ebook img

Numerical Treatment of Integral Equations / Numerische Behandlung von Integralgleichungen: Workshop on Numerical Treatment of Integral Equations Oberwolfach, November 18–24, 1979 / Tagung über Numerische Behandlung von Integralgleichungen Oberwolfach, 18. PDF

283 Pages·1980·5.777 MB·German
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Treatment of Integral Equations / Numerische Behandlung von Integralgleichungen: Workshop on Numerical Treatment of Integral Equations Oberwolfach, November 18–24, 1979 / Tagung über Numerische Behandlung von Integralgleichungen Oberwolfach, 18.

Numerical Treatment of Integral Equations Numerische Behandlung von Integralgleichungen ISNM 53 International Series of Numerical Mathematics Internationale Schriftenreihe zur Numerischen Mathematik Serie internationale d' Analyse numerique Vol. 53 Editors Ch. Blanc, Lausanne; A. Ghizzetti, Roma; R. Glowinski, Paris; G. Golub, Stanford; P. Henrici, ZUrich; H. O. Kreiss, Pasadena; A. Ostrowski, Montagnola, and J. Todd, Pasadena Numerical Treatment of Integral Equations Workshop on Numerical Treatment of Integral Equations Oberwolfach, November 18-24, 1979 Edited by J. Albrecht, Clausthal-Zellerfeld and L. Collatz, Hamburg Numerische Behandlung von Integralgleichungen Tagung tiber Numerische Behandlung von Integralgleichungen Oberwolfach, 18.-24. November 1979 Herausgegeben von J. Albrecht, Clausthal-Zellerfeld und L. Collatz, Hamburg 1980 Springer Basel AG ISBN 978-3-7643-1105-6 ISBN 978-3-0348-6314-8 (eBook) DOI 10.1007/978-3-0348-6314-8 CIP-Kurztitelaufnahme Library of Congress der Deutschen Bibliothek CataIoging In Publicatiou Data Numerical treatment of integral equaöons = Main entry under tide: Numerische Behandlung von Integralgleichungen / Numerical treatment of integral equations. Workshop on Numer. Treatment of Integral (International series of numerical Equations, Oberwolfach, November 18-24, 1979. mathematics; Ed. by J. Albrecht and L. Collatz. - v. 53) Basel, Boston, Stuttgart : Birkhäuser, 1980. English or German. (International series of numerical 1. Integral equations -Numerical solutions mathematics; Vol. 53) Congresses I. Albrecht, Julius 11. Collatz, Lothar, 1910- 111. Series NE: Albrecht, Julius [Rrsg.]; Workshop on QA431.N86 515.4'5 80-17801 Numerical Treatment of Integral Equations (1979, Oberwolfach); PT All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior per mission of the copyright owner. @ Springer Basel AG 1980 Originally published by Birkhäuser Verlag Basel in 1980. Preface This volume contains the manuscripts of lectures which were delivered at a symposium on >T he numerical treatment of integral equations{ held in November 1979 at the Mathematical Research Institute, Oberwolfach. In terest in the symposium was very large, with about half of the participants coming from abroad. The following topics were covered: Volterra integral equations, Fredholm integral equations of the second kind, Fredholm integral equations of the first kind in connection with ill-posed problems, integro-differential equations as well as branching problems with non-linear integral equations. The follo wing methods of numerical treatment were referred to: Runge-Kutta methods, kernel approximation methods, fixed point theorems, iteration methods, bounds for eigenvalues, finite elements, quadrature methods and interval analysis. We are very grateful to Prof. M. Barner and the members of the Mathema tical Research Institute for the use of their facilities and for helping to make the symposium possible. Special thanks are due to Birkhauser Verlag for once again providing us with the means of publishing the material. Julius Albrecht Lothar Collatz Clausthal-Zellerfeld Hamburg Vorwort Der Band enthiilt Manuskripte zu Vortriigen, die auf einer Tagung am Mathe matischen Forschungsinstitut Oberwolfach tiber »Numerische Behandlung von Integralgleichungen« im November 1979 gehalten wurden. Das Interesse an der Tagung war sehr groG, etwa die Hiilfte der Teilnehmer kam aus dem Ausland. Folgende Gebiete kamen in den Vortriigen zur Sprache: Volterrasche Inte gralgleichungen, Fredholmsche Integralgleichungen zweiter Art, Fredholm sche Integralgleichungen erster Art in Verbindung mit inkorrekt gestellten Problemen, Integrodifferentialgleichungen sowie Verzweigungsprobleme bei nichtlinearen Integralgleichungen. Zur numerischen Behandlung wurden als Methoden herangezogen: Runge-Kutta-Verfahren, Ersatzkernverfahren, Fix punktsiitze, Iterationsverfahren, EinschlieGungssiitze, Finite Elemente, Qua draturverfahren, Intervallanalysis. Herrn Prof. Dr. M. Barner und den Mitarbeitern des Mathematischen For schungsinstituts sei herzlich flir die Ermoglichung und die Durchftihrung der Tagung gedankt. Unserer besonderer Dank gilt dem Birkhiiuser Verlag flir die auch bei diesem Band wieder sehr gute Ausstattung. Julius Albrecht Lothar Collatz Clausthal-Zellerfeld Hamburg Index Atkinson, K. E.: The Numerical Solution of Laplace's Equation in Three Dimensions-II. . . . . . . . . . . 1 Baker, C. T. H.; Riddell, I. J.; Keech, M. S., and Amini, S.: Runge- Kutta Methods with Error Estimates for Volterra Integral Equations of the Second Kind . . . . . . .. 24 Bestehorn, M.: Die Berechnung pharmakokinetischer Parameter. Ein Bericht aus der Praxis. . . . . . . . . . . .. 43 Brunner, H.: Superconvergence in Collocation and Implicit Runge- Kutta Methods for Volterra-Type Integral Equations of the Second Kind . . . . . . . . . . .. 54 Christiansen, S.: Numerical Treatment of an Integral Equation Origi- nating from a Two-Dimensional Dirichlet Boundary Value Problem. . . . . . . . . . . . . . . . .. 73 Eckhardt, U. and Mika, K.: Numerical Treatment of Incorrectly Posed Problems. A Case Study. . . . . . . . . . . .. 92 Hock, W.: Ein Extrapolationsverfahren flir Volterra-Integralgleichun- gen 2. Art . . . . . . . . . . . . . . . . . 102 Hoffmann, K.-H. und Kornstaedt, H.-J.: Zum inversen Stefan-Pro- blem. . . . . . . . . . . . . 115 Kardestuncer, H.: The Simultaneous Use of Differential and Integral Equations in One Physical Problem. . . . . . 144 Kershaw, D.: An Error Analysis for a Numerical Solution of the Ei- genvalue Problem for Compact Positive Operators . . . 151 Knauff, W. and Kress, R.: A Modified Integral Equation Method for the Electric Boundary-Value Problem for the Vector Helm- holtz Equation . . . . . . . . . . . . . . . 157 Marti, J. T.: On the Numerical Stability in Solving Ill-Posed Problems 171 McCormick, S.: Mesh Refinement Methods for Integral Equations . 183 Opfer, G.: Evaluation of Weakly Singular Integrals . . . . .. 191 Spence,A. and Moore, G.: A Convergence Analysis for Turning Points of Nonlinear Compact Operator Equations . . . 203 Tesei, A.: Approximation Results for Volterra Integro-Partial Diffe- rential Equations. . . . . . . . . . . . . . . 213 Topfer, H.-J. und Volk, W.: Die numerische Behandlung von Integral- gleichungen zweiter Art mittels Splinefunktionen . . . . 228 Wendland, W. L.: On Galerkin Collocation Methods for Integral Equations of Elliptic Boundary Value Problems. . . 244 Atkinson 1 THE NUMERICAL SOLUTION OF LAPLACE'S EQUATION IN THREE DIMENSIONS--II by K. E. Atkinson 1. Introduction. A numerical procedure will be described and analyzed for the solution of various boundary value problems for Laplace's equa tion ~u - 0 in three dimensional regions. This paper will discuss both the Dirichlet and Neumann problems, on regions both interior and exterior to a smooth simple closed surface S. Each such problem is reduced to an equivalent integral equation over S by representing the solution u as a single or double layer potential; and the resulting integral equation is then reformulated as an integral equation on the unit sphere U in m3, using a simple change of variables. This final equation over U is solved numerically using Galerkin's method, with spherical harmonics as the ~asis functions. The resulting numerical method converges rapidly, although great care must be taken to evaluate the Galerkin coefficients as efficiently as possible. The use of integral equations is a well-known approach to the devel opment of the existence theory for Laplace's equation; for example, see [llJ, [12], and [16, Chap. 12J. Integral equations have also been used for quite some time as a basis for developing numerical methods for solv ing Laplace's equation. For examples of more recent work, see [6J, [7J, [8J, [12J, [13J, [21J, and [22J. Much of the recent work uses a finite element framework in solving the integral equation, often using a low order approximation (for a major exception see [22]). The resulting nu merical methods are quite flexible for a large variety of surfaces; but they are often slowly convergent. They also lead to relatively large linear systems which must be solved by iteration. The approach of the present work is to use high order global approx imations which converge rapidly if the boundary S and the boundary data are sufficiently smooth. The resulting method converges very quickly; and the associated linear systems are much smaller and can be solved without iteration. This global approximation procedure will be less flexible or general than the finite element method, because of the Atkinson 2 restriction to regions with a smooth boundary; but it will be better suited to regions with a smooth boundary. The next section contains preliminary definitions and results, needed for the later work. Section 3 discusses both the interior and ex terior Dirichlet problems, with computational considerations and numeri cal examples given in section 4. The exterior Neumann problem is dis cussed in section 5; and the interior Neumann problem and associated ca pacitance problem are given in section 6. 2. Preliminary Results. Let Di denote an open, bounded, simply-con nected region in m3 with a smooth boundary S; and let D denote the e region exterior to D. U S. We assume S is a Lyapunov surface. This ~ means there is a tangent plane at every point P of the surface; and furthermore, at each P on the surface, there is a local representation of the surface, (2.1) with c having partial derivatives which are Holder continuous with ex ponent 0< AsL We say S E Ll,A' In addition, if the function c has k~ order partial derivatives, all of which are Holder continuous with exponent A, we say S E ~,A' For more precise definitions, see Atkin son [4] or Gunter [11, pp. 1, 99]. For functions f(x,y,z) defined on S, consider evaluating them in a neighborhood of a point P using the representation for points on S near P given by (2.1). This results in an equivalent function F(S ,Tl) = f(x,y,z). If the function F is n times continuously differentiable with all the nth derivatives satisfying a Holder condition with expo nent A, then we say f E ~ , A(S), For more details, see Gunter [11, p. 98]. Since the numerical method will be defined for integral equations over U, the unit sphere in m3, we assume there is a smooth mapping (2.1) "':1oUn-~ 10t S. For f defined on S, let Q E u. m We will assume that the mapping is so defined that

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.