ebook img

Object-oriented implementations of the MPDATA advection equation solver in C++, Python and ... PDF

19 Pages·2013·0.38 MB·English
by  
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Object-oriented implementations of the MPDATA advection equation solver in C++, Python and ...

Object-oriented implementations of the MPDATA advection equation solver in C++, Python and Fortran SylwesterArabasa,DorotaJareckaa,AnnaJarugaa,MaciejFijałkowskib aInstituteofGeophysics,FacultyofPhysics,UniversityofWarsaw bPyPyTeam 3 1 0 Abstract 2 r Three object-oriented implementations of a prototype solver of the advection equation are introduced. The presented programs aare based on Blitz++ (C++), NumPy (Python), and Fortran’s built-in array containers. The solvers include an implementation M of the MultidimensionalPositive-Definite Advective TransportAlgorithm (MPDATA). The introduced codes exemplify how the applicationofobject-orientedprogramming(OOP)techniquesallowstoreproducethemathematicalnotationusedintheliterature 9 within the program code. A discussion on the tradeoffs of the programming language choice is presented. The main angles 1 of comparison are code brevity and syntax clarity (and hence maintainability and auditability) as well as performance. In the ]case of Python, a significant performancegain is observed when switching from the standard interpreter (CPython) to the PyPy h implementationofPython. Entiresourcecodeofallthreeimplementationsisembeddedinthetextandislicensedundertheterms p -oftheGNUGPLlicense. p mKeywords: object-orientedprogramming,advectionequation,MPDATA,C++,Fortran,Python o c .Contents 1. Introduction s c i1 Introduction 1 Object oriented programming (OOP) ”has become recog- s y nised as the almost unique successful paradigm for creating h2 Implementation 2 complexsoftware”[1,Sec.1.3]. Itisintriguingthat,whilethe p 2.1 Arraycontainers. . . . . . . . . . . . . . . . . 2 quotedstatementcomesfromtheverybooksubtitledTheArtof [ 2.2 Containersforsequencesofarrays . . . . . . . 3 ScientificComputing,hardlyany(ifnotnone)ofthecurrently 2 2.3 Staggeredgrid . . . . . . . . . . . . . . . . . . 4 operational weather and climate prediction systems - flagship v 2.4 Haloregions. . . . . . . . . . . . . . . . . . . 5 examplesof complex scientific software - make extensive use 4 2.5 Arrayindexpermutations . . . . . . . . . . . . 5 ofOOPtechniques. Fortranhasbeenthelanguageofchoicein 3 3 2.6 Prototypesolver . . . . . . . . . . . . . . . . . 6 oceanic[2], weather-prediction[3]andEarthsystem[4]mod- 1 2.7 Periodicboundaries(C++) . . . . . . . . . . . 8 elling,andnoneofits20-centuryeditionswereobject-oriented 1. 2.8 Donor-cellformulæ(C++) . . . . . . . . . . . 8 languages[seee.g.5,fordiscussion]. ApplicationofOOPtechniquesindevelopmentofnumerical 0 2.9 Donor-cellsolver(C++) . . . . . . . . . . . . 9 3 2.10 MPDATAformulæ(C++) . . . . . . . . . . . 9 modellingsoftwaremayhelpto: 1 2.11 MPDATAsolver(C++) . . . . . . . . . . . . . 10 : (i) maintain modularity and separation of programlogic lay- v 2.12 Usageexample(C++) . . . . . . . . . . . . . 10 ers(e.g.separationofnumericalalgorithms,parallelisation i X mechanisms,datainput/output,errorhandlingandthede- 3 Performanceevaluation 12 r scriptionofphysicalprocesses);and a 4 Discussiononthetradeoffsoflanguagechoice 13 (ii) shorten and simplify the source code and improve its 4.1 OOPforblackboardabstractions . . . . . . . . 14 readabilitybyreproducingwithintheprogramlogicthe 4.2 Performance . . . . . . . . . . . . . . . . . . . 14 mathematicalnotationusedintheliterature. 4.3 Easeofuseandabuse . . . . . . . . . . . . . . 14 4.4 Addedvalues . . . . . . . . . . . . . . . . . . 14 The first application is attainable, yet arguably cumbersome, withproceduralprogramming. Thelatter,virtuallyimpossible 5 Summaryandoutlook 15 toobtainwithproceduralprogramming,isthefocusofthispa- per. It also enables the compiler or library authors to relieve Appendix P Pythoncodeforsections2.7–2.11 16 theuser(i.e. scientificprogrammer)fromhand-codingoptimi- sations,apracticelongrecognisedashavingastrongnegative Appendix F Fortrancodeforsections2.7–2.11 17 impactwhendebuggingandmaintenanceareconsidered[6]. PreprintsubmittedtoComputerPhysicsCommunications December11,2013 MPDATA [7] stands for MultidimensionalPositive Definite Programminglanguageconstructswheninlinedin thetextare AdvectiveTransportAlgorithmandisanexampleofanumer- typesetinbold,e.g. GOTO2. ical procedure used in weather, climate and ocean simulation systems [e.g. 8, 9, 10, respectively]. MPDATA is a solver for 2. Implementation systemsofadvectionequationsofthefollowingform: Doubleprecisionfloating-pointformatisusedinallthreeim- ∂ψ=−∇·(~vψ) (1) t plementations.Thecodesbeginwiththefollowingdefinitions: that describe evolution of a scalar field ψ transported by the listing C.1 (C++) 3 typedef double real_t; fluid flow with velocity ~v. Quoting Numerical Recipes once more,developmentofmethodstonumericallysolvesuchprob- listing P.1 (Python) 3 real_t = ’float64’ lems”isanartasmuchasascience”[1,Sec.20.1],andMP- DATA is an example of the state-of-the art in this field. MP- listing F.1 (Fortran) 3 module real_m DATA is designed to accurately solve equation (1) in an ar- 4 implicit none bitrarynumberofdimensionsassuringpositive-definitenessof 5 integer, parameter :: real_t = kind(0.d0) 6 end module scalarfieldψandincurringsmallnumericaldiffusion.Allrele- vantMPDATAformulæaregiveninthetextbutarepresented whichprovideaconvenientwayofswitchingtodifferentpreci- without derivationor detailed discussion. For a recent review sion. ofMPDATA-basedtechniquesseeSmolarkiewicz[11,andref- Allcodesarestructuredinawayallowingcompilationofthe erencestherein]. code in exactly the same order as presented in the text within Inthispaperweintroduceanddiscussobject-orientedimple- one sourcefile, hence everyFortranlisting containsdefinition mentationsofanMPDATA-basedtwo-dimensional(2D)advec- ofaseparatemodule. tionequationsolverwritteninC++11(ISO/IEC14882:2011), Python [13] and Fortran 2008 (ISO/IEC 1539-1:2010). In 2.1. Arraycontainers the following section we introduce the three implementations brieflydescribingthealgorithmitselfanddiscussingwhereand Solutionof equation(1) using MPDATA impliesdiscretisa- how the OOP techniques may be applied in its implementa- tion onto a grid of the ψ and the Courant numberC~ = ~v· ∆t ∆x tion. ThesyntaxandnomenclatureofOOPtechniquesareused fields, where∆t isthesolvertimestepand∆x isthegridspac- without introduction, for an overview of OOP in context of ing. C++, Python and Fortran, consult for example [15, Part II], Presented C++ implementation of MPDATA is built upon [16, Chapter 5] and [17, Chapter 11], respectively. The third the Blitz++ library1. Blitz offers object-oriented representa- sectionofthispapercoversperformanceevaluationofthethree tion of n-dimensional arrays, and array-valued mathematical implementations. The fourth section covers discussion of the expressions. Inparticular,itoffersloop-freenotationforarray tradeoffs of the programminglanguage choice. The fifth sec- arithmeticsthatdoesnotincurcreationofintermediatetempo- tionclosesthearticlewithabriefsummary. rary objects. Blitz++ is a header-only library2 – to use it, it Throughoutthe paperwepresentthethreeimplementations isenoughtoincludetheappropriateheaderfile,andoptionally by discussing source code listings which coverthe entire pro- exposetherequiredclassestothepresentnamespace: gram code. Subsections 2.1-2.6 describe all three implemen- listing C.2 (C++) 4 #include <blitz/array.h> tations,whilesubsequentsections2.7-2.12coverdiscussionof 5 using arr_t = blitz::Array<real_t, 2>; C++codeonly.TherelevantpartsofPythonandFortrancodes 6 using rng_t = blitz::Range; 7 using idx_t = blitz::RectDomain<2>; do not differ significantly, and for readability reasons are pre- sentedinAppendix PandAppendix F,respectively. Here arr_t, rng_t and idx_t serve as alias identifiers and are TheentirecodeislicensedunderthetermsoftheGNUGen- introducedinordertoshortenthecode. eralPublicLicenselicenseversion3[18]. ThepowerofBlitz++ comesfromthe abilitytoexpressar- All listings include line numbers printed to the left of the ray expressions as objects. In particular, it is possible to de- source code, with separate numbering for C++ (listings pre- fine a function that returns an array expression; i.e. not the fixedwithC,blackframe), resultant array, but an object representing a „recipe” defining listing C.0 (C++) 1 // code licensed under the terms of GNU GPL v3 theoperationstobeperformedonthearguments. Asa conse- 2 // copyright holder: University of Warsaw quence,the returntypesof suchfunctionsbecomeunintelligi- ble. Luckily,theautoreturntypedeclarationfromtheC++11 Python(listingsprefixedwithP,blueframe)and standardallowstosimplifythecodesignificantly,evenmoreif listing P.0 (Python) 1 # code licensed under the terms of GNU GPL v3 usedthroughthefollowingpreprocessormacro: 2 # copyright holder: University of Warsaw Fortran(listingsprefixedwithF,redframe). 1Blitz++ is a C++ class library for scientific computing which uses listing F.0 (Fortran) the expression templates technique to achieve high performance, see 1 ! code licensed under the terms of GNU GPL v3 http://sf.net/projects/blitz/ 2 ! copyright holder: University of Warsaw 2Blitz++requireslinkingwithlibblitzifdebuggingmodeisused 2 listing C.3 (C++) C[x] and C[y] arrays constituting the sequence have different 8 #define return_macro(expr) \ sizes (see discussion of the Arakawa-C grid in section 2.3). 9 -> decltype(safeToReturn(expr)) \ 10 { return safeToReturn(expr); } Second,theorderofdimensionswouldneedtobedifferentfor differentlanguagesto assure that the contiguousdimension is The call to blitz::safeToReturn() function is included in or- usedforoneofthespacedimensionsandnotfortimelevels. der to ensure that all arrays involved in the expression being In the C++ implementation the Boost5 ptr_vector class returnedcontinuetoexistinthecallerscope.Forexample,def- is used to represent sequences of Blitz++ arrays and at the inition of a function returning its array-valued argumentdou- same time to handle automatic freeing of dynamically allo- bled, reads: auto f(arr_t x) return_macro(2*x). This is the cated memory. The ptr_vectorclass is furthercustomisedby onlypreprocessormacrodefinedherein. defininga derivedstructure which element-access[ ] operator For the Python implementation of MPDATA the NumPy3 isoverloadedwithamodulovariant: package is used. In order to make the code compatible with listing C.4 (C++) 11 #include <boost/ptr_container/ptr_vector.hpp> boththe standardCPythonaswellasthe alternativePyPyim- 12 struct arrvec_t : boost::ptr_vector<arr_t> plementationofPython[19],thePythoncodeincludesthefol- 13 { 14 const arr_t &operator[](const int i) const lowingsequenceofimportstatements: 15 { listing P.2 (Python) 16 return this->at((i + this->size()) % this->size()); 4 try: 17 } 5 import numpypy 18 }; 6 from _numpypy.pypy import set_invalidation 7 set_invalidation(False) Consequently the last element of any such sequence may be 8 except ImportError: 9 pass accessedatindex-1,thelastbutoneat-2,andsoon. 10 import numpy InthePythonimplementationthebuilt-intupletypeisused 11 try: 12 numpy.seterr(all=’ignore’) tostoresequencesofNumPyarrays. Employmentofnegative 13 except AttributeError: indices for handling from-the-endaddressing of elements is a 14 pass built-infeatureofallsequencecontainersinPython. First, the PyPy’s built-in NumPy implementation named Fortrandoesnotfeatureanybuilt-insequencecontainerca- numpypy is imported if applicable (i.e. if running PyPy), pableofstoringarrays,henceacustomarrvec_ttypeisintro- and the lazy evaluation mode is turned on through the duced: set_invalidation(False) call. PyPy’s lazy evaluation obtained listing F.2 (Fortran) 7 module arrvec_m with the help of a just-in-time compiler enables to achieve an 8 use real_m analogous to Blitz++ temporary-array-freehandling of array- 9 implicit none 10 valued expressions (see discussion in section 3). Second, to 11 type :: arr_t match the settingsof C++ and Fortrancompilersused herein, 12 real(real_t), allocatable :: a(:,:) 13 end type the NumPy package is instructed to ignore any floating-point 14 errors, if such an option is available in the interpreter4. The 15 type :: arrptr_t 16 class(arr_t), pointer :: p above lines conclude all code modificationsthat needed to be 17 end type addedinordertorunthecodewithPyPy. 18 19 type :: arrvec_t Among the three considered languages only Fortran is 20 class(arr_t), allocatable :: arrs(:) equippedwithbuilt-inarrayhandlingfacilitiesofpracticaluse 21 class(arrptr_t), allocatable :: at(:) 22 integer :: length in high-performance computing. Therefore, there is no need 23 contains forusinganexternalpackageaswithC++andPython.Fortran 24 procedure :: ctor => arrvec_ctor 25 procedure :: init => arrvec_init array-handlingfeaturesarenotobject-oriented,though. 26 end type 27 28 contains 2.2. Containersforsequencesofarrays 29 30 subroutine arrvec_ctor(this, n) Asdiscussedabove,discretisationinspaceofthescalarfield 31 class(arrvec_t) :: this ψ(x,y) into its ψ grid representation requires floating-point 32 integer, intent(in) :: n [i,j] 33 arraycontainers. Inturn,discretisationintimerequiresacon- 34 this%length = n tainer class for storing sequences of such arrays, i.e. {ψ[n], 35 allocate(this%at( -n : n-1 )) 36 allocate(this%arrs( 0 : n-1 )) ψ[n+1]}. Similarly the componentsof the vector fieldC~ are in 37 end subroutine facta{C[x],C[y]}arraysequence. 38 39 subroutine arrvec_init(this, n, i, j) Using an additional array dimension to represent the se- 40 class(arrvec_t), target :: this quence elements is not considered for two reasons. First, the 41 integer, intent(in) :: n 42 integer, intent(in) :: i(2), j(2) 43 3NumPy is a Python package for scientific computing offering support for multi-dimensional arrays and a library of numerical algorithms, see 5Boostisafreeandopen-sourcecollectionofpeer-reviewedC++libraries http://numpy.org/ availableathttp://www.boost.org/.SeveralpartsofBoosthavebeeninte- 4numpy.seterr()isnotsupportedinPyPyasofversion1.9 gratedintoorinspirednewadditionstotheC++standard. 3 4445 atlhlios%caatt(e(nt)h%ips=%>artrhsi(sn%)a%rar(si((n1)) : i(2), j(1) : j(2) )) Cve[[icx+]t1o/2,rj]c,oCm[[iyp,]jo−1/n2]enantsdsCur[[iry,o]j+u1/n2]dtiongdψepict.thHeowgreivdevr,alfuraecstioofntahleinC~- 46 this%at(n - this%length)%p => this%arrs(n) [i,j] 47 end subroutine dexing does not have a built-in counterpart in any of the em- 48 end module ployedprogramminglanguages.Adesiredsyntaxwouldtrans- latei−1/2toi−1andi+1/2toi. OOPoffersaconvenientwayto The arr_t type is defined solely for the purpose of overcom- implementsuchnotationbyoverloadingthe+and-operators ing the limitation of lack of an array-of-arraysconstruct, and forobjectsrepresentingarrayindices. its only memberfield is a two-dimensionalarray. An arrayof In the C++ implementation first a global instance h of an arr_tisusedhereinafterasacontainerforsequencesofarrays. empty structure hlf_t is defined, and then the plus and minus Thearrptr_ttypeisdefinedsolelyforthepurposeofover- operatorsforhlf_tandrng_tareoverloaded: coming Fortran’s limitation of not supporting allocatables of listing C.5 (C++) pointers. arrptr_t’ssingle memberfield is a pointerto an in- 19 struct hlf_t {} h; 20 stance of arr_t. Creating an allocatable of arrptr_t, instead 21 inline rng_t operator+(const rng_t &i, const hlf_t &) ofamulti-elementpointerofarr_t,ensuresautomaticmemory 22 { 23 return i; deallocation. 24 } Type arrptr_t is used to implement the from-the-end ad- 25 26 inline rng_t operator-(const rng_t &i, const hlf_t &) dressing of elements in arrvec_t. The array data is stored in 27 { thearrsmemberfield(oftypearr_t).Theatmemberfield(of 28 return i-1; 29 } type arrptr_t) stores pointers to the elements of arrs. at has double the length of arrs and is initialised in a cyclic manner Thisway, the arraysrepresentingvectorfield componentscan so that the -1 elementof at pointsto the last elementof arrs, be indexed using (i+h,j), (i-h,j) etc. where h represents the and so on. Assuming psi is an instance of arrptr_t, the (i,j) half. elementofthen-tharrayinpsimaybeaccessedwith In NumPy in order to preventcopying of array data during psi%at(n)%p%a(i,j). slicingoneneedstooperateontheso-calledarrayviews. Array Thector(n)methodinitialisesthecontainerforagivennum- viewsareobtainedwhenindexingthearrayswithobjectsofthe berofelementsn.Theinit(n,i,j)methodinitialisesthen-thele- Python’sbuilt-itslicetype(ortuplesofsuchobjectsincaseof mentofthecontainerwithanewlyallocated2Darrayspanning multi-dimensionalarrays).Pythonforbidsoverloadingofoper- indices i(1):i(2), and j(1):j(2)in the first, and last dimensions atorsofbuilt-intypessuchasslices, anddoesnotdefineaddi- respectively6. tion/subtractionoperatorsforsliceandintpairs.Consequently, a customlogichasto bedefinednotonlyforfractionalindex- 2.3. Staggeredgrid ing,butalsoforshiftingtheslicesbyintegerintervals(i±1).It isimplementedherebydeclaringashiftclasswiththeadequate operatoroverloads: listing P.3 (Python) 15 class shift(): ψ[i,j+1] 16 def __init__(self, plus, mnus): 17 self.plus = plus 18 self.mnus = mnus 19 def __radd__(self, arg): C[[ix−]1/2,j] C[[ix+]1/2,j] 222012 reaatrruggr..nsstttyaoprpet(++arssgee)ll(ff..pplluuss, ψ[i−1,j] ψ[i,j] 23 ) 24 def __rsub__(self, arg): 25 return type(arg)( C[y] 26 arg.start - self.mnus, [i,j−1/2] 27 arg.stop - self.mnus 28 ) andtwoinstancesofittorepresentunityandhalfinexpressions likei+one,i+hlf,whereiisaninstanceofslice7: Figure1:AschematicoftheArakawa-Cgrid. listing P.4 (Python) 29 one = shift(1,1) 30 hlf = shift(0,1) The so-called Arakawa-C staggered grid [20] depicted in Figure 1 is a natural choice for MPDATA. As a consequence, InFortranfractionalarrayindexingisobtainedthroughdef- the discretised representations of the ψ scalar field, and each initionandinstantiationofanobjectrepresentingthehalf,and componentof theC~ =~v· ∆t vectorfield in eq. (1) are defined havingappropriateoperatoroverloads: ∆x over different grid point locations. In mathematical notation thiscanbeindicatedbyusageoffractionalindices,e.g.C[x] , [i−1/2,j] 7One could argue that not using an own implementation of a slice- representingclassinNumPyisadesignflaw–beingabletomodifybehaviour ofahypotheticalnumpy.sliceclassthroughinheritancewouldallowtoimple- 6InFortran,whenanarrayispassedasafunctionargumentitsbaseislocally mentthesamebehaviourasobtainedinlistingP.3withouttheneedtorepresent settounity,regardlessofthesettingatthecallerscope. theunityasaseparateobject 4 listing F.3 (Fortran) 95 integer :: return(2) 49 module arakawa_c_m 96 50 implicit none 97 return = (/ r(1) - n, r(2) + n /) 51 98 end function 52 type :: half_t 99 53 end type 100 function ext_h(r, h) result (return) 54 101 integer, intent(in) :: r(2) 55 type(half_t) :: h 102 type(half_t), intent(in) :: h 56 103 integer :: return(2) 57 interface operator (+) 104 58 module procedure ph 105 return = (/ r(1) - h, r(2) + h /) 59 end interface 106 end function 60 107 end module 61 interface operator (-) 62 module procedure mh 63 end interface Consequently, a range depicted by i± 1/2 may be expressed 64 65 contains in the codeasext(i, h). In allthreeimplementationsthe ext() 66 functionacceptthesecondargumenttobeanintegerora”half” 67 elemental function ph(i, h) result (return) 68 integer, intent(in) :: i (cf. section2.3). 69 type(half_t), intent(in) :: h 70 integer :: return 71 return = i 2.5. Arrayindexpermutations 72 end function Hereinafter,theπd symbolisusedtodenoteacyclicpermu- 73 a,b 74 elemental function mh(i, h) result (return) tation of an orderd of a set {a,b}. It is used to generalise the 75 integer, intent(in) :: i MPDATAformulæintomultipledimensionsusingthefollow- 76 type(half_t), intent(in) :: h 77 integer :: return ingnotation: 78 return = i - 1 79 end function 80 end module 1 ψ ≡ψ +ψ [i,j]+πd [i+1,j] [i,j+1] Xd=0 1,0 2.4. Haloregions TheMPDATAformulædefiningψ[n+1] asafunctionofψ[n] Blitz++ ships with the RectDomain class (aliased here as [i,j] [i,j] idx_t)forspecifyingarrayrangesinmultipledimensions. The (discussed in the following sections) feature terms such as πpermutationisimplementedinC++asafunctionpi()return- ψ . Onewayofassuringvalidityoftheseformulæonthe [i−1,j−1] inganinstanceofidx_t. Inordertoensurecompile-timeeval- edgesofthedomain(e.g. fori=0)istointroducetheso-called uation,thepermutationorderispassedviathetemplateparam- haloregionsurroundingthedomain.Themethodofpopulating eterd(notethedifferentorderofiandjargumentsinthetwo the halo region with data depends on the boundary condition templatespecialisations): type.Employmentofthehalo-regionlogicimpliesrepeatedus- ageofarrayrangeextensionsinthecodesuchasi{i±halo. listing C.7 (C++) 37 template<int d> An ext() function is defined in all three implementation, in 38 inline idx_t pi(const rng_t &i, const rng_t &j); ordertosimplifycodingofarrayrangeextensions: 39 40 template<> listing C.6 (C++) 41 inline idx_t pi<0>(const rng_t &i, const rng_t &j) 30 template<class n_t> 42 { 31 inline rng_t ext(const rng_t &r, const n_t &n) { 43 return idx_t({i,j}); 32 return rng_t( 44 }; 33 (r - n).first(), 45 34 (r + n).last() 46 template<> 35 ); 47 inline idx_t pi<1>(const rng_t &j, const rng_t &i) 36 } 48 { 49 return idx_t({i,j}); listing P.5 (Python) 50 }; 31 def ext(r, n): 32 if (type(n) == int) & (n == 1): 33 n = one NumPy uses tuples of slices for addressing multi- 34 return slice( dimensionalarraywithasingleobject.Therefore,thefollowing 35 (r - n).start, 36 (r + n).stop definitionoffunctionpi()sufficestorepresentπ: 37 ) listing P.6 (Python) listing F.4 (Fortran) 38 def pi(d, *idx): 81 module halo_m 39 return (idx[d], idx[d-1]) 82 use arakawa_c_m 83 implicit none In the Fortran implementation pi() returns a pointer to the 84 85 interface ext array elements specified by i and j interpreted as (i,j) or (j,i) 86 module procedure ext_n dependingonthevalueoftheargumentd. Inadditiontopi(),a 87 module procedure ext_h 88 end interface helperspan()functionreturningthelengthofoneofthevectors 89 passedasargumentisdefined: 90 contains 91 listing F.5 (Fortran) 92 function ext_n(r, n) result (return) 108 module pi_m 93 integer, intent(in) :: r(2) 109 use real_m 94 integer, intent(in) :: n 110 implicit none 5 111 contains 67 bcx(i, j, hlo), 112 function pi(d, arr, i, j) result(return) 68 bcy(j, i, hlo) 113 integer, intent(in) :: d 69 { 114 real(real_t), allocatable, target :: arr(:,:) 70 for (int l = 0; l < 2; ++l) 115 real(real_t), pointer :: return(:,:) 71 psi.push_back(new arr_t(ext(i, hlo), ext(j, hlo))); 116 integer, intent(in) :: i(2), j(2) 72 C.push_back(new arr_t(ext(i, h), ext(j, hlo))); 117 select case (d) 73 C.push_back(new arr_t(ext(i, hlo), ext(j, h))); 118 case (0) 74 } 119 return => arr( i(1) : i(2), j(1) : j(2) ) 75 120 case (1) 76 // accessor methods 121 return => arr( j(1) : j(2), i(1) : i(2) ) 77 arr_t state() { 122 end select 78 return psi[n](i,j).reindex({0,0}); 123 end function 79 } 124 80 125 pure function span(d, i, j) result(return) 81 arr_t courant(int d) 126 integer, intent(in) :: i(2), j(2) 82 { 127 integer, intent(in) :: d 83 return C[d]; 128 integer :: return 84 } 129 select case (d) 85 130 case (0) 86 // helper methods invoked by solve() 131 return = i(2) - i(1) + 1 87 virtual void advop() = 0; 132 case (1) 88 133 return = j(2) - j(1) + 1 89 void cycle() 134 end select 90 { 135 end function 91 n = (n + 1) % 2 - 2; 136 end module 92 } 93 94 // integration logic The span() function is used to shorten the declarations of ar- 95 void solve(const int nt) rays to be returnedfromfunctionsin the Fortranimplementa- 96 { 97 for (int t = 0; t < nt; ++t) tion(seelistingsF.11andF.17–F.20). 98 { It isworthnotingherethatthe C++ implementationofpi() 99 bcx.fill_halos(psi[n], ext(j, hlo)); 100 bcy.fill_halos(psi[n], ext(i, hlo)); isbranchlessthankstoemploymentoftemplatespecialisation. 101 advop(); With Fortran one needs to rely on compiler optimisations to 102 cycle(); 103 } eliminate the conditional expression within the pi() that de- 104 } pendsonvalueofdwhichisalwaysknownatcompiletime. 105 }; Thesolverstructureisanabstractdefinition(containingapure 2.6. Prototypesolver virtualmethod)requiringitsdescendantstoimplementatleast The tasks to be handled by a prototype advection equation theadvop()methodwhichisexpectedtofillpsi[n+1]withan solverproposedhereinare: updated(advected)valuesofpsi[n]. Thetwotemplateparame- (i) storingarraysrepresentingtheψandC~ fieldsandanyre- tersbcx_tandbcy_tallowthesolvertooperatewithanykind ofboundaryconditionstructuresthatfulfiltherequirementsim- quiredhousekeepingdata, pliedbythecallstothemethodsofbcxandbcy,respectively. (ii) allocatinganddeallocatingtherequiredmemory, Thedonor-cellandMPDATAschemesbothrequireonlythe previousstate of an advectedfield in order to advancethe so- (iii) providingaccesstothesolverstate, lution. Consequently, memory for two time levels (ψ[n] and ψ[n+1]) is allocated in the constructor. The sizes of the arrays (iv) performing the integration by invoking the advection- representingthetwotimelevelsofψaredefinedbythedomain operatorandboundary-conditionhandlingroutines. size(nx×ny)plusthehaloregion. Thesizeofthehaloregion In the following C++ definition of the solver structure, task is an argumentof the constructor. The cycle()methodis used (i) is represented with the definition of the structure member toswapthetimelevelswithoutcopyinganydata. fields;task(ii)issplitbetweenthesolver’sconstructorandthe The arrays representingthe C[x] andC[y] componentsofC~, destructors of arrvec_t; task (iii) is handled by the accessor require(nx+1)×nyandnx×(ny+1)elements,respectively(be- methods;task(iv)ishandledwithinthesolvemethod: inglaidoutontheArakawa-Cstaggeredgrid). listing C.8 (C++) PythondefinitionofthesolverclassfollowscloselytheC++ 51 template<class bcx_t, class bcy_t> structuredefinition: 52 struct solver 53 { listing P.7 (Python) 54 // member fields 40 class solver(object): 55 arrvec_t psi, C; 41 # ctor-like method 56 int n, hlo; 42 def __init__(self, bcx, bcy, nx, ny, hlo): 57 rng_t i, j; 43 self.n = 0 58 bcx_t bcx; 44 self.hlo = hlo 59 bcy_t bcy; 45 self.i = slice(hlo, nx + hlo) 60 46 self.j = slice(hlo, ny + hlo) 61 // ctor 47 62 solver(int nx, int ny, int hlo) : 48 self.bcx = bcx(0, self.i, hlo) 63 hlo(hlo), 49 self.bcy = bcy(1, self.j, hlo) 64 n(0), 50 65 i(0, nx-1), 51 self.psi = ( 66 j(0, ny-1), 52 numpy.empty(( 6 53 ext(self.i, self.hlo).stop, 139 implicit none 54 ext(self.j, self.hlo).stop 140 55 ), real_t), 141 type, abstract :: bcd_t 56 numpy.empty(( 142 contains 57 ext(self.i, self.hlo).stop, 143 procedure(bcd_fill_halos), deferred :: fill_halos 58 ext(self.j, self.hlo).stop 144 procedure(bcd_init), deferred :: init 59 ), real_t) 145 end type 60 ) 146 61 147 abstract interface 62 self.C = ( 148 subroutine bcd_fill_halos(this, a, j) 63 numpy.empty(( 149 import :: bcd_t, real_t 64 ext(self.i, hlf).stop, 150 class(bcd_t ) :: this 65 ext(self.j, self.hlo).stop 151 real(real_t), allocatable :: a(:,:) 66 ), real_t), 152 integer :: j(2) 67 numpy.empty(( 153 end subroutine 68 ext(self.i, self.hlo).stop, 154 69 ext(self.j, hlf).stop 155 subroutine bcd_init(this, d, n, hlo) 70 ), real_t) 156 import :: bcd_t 71 ) 157 class(bcd_t) :: this 72 158 integer :: d, n, hlo 73 # accessor methods 159 end subroutine 74 def state(self): 160 end interface 75 return self.psi[self.n][self.i, self.j] 161 end module 76 77 # helper methods invoked by solve() 78 def courant(self,d): Having defined the abstract type for boundary-condition ob- 79 return self.C[d][:] jects, a definition of a solver class following closely the C++ 80 81 def cycle(self): andPythoncounterpartsmaybeprovided: 82 self.n = (self.n + 1) % 2 - 2 listing F.7 (Fortran) 83 162 module solver_m 84 # integration logic 163 use arrvec_m 85 def solve(self, nt): 164 use bcd_m 86 for t in range(nt): 165 use arakawa_c_m 87 self.bcx.fill_halos( 166 use halo_m 88 self.psi[self.n], ext(self.j, self.hlo) 167 implicit none 89 ) 168 90 self.bcy.fill_halos( 169 type, abstract :: solver_t 91 self.psi[self.n], ext(self.i, self.hlo) 170 class(arrvec_t), allocatable :: psi, C 92 ) 171 integer :: n, hlo 93 self.advop() 172 integer :: i(2), j(2) 94 self.cycle() 173 class(bcd_t), pointer :: bcx, bcy 95 174 contains 175 procedure :: solve => solver_solve The key difference stems from the fact that, unlike Blitz++, 176 procedure :: state => solver_state 177 procedure :: courant => solver_courant NumPydoesnotallowanarrayto havearbitraryindexbase– 178 procedure :: cycle => solver_cycle inNumPythefirstelementisalwaysaddressedwith0. Conse- 179 procedure(solver_advop), deferred :: advop 180 end type quently,whileinC++(andFortran)thecomputationaldomain 181 ischosentostartat(i=0,j=0)andhenceapartofthehalore- 182 abstract interface 183 subroutine solver_advop(this) gion to have negativeindices, in Pythonthe halo regionstarts 184 import solver_t at(0,0)8. However,sincethewholehalologicishiddenwithin 185 class(solver_t), target :: this 186 end subroutine thesolver,suchdetailsarenotexposedtotheuser. Thebcxand 187 end interface bcyboundary-conditionspecificationsarepassedtothesolver 188 189 contains throughconstructor-like__init__()methodasopposedtotem- 190 plateparametersinC++. 191 subroutine solver_ctor(this, bcx, bcy, nx, ny, hlo) 192 use arakawa_c_m The above C++ and Python prototype solvers in principle 193 use halo_m allow to operatewith anyboundaryconditionobjectsthatim- 194 class(solver_t) :: this 195 class(bcd_t), intent(in), target :: bcx, bcy plement methods called from within the solver. This require- 196 integer, intent(in) :: nx, ny, hlo ment is checked at compile-time in the case of C++, and at 197 198 this%n = 0 run-time in the case of Python. In order to obtain an analo- 199 this%hlo = hlo gous behaviour with Fortran, it is required to define, prior to 200 this%bcx => bcx 201 this%bcy => bcy definition of a solvertype, an abstracttype with deferredpro- 202 cedureshavingabstractinterfaces[sic!,seeTable2.1in21,for 203 this%i = (/ 0, nx - 1 /) 204 this%j = (/ 0, ny - 1 /) asummaryofapproximatecorrespondenceofOOPnomencla- 205 turebetweenFortranandC++]: 206 call bcx%init(0, nx, hlo) 207 call bcy%init(1, ny, hlo) listing F.6 (Fortran) 113378 moudsueleabrcrdv_emc_m 222001890 aclallolctahtie(st%phsiis%%pcstio)r(2) 211 block 8Thereasontoallowthedomaintobeginatanarbitraryindexismainlyto 212 integer :: n easedebuggingincasethecodewouldbeusedinparallelcomputationsusing 213 do n=0, 1 214 call this%psi%init( & domaindecompositionwhereeachsubdomaincouldhaveitsownindexbase 215 n, ext(this%i, hlo), ext(this%j, hlo) & correspondingtothelocationwithinthecomputationaldomain 216 ) 7 217 end do 124 void fill_halos(const arr_t &a, const rng_t &j) 218 end block 125 { 219 126 a(pi<d>(left_halo, j)) = a(pi<d>(rght_edge, j)); 220 allocate(this%C) 127 a(pi<d>(rght_halo, j)) = a(pi<d>(left_edge, j)); 221 call this%C%ctor(2) 128 } 222 call this%C%init( & 129 }; 223 0, ext(this%i, h), ext(this%j, hlo) & 224 ) 225 call this%C%init( & Ashintedbythememberfieldnames,thefill_halos()meth- 226 1, ext(this%i, hlo), ext(this%j, h) & ods fill the left/righthalo regionswith data from the right/left 227 ) 228 end subroutine edges of the domain. Thanks to employment of the function 229 pi() describedin section 2.5 the same code may be applied in 230 function solver_state(this) result (return) 231 class(solver_t) :: this anydimension(herebeingatemplateparameter). 232 real(real_t), pointer :: return(:,:) ListingsP.8andF.8containthePythonandFortrancounter- 233 return => this%psi%at(this%n)%p%a( & 234 this%i(1) : this%i(2), & partstolistingC.9. 235 this%j(1) : this%j(2) & 223367 en)d function 2.8. Donor-cellformulæ(C++) 238 MPDATA is an iterative algorithm in which each iteration 239 function solver_courant(this, d) result (return) 240 class(solver_t) :: this takestheformoftheso-calleddonor-cellformula(whichitself 241 integer :: d isafirst-orderadvectionscheme). 242 real(real_t), pointer :: return(:,:) 243 return => this%C%at(d)%p%a MPDATA and donor-cell are explicit forward-in-time algo- 244 end function rithms–theyallowtopredictψ[n+1] asafunctionofψ[n] where 245 246 subroutine solver_cycle(this) n and n + 1 denote two adjacent time levels. The donor-cell 247 class(solver_t) :: this schememaybewrittenas[eq. 2in7]: 248 this%n = mod(this%n + 1 + 2, 2) - 2 249 end subroutine 250 N−1 251 subroutine solver_solve(this, nt) ψ[n+1]=ψ[n] − F ψ[n] ,ψ[n] ,C[d] 225523 cilnatsesg(esr,olivnetre_ntt)(:i:n)th:i:snt [i,j] [i,j] Xd=0(cid:18) (cid:20) [i,j] [i,j]+πd1,0 [i,j]+πd1/2,0(cid:21) (2) 254 integer :: t 255 −F ψ[n] ,ψ[n] ,C[d] 225567 doctal=l t0,hinst%-b1cx%fill_halos( & " [i,j]+πd−1,0 [i,j] [i,j]+πd−1/2,0#! 258 this%psi%at(this%n)%p%a, ext(this%j, this%hlo) & where N is the number of dimensions, and F is the so-called 259 ) 260 call this%bcy%fill_halos( & fluxfunction[7,eq.3]: 261 this%psi%at(this%n)%p%a, ext(this%i, this%hlo) & 262 ) F(ψ ,ψ ,C)=max(C,0)·ψ +min(C,0)·ψ 263 call this%advop() L R L R 264 call this%cycle() C+|C| C−|C| (3) 265 end do = ·ψ + ·ψ 266 end subroutine 2 L 2 R 267 end module ThefluxfunctiontakesthefollowingforminC++: listing C.10 (C++) 2.7. Periodicboundaries(C++) 130 template<class T1, class T2, class T3> 131 inline auto F( From this point, only C++ implementation is explained in 132 const T1 &psi_l, const T2 &psi_r, const T3 &C themaintext. ThePythonandFortranimplementationsarein- 133 ) return_macro( 134 ( cludedinappendicesPandF. 135 (C + abs(C)) * psi_l + Thesolverdefinitiondescribedinsection2.6requiresagiven 136 (C - abs(C)) * psi_r 137 ) / 2 boundaryconditionobjecttoimplementafill_halos()method. 138 ) AnimplementationofperiodicboundaryconditionsinC++is providedinthefollowinglisting: Equation2 is split into the termsunder the summation(effec- listing C.9 (C++) tivelythe1-dimensionaldonor-cellformula): 106 template<int d> listing C.11 (C++) 107 struct cyclic 139 template<int d> 108 { 140 inline auto donorcell( 109 // member fields 141 const arr_t &psi, const arr_t &C, 110 rng_t left_halo, rght_halo; 142 const rng_t &i, const rng_t &j 111 rng_t left_edge, rght_edge;; 143 ) return_macro( 112 144 F( 113 // ctor 145 psi(pi<d>(i, j)), 114 cyclic( 146 psi(pi<d>(i+1, j)), 115 const rng_t &i, const rng_t &j, int hlo 147 C(pi<d>(i+h, j)) 116 ) : 148 ) - 117 left_halo(i.first()-hlo, i.first()-1), 149 F( 118 rght_edge(i.last()-hlo+1, i.last() ), 150 psi(pi<d>(i-1, j)), 119 rght_halo(i.last()+1, i.last()+hlo ), 151 psi(pi<d>(i, j)), 120 left_edge(i.first(), i.first()+hlo-1) 152 C(pi<d>(i-h, j)) 121 {} 153 ) 122 154 ) 123 // method invoked by the solver 8 andtheactualtwo-dimensionaldonor-cellformula: For positive-definite ψ, the A and B terms take the following form9: listing C.12 (C++) ψ −ψ 115556 vociodndsotnaorrrcveelcl__top&(psi, const int n, A[[di,]j]= ψ[i,j]+πd1,0+ψ[i,j] (6) 157 const arrvec_t &C, [i,j]+πd [i,j] 158 const rng_t &i, const rng_t &j 1,0 115690 ) p{si[n+1](i,j) = psi[n](i,j) B[d] = 1ψ[i,j]+πd1,1+ψ[i,j]+πd0,1−ψ[i,j]+πd1,−1−ψ[i,j]+πd0,−1 (7) 116612 -- ddoonnoorrcceellll<<01>>((ppssii[[nn]],, CC[[01]],, ij,, ji)); [i,j] 2ψ[i,j]+πd1,1+ψ[i,j]+πd0,1+ψ[i,j]+πd1,−1+ψ[i,j]+πd0,−1 163 } If the denominator in equations 6 or 7 equals zero for a given i and j, the corresponding A and B are set to zero [i,j] [i,j] ListingsP.9-P11andF.9-F.13containthePythonandFortran whatmaybeconvenientlyrepresentedwiththewhereconstruct counterpartstolistingsC.12-C.15. (availableinallthreeconsideredlanguages): listing C.14 (C++) 179 template<class nom_t, class den_t> 2.9. Donor-cellsolver(C++) 180 inline auto mpdata_frac( 181 const nom_t &nom, const den_t &den 182 ) return_macro( Asmentionedintheprevioussection,thedonor-cellformula 183 where(den > 0, nom / den, 0) constitutesanadvectionscheme,hencewemayuseittocreate 184 ) asolver_donorcellimplementationoftheabstractsolverclass: TheAtermdefinedinequation6takesthefollowingform: listing C.13 (C++) 164 template<class bcx_t, class bcy_t> listing C.15 (C++) 165 struct solver_donorcell : solver<bcx_t, bcy_t> 185 template<int d> 166 { 186 inline auto mpdata_A(const arr_t &psi, 167 solver_donorcell(int nx, int ny) : 187 const rng_t &i, const rng_t &j 168 solver<bcx_t, bcy_t>(nx, ny, 1) 188 ) return_macro( 169 {} 189 mpdata_frac( 170 190 psi(pi<d>(i+1, j)) - psi(pi<d>(i,j)), 171 void advop() 191 psi(pi<d>(i+1, j)) + psi(pi<d>(i,j)) 172 { 192 ) 173 donorcell_op( 193 ) 174 this->psi, this->n, this->C, 175 this->i, this->j TheBtermdefinedinequation7takesthefollowingform: 176 ); 177 } listing C.16 (C++) 178 }; 194 template<int d> 195 inline auto mpdata_B(const arr_t &psi, 196 const rng_t &i, const rng_t &j The above definition is given as an example only. In the fol- 197 ) return_macro( 198 mpdata_frac( lowing sections an MPDATA solver of the same structure is 199 psi(pi<d>(i+1, j+1)) + psi(pi<d>(i, j+1)) - defined. 200 psi(pi<d>(i+1, j-1)) - psi(pi<d>(i, j-1)), 201 psi(pi<d>(i+1, j+1)) + psi(pi<d>(i, j+1)) + ListingsP.12andF.14containthePythonandFortrancoun- 202 psi(pi<d>(i+1, j-1)) + psi(pi<d>(i, j-1)) terpartstolistingC.16. 203 ) / 2 204 ) 2.10. MPDATAformulæ(C++) Equation5takesthefollowingform: listing C.17 (C++) MPDATA introduces corrective steps to the algorithm de- 205 template<int d> 206 inline auto mpdata_C_bar( fined by equation 2 and 3. Each corrective step is a donor- 207 const arr_t &C, cellstep(eq.2)withtheCourantnumberfieldscorresponding 208 const rng_t &i, 209 const rng_t &j to the MPDATA antidiffusive velocities of the followingform 210 ) return_macro( [eqs13,14in7]: 211 ( 212 C(pi<d>(i+1, j+h)) + C(pi<d>(i, j+h)) + 213 C(pi<d>(i+1, j-h)) + C(pi<d>(i, j-h)) C[′i[,dj]]+πd1/2,0=(cid:12)(cid:12)C[[id,]j]+πd1/2,0(cid:12)(cid:12)·(cid:20)1−(cid:12)(cid:12)C[[id,]j]+πd1/2,0(cid:12)(cid:12)(cid:21)·A[[di,]j](ψ) 221145 ) ) / 4 (cid:12)(cid:12) N (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (4) −(cid:12) C[(cid:12)d] (cid:12)·C[q] (cid:12)·B[d] (ψ) Equation4takethefollowingform: q=X0,q,d [i,j]+πd1/2,0 [i,j]+πd1/2,0 [i,j] 216 template<int d> listing C.18 (C++) 217 inline auto mpdata_C_adf( whereψandCrepresentvaluesfromthepreviousiterationand 218 const arr_t &psi, 219 const rng_t &i, const rng_t &j, where: 220 const arrvec_t &C 221 ) return_macro( C[q] = 1 · C[q] +C[q] + 222 abs(C[d](pi<d>(i+h, j))) [i,j]+πd1/2,0 4 (cid:18) [i,j]+πd1,1/2 [i,j]+πd0,1/2 (5) C[q] +C[q] 9Sinceψ ≥0,|A|≤ 1and|B|≤ 1. SeeSmolarkiewicz[11,Sec. 4.2]for [i,j]+πd1,−1/2 [i,j]+πd0,−1/2! descriptionofadaptationoftheformulæforadvectionoffieldsofvariablesign 9 223 * (1 - abs(C[d](pi<d>(i+h, j)))) 296 donorcell_op( 224 * mpdata_A<d>(psi, i, j) 297 this->psi, this->n, C_corr, this->i, this->j 225 - C[d](pi<d>(i+h, j)) 298 ); 226 * mpdata_C_bar<d>(C[d-1], i, j) 299 } 227 * mpdata_B<d>(psi, i, j) 300 } 228 ) 301 } 302 }; ListingsP.13-P.17andF.15-F.21containthePythonandFor- The array of sequences of temporary arrays tmp allocated in trancounterpartstolistingC.16-C.22. theconstructorisusedtostoretheantidiffusivevelocitiesfrom 2.11. MPDATAsolver(C++) thepresentandoptionallyprevioustimestep(ifusingmorethan twoiterations). An MPDATA solver may be now constructed by inheriting Theadvop()methodcontrollstheMPDATAiterationswithin fromsolverclasswiththefollowingdefinitioninC++: one timestep. The first (step = 0) iteration of MPDATA is an listing C.19 (C++) 229 template<int n_iters, class bcx_t, class bcy_t> unmodifieddonor-cellstep(comparelistingC.15).Subsequent 230 struct solver_mpdata : solver<bcx_t, bcy_t> iterations begin with calculation of the antidiffusive Courant 231 { 232 // member fields fields using formula 4. In order to calculate values spanning 223334 arrnrgv_etci_mt,tjmmp;[2]; an (i−1⁄2 ... i+1⁄2) range using a formula for C[i+1/2,...] only, the formula is evaluated using extended index ranges im and jm. 235 236 // ctor In the second (step=1) iteration the uncorrectedCourant field 237 solver_mpdata(int nx, int ny) : 238 solver<bcx_t, bcy_t>(nx, ny, 1), (C_unco) points to the original C field, and the antidiffusive 239 im(this->i.first() - 1, this->i.last()), Courant field is written into C_corr which points to tmp[1]. 240 jm(this->j.first() - 1, this->j.last()) 241 { In the third (step=2) iteration C_unco points to tmp[1] while 242 int n_tmp = n_iters > 2 ? 2 : 1; C_corrpointstotmp[0]. Insubsequentiterationstmp[0]and 243 for (int n = 0; n < n_tmp; ++n) 244 { tmp[1]arealternatelyswapped. 245 tmp[n].push_back(new arr_t( ListingsP.18andF.22containthePythonandFortrancoun- 246 this->C[0].domain()[0], this->C[0].domain()[1]) 247 ); terpartstolistingC.23. 248 tmp[n].push_back(new arr_t( 224590 );this->C[1].domain()[0], this->C[1].domain()[1]) 2.12. Usageexample(C++) 251 } The following listing providesan example of how the MP- 252 } 253 DATAsolverdefinedinsection2.11maybeusedtogetherwith 254 // method invoked by the solver thecyclicboundaryconditionsdefinedinsection2.7. Intheex- 255 void advop() 256 { ample a Gaussian signal is advected in a 2D domain defined 257 for (int step = 0; step < n_iters; ++step) over a grid of 24×24 cells. The program first plots the ini- 258 { 259 if (step == 0) tial condition, then performs the integration for 75 timesteps 260 donorcell_op( with three different settings of the number of iterations used 261 this->psi, this->n, this->C, this->i, this->j 262 ); in MPDATA. The velocity field is constant in time and space 263 else (althoughitisnotassumedinthepresentedimplementations). 264 { 265 this->cycle(); Thesignalshapeattheendofeachsimulationisplottedaswell. 266 this->bcx.fill_halos( Plottingisdonewiththehelpofthegnuplot-iostreamlibrary10. 267 this->psi[this->n], ext(this->j, this->hlo) 268 ); The resultant plot is presented herein as Figure 2. The top 269 this->bcy.fill_halos( paneldepictstheinitialcondition.Thethreeotherpanelsshow 270 this->psi[this->n], ext(this->i, this->hlo) 271 ); a snapshot of the field after 75 timesteps. The donor-cell so- 272 lution is characterisedby strongestnumericaldiffusion result- 273 // choosing input/output for antidiff C 274 const arrvec_t inginsignificantdropinthesignalamplitude. Thesignalsad- 275 &C_unco = (step == 1) vectedusingMPDATA showsmallernumericaldiffusionwith 276 ? this->C 277 : (step % 2) the solution obtained with more iterations preserving the sig- 278 ? tmp[1] // odd steps nal altitude more accurately. In all of the simulations the sig- 279 : tmp[0], // even steps 280 &C_corr = (step % 2) nalmaintainsitspositivedefiniteness. Thedomainperiodicity 281 ? tmp[0] // odd steps is apparentin the plots as the maximumof the signalafter 75 282 : tmp[1]; // even steps 283 timestepsislocatednearthedomainwalls. 284 // calculating the antidiffusive C Listings P.19 and F.23-F.24 contain the Python and Fortran 285 C_corr[0](im+h, this->j) = mpdata_C_adf<0>( 286 this->psi[this->n], im, this->j, C_unco counterpartstolisting C.24(with theset-up andplottinglogic 287 ); omitted). 288 this->bcy.fill_halos(C_corr[0], ext(this->i,h)); 289 290 C_corr[1](this->i, jm+h) = mpdata_C_adf<1>( 291 this->psi[this->n], jm, this->i, C_unco 10gnuplot-iostreamisaheader-onlyC++libraryallowinggnuplottobecon- 292 ); trolled from C++, see http://stahlke.org/dan/gnuplot-iostream/. 293 this->bcx.fill_halos(C_corr[1], ext(this->j,h)); Gnuplot is a portable command-line driven graphing utility, see 294 295 // donor-cell step http://gnuplot.info/ 10

Description:
tion equation solver written in C++11 (ISO/IEC 14882:2011),. Python [13] and Fortran 2008 (ISO/IEC 1539-1:2010). In the following section we [16] M. Pilgrim, Dive Into Python, Apress, 2004. [17] A. Markus, Modern Fortran in
See more

The list of books you might like