the Japan Society for the Promotion of Science.ThisstudywassupportedbyaGrant-in-AidforScientificResearch(B)andthe21st CenturyCOEProgramatTokyoTech,”Nanometer-ScaleQuantumPhysics”bytheMEXT.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.