Article Numerical Study of Focusing Effects of Microwaves inside Wood Due to Timber Ring Structure RocioSanchez-Montero* ID,Pablo-LuisLopez-Espi ID,JuanAntonioMartinez-Rojas, JesusAlpuente-HermosillaandCristinaAlen-Cordero DepartmentofSignalTheoryandCommunications,EscuelaPolitecnicaSuperior,UniversidaddeAlcala, CampusUniversitario,Ctra.deMadridaBarcelonakm33.600,AlcaladeHenares28805,Spain; [email protected](P.-L.L.-E.);[email protected](J.A.M.-R.);[email protected](J.A.-H.); [email protected](C.A.-C.) * Correspondence:[email protected];Tel.:+34-91-885-6660 Received:15January2018;Accepted:26February2018;Published:28February2018 Abstract: The aim of this study is the detailed calculation of microwave propagation inside raw timberincylindricalconfigurations. Twodifferentapproacheshavebeenused. Thefirstoneuses anexactformulationandanalyticalapproximationsinordertoexploretheelectromagneticfield distributioninsidedrywood.Theintroductionofconductivityintheexactmodelmakesitsocomplex thattheequationsareunsuitableforanalyticalmanipulation. Inordertofurtherexploretheeffectof moistureincylindricalwoodstructures,afullscalenumericalsimulationusingcommercialsoftware hasbeenperformed. Theresultsshowthatformicrowavefrequenciesinthe3GHzrangeandfor typicalwoodparameters,acylindricallogbehavesasakindofFresnellens. Thisworkhasimportant applicationsinmicrowavetreatmentandsensingofwood. Keywords: microwave propagation in wood; non-destructive sensing of wood; physical wood treatments;analyticalanalysis;numericalanalysis 1. Introduction Microwave treatment and sensing of wood is increasingly important. A review of different microwave wood testing techniques is given in [1] and these include propagation modelling, measurementtechniques,hardwareimplementation,anddeterminationofwoodproperties.According to[2,3],microwaveheating,forexample,offersseveraladvantagesoverotherdryingmethodsand chemical procedures because its technique is eco-friendlier and causes less damage in the timber samplecomparedtoemployingtoxicchemicals. Besides,microwaveheatingmethodisfasterand gentlerincomparisontolivesteam. Asacontactlessandnondestructivetestingtechnique,microwave scanningisabletoestimateseveralimportantwoodparametersincludingdensity,moisturecontent, andgrainangle[4–13]. FollowingBucur[14],othernon-destructivetechniquesuseX-rays,gamma rays,thermalimaging,ultrasound,nuclearmagneticresonance,andneutronimaging. Microwave based nondestructive techniques have been applied to a variety of applications, including in situ microwavetomography,moisturecontentdetermination,anisotropymeasurement,onlineimaging, internalinspectionoflogs,mechanicalgrading,anddefectdetection.Microwavesandultrasoundhave similarresolution,butmicrowavesarenotlimitedbythecontactnatureofultrasoundtransducers. Asfarasweknow,mostmodelsofmicrowavepropagationinsidewoodarebasedonrectangular configurations,althoughsomestudiesinmoregeneralgeometriesarepublished[15,16]. In[17],the effectofannualgrowthringsonnondestructivemeasurementsisexplicitlystudied. Thislimitsthe applicationofmicrowavetechniquesinareassuchasmeasurementoflivingtreesinsitu. Importanteffortshavebeenmadetodevelopgeneralizedmodelsforwatercontentpredictionin woodusingitsdielectricproperties,butdetailedmodelsofelectromagneticpropagationinsidewood Forests 2018,9,106;doi:10.3390/f9030106 www.mdpi.com/journal/forests Forests 2018,9,106 2of16 aremoremodest. Duetothecomplexity,mostmodelsdonotconsidertheeffectsofthegeometryor thedielectricvariationandoscillationscausedbytheringstructureoftimber. This work studies microwave propagation and electric field distribution at 3 GHz inside cylindrical wood structures, following the procedures described in [18–20]. From our previous work [21] with Bragg fibers, it is expected that important focusing effects of microwaves inside woodduetoitsringstructuremaybeobserved. Thesefocusingphenomenacouldbeveryimportant fortheinterpretationoftestingdataandforheatingapplications,wheresomezonescouldbeburned whiletheotherswouldbealmostcold. Besides,thequickproductionofveryhotwatervaporand volatilesinsmallareasoftheirradiatedwoodcouldproduceexplosions,deformations,andcracks. Asmicrowaveheatingandtreatmentofwoodisaneconomicalalternativetoothermethods,itisvery importanttoknowthedistributionofradiationinsidethepiecesandtheperturbationsintroducedby thecomplexstructureofthisnaturalmaterial. Two complementary approaches have been used. First, an exact model based on a complete formulationoftheMaxwellequationsincylindricalcoordinateshasbeendeveloped. Thismodelis onlyanalyticallytractableinthelimitofzeroconductivity. Thisimpliesthattheimaginarypartof thewoodpermittivityisnegligible,whichisonlycorrectfordrywood. However,someinteresting similaritiesaresharedbythedryandmoistwoodmodels. Thissemianalyticalmodelincludesthe effectofgrainanglebymeansofacorrectionoftheeffectivepermittivityinsidewood,avoidingthe fulluseofhelicoidalcoordinateswhichproduceequationstoocomplexforthiscase. Theresulting equationsarethensolvedbymeansofanimplicitRunge–Kutta(RK),whichprovidestheunconditional stabilityneededtocalculatethevaluesofthecorrectedpermittivity. The second model uses a full scale numerical simulation of a cylindrical, ring shaped, wood sample.Moreover,theanalysisoftheinfluenceofthenumberofringsandthegeometryoftherings,by definingunequalringsgeometry,intheelectricfielddistributionhasbeendone. Thesimulationswere performedbymeansofcommercialsoftware,CSTMicrowaveStudio®(2017version,Framingham, MA, USA) [22], which uses finite-integral technique (FIT) algorithms for the computation of the electromagneticfield. Othernumericalsimulationapproachestothestudyofmicrowavepropagation inwoodcanbeseenin[23]. Bothmodelsagreeinthelimitofzeroconductivityandpredictimportanteffectsduetothering structureofcylindricalwood. Theresultsshowanimportantfocusingoftheradialdistributionofthe electricfieldwhichdependsonthenumberandthicknessofthegrowthrings. Also,stationarywave patternsareobservedduetothefinitelengthofwoodlogs. Theimportantpointofthisworkisto showtheeffectoftheconcentricringstructureofwoodonthemicrowavepropagationinsidetimber. ThiseffectissimilartoaBraggfiber,producinginterestingfocusingphenomenaaswillbeshown. The rest of the paper is organized as follows: mathematical formulation involving both semianalyticalandnumericalmodelsisexplainedinSection2,thenresultsarepresentedanddiscussed indetailinSection3. Finally,relevantconclusionsarepresentedinSection4. 2. MathematicalFormulation 2.1. SemianalyticalModel Rawcylindricaltimbercanbeconsideredastackofconcentricallydielectriclayers,soamodel witharbitraryperiodicvariationofdielectricpermittivityisthemostaccurate. Considerablesymbolic manipulationoftheMaxwellequationsincylindricalcoordinatesisnecessaryforarbitrarypermittivity functionswhichcandependonlyontheradiusofthecylinder. Theequationsfortheexactmodelare derivedfromourpreviousworks[24,25]. Theyarereproducedhereforcompleteness. Theequationswereobtainedasfollows. First,wewritethecompletesetofMaxwellequationsin cylindricalcoordinates 1∂(rDr) + 1∂Dφ + ∂Dz = ρ (1) r ∂r r ∂φ ∂z Forests 2018,9,106 3of16 1∂(rBr) + 1∂Bφ + ∂Bz =0 (2) r ∂r r ∂φ ∂z 1∂Ez − ∂Eφ + ∂Br =0 (3) r ∂φ ∂φ ∂t ∂Er − ∂Ez + ∂Bφ =0 (4) ∂z ∂r ∂t (cid:0) (cid:1) 1∂ rEφ − 1∂Er + ∂Bz =0 (5) r ∂r r ∂φ ∂t 1∂Hz − ∂Hφ − ∂Dr −J =0 (6) r r ∂φ ∂z ∂t ∂Hr − ∂Hz − ∂Dφ −J =0 (7) φ ∂z ∂r ∂t (cid:0) (cid:1) 1∂ rHφ − 1∂Hr − ∂Dz −J =0 (8) z r ∂r r ∂φ ∂t Performingsomealgebraicmanipulations,thefullsetofMaxwellequationscanbereducedtoa pairofcoupledordinarydifferentialequations. Thefollowingansatzisinsertedintothecylindrical MaxwellEquations(1)–(8),whereristheradius,zisthelengthofthewoodlog,andphiistheangle measured from the radius. E is the electric field strength, H is the magnetic field, D is the electric displacementfield,Bisthemagneticfluxdensity,omegaistheangularfrequency,tisthetime,andlis theangularmomentnumber. E = E e (r)e(ilφ)×e(iβz)×e−(iωt) (9) r,φ,z 0[r,φ,z] r,φ,z H = H h (r)e(ilφ)×e(iβz)×e−(iωt) (10) r,φ,z 0[r,φ,z] r,φ,z Thisproducesasetofseparableequations,assumingρ =0(chargedensity)and J =0(current density),whichimpliesthatconductivityisnotconsidered. EquationswhosetermsareintheformβE orβHareselected. TheseareEquations(1),(2),(4),(6)and(7). Now,theEquations(4),(6)and(7)can bealgebraicallysolvedwithrespecttotheradialcomponentse (r),e (r),h (r),andh (r), r φ r φ (cid:18) e (r)(cid:19) (cid:16) (cid:17)−1 e (r) = − H lµ h (r)ω−iE βr z × ε ε (r)µ E rω2−E β2r (11) r 0z 0 z 0z 0 r 0 0r 0r r (cid:18) h (r) (cid:19) (cid:16) (cid:17)−1 e (r) = − iH µ r z ω+E lβe (r) × ε ε (r)µ E rω2−E β2r (12) φ 0z 0 0z z 0 r 0 0φ 0φ r (cid:18) h (r)(cid:19) (cid:16) (cid:17)−1 h (r) = − ε ε (r)E le (r)ω+iH βr z × ε ε (r)µ H rω2−H β2r (13) r 0 r 0z z 0z 0 r 0 0r 0r r (cid:18) e (r) (cid:19) (cid:16) (cid:17)−1 h (r) = ε ε (r)E re (r) z ω−H lβh (r) × ε ε (r)µ H rω2−H β2r (14) φ 0 r 0z z 0z z 0 r 0 0φ 0φ r Substituting this solution into Equations (1) and (2), another pair of ordinary differential equations is obtained. In order to analyze these equations, it is convenient to decoupled them. Usinge (r) = e (r)+ie (r);h (r) = h (r)+ih (r)andtakingbothrealandimaginarypartsinthe z zR zI z zR zI resultingequations,thefollowingexpressionsarefinallyobtained e(cid:48)(cid:48) (r)+A e(cid:48) (r)+A e(cid:48) (r)+A h(cid:48) (r)+A h(cid:48) (r)+A e (r)+ zR 11 zR 12 zI 13 zR 14 zI 15 zR (15) A e (r)+A h (r)+A h (r)+A =0 16 zI 17 zR 18 zI 19 e(cid:48)(cid:48) (r)+A e(cid:48) (r)+A e(cid:48) (r)+A h(cid:48) (r)+A h(cid:48) (r)+A e (r)+A e (r)+ zI 21 zR 22 zI 23 zR 24 zI 25 zR 26 zI (16) A h (r)+A h (r)+A =0 27 zR 28 zI 29 Forests 2018,9,106 4of16 h(cid:48)(cid:48) (r)+A e(cid:48) (r)+A e(cid:48) (r)+A h(cid:48) (r)+A h(cid:48) (r)+A e (r)+A e (r)+ zR 31 zR 32 zI 33 zR 34 zI 35 zR 36 zI (17) A h (r)+A h (r)+A =0 37 zR 38 zI 39 h(cid:48)(cid:48) (r)+A e(cid:48) (r)+A e(cid:48) (r)+A h(cid:48) (r)+A h(cid:48) (r)+A e (r)+A e (r)+ zI 41 zR 42 zI 43 zR 44 zI 45 zR 46 zI (18) A h (r)+A h (r)+A =0 47 zR 48 zI 49 where A (i = 1, 2, 3 and j = 1, ..., 9) coefficients try to simplify the writing of the final equations, ij becausethecompleteformulaeareratherlong. Thesecoefficientsmultiplytheradialcomponents, bothrealandimaginary,oftheaxialelectricandmagneticfieldinsidethecylindricalwoodsample. Thevalueofcoefficients A definedintheEquation(15)aredetailedinthefollowingequations ij (fromEquations(19)–(22)) (cid:16) (cid:17) (cid:16) (cid:17)−1 A = ε ε2(r)µ ω2−β2rε(cid:48)(r)−β2ε (r) × ε ε2(r)µ rω2−β2rε2(r) (19) 11 0 r 0 r r 0 r 0 r (cid:16) (cid:17) A = ε ε (r)µ r2ω2−β2r2−l2 r−2 (20) 15 0 r 0 A = (cid:0)ε(cid:48)(r)µ H lβω(cid:1)(cid:16)ε ε2(r)µ E rω2−ε (r)rE β2(cid:17)−1 (21) 18 r 0 0z 0 r 0 0z r 0z andwhere A = A = A = A = A = A =0 (22) 12 13 14 16 17 19 A (i=2andj=1,...,9)coefficientsemployedintheEquation(9)aredefinedintheEquations ij (23)–(26) (cid:16) (cid:17) (cid:16) (cid:17)−1 A = ε ε2(r)µ ω2−β2rε(cid:48)(r)−β2ε (r) × ε ε2(r)µ rω2−β2rε2(r) (23) 22 0 r 0 r r 0 r 0 r (cid:16) (cid:17) A = ε ε (r)µ r2ω2−β2r2−l2 r−2 (24) 26 0 r 0 A = −(cid:0)ε(cid:48)(r)µ H lβω(cid:1)(cid:16)ε ε2(r)µ E rω2−ε (r)rE β2(cid:17)−1 (25) 27 r 0 0z 0 r 0 0z r 0z andwhere, A = A = A = A = A = A =0 (26) 21 23 24 25 28 29 In the following equations from Equations (27)–(30) the values of the A (where i = 3 and ij j=1,...,9)usedintheEquation(17)aredetailed. (cid:16) (cid:17)(cid:16) (cid:17)−1 A = − ε ε(cid:48)(r)µ rω2−ε ε (r)µ ω2+β2 ε ε (r)µ rω2−β2r (27) 33 0 r 0 0 r 0 0 r 0 A = −(cid:0)ε ε(cid:48)(r)E lω(cid:1)(cid:16)ε ε (r)µ H rω2−H β2r(cid:17)−1 (28) 36 0 r 0z 0 r 0 0z 0z (cid:16) (cid:17) A = ε ε (r)µ r2ω2−β2r2−l2 r−2 (29) 37 0 r 0 and, A = A = A = A = A = A =0 (30) 31 32 34 35 38 39 IntheEquations(31)–(34)thevalueofthecoefficients A (wherei=4andj=1,...,9)whichhave ij beendefinedintheEquation(18),aredetailed. (cid:16) (cid:17)(cid:16) (cid:17)−1 A = − ε ε(cid:48)(r)µ rω2−ε ε (r)µ ω2+β2 ε ε (r)µ rω2−β2r (31) 44 0 r 0 0 r 0 0 r 0 A = (cid:0)ε ε(cid:48)(r)E lβω(cid:1)(cid:16)ε ε (r)µ H rω2−H β2r(cid:17)−1 (32) 45 0 r 0z 0 r 0 0z 0z (cid:16) (cid:17) A = ε ε (r)µ r2ω2−β2r2−l2 r−2 (33) 48 0 r 0 Forests 2018,9,106 5of16 andwhere, A = A = A = A = A = A =0 (34) 41 42 43 46 47 49 wherex’denotesdx/dr,β = 2πεreff1/2 andε istheeffectivepermittivityparameter. λ reff Wecanobservethatthissystemofequationsisnotcompletelycoupled. Equations(15)and(18) formapairofmutuallycoupledequationsine (r)andh (r). ThesamecanbesaidforEquations(16) zR zI and(17). Eachpairofmutuallycoupledequationshaveasimilarmathematicalstructure. Then,it ispossibletoreducetheproblemofmicrowavepropagationinsidecylindricalwoodsampleswith arbitraryradialrelativepermittivitiestoapairofordinarydifferentialequations. Weshallchoose Equations(15)and(18)forconvenience. Theresultswerecalculatedandsimplifiedbymeansofthe Maximaprogram[26]. Inordertosolvethefinalequations,animplicithighorderRunge–Kuttaalgorithmwasused. ImplicitRKalgorithmsaremorestablethantheirexplicitcounterparts[27]andthisfacteliminates someproblemsrelatedwiththeperiodicnatureofthedielectricstructureofwoodandtheextreme sensibility of the solutions to the value of the effective permittivity. Although the core equations ofthisproblemarethesameastheequationsforaBraggfiberinourpreviouswork[24],thereare importantconceptualandcomputationaldifferencesbetweenbothproblems. Firstofall,therelative permittivitiesofadjacentlayersinthewoodmodelarelargerthaninaBraggfiberandconductivityis notpresentinopticalfibers. Moreimportantevenistheconsiderationofthegrainangleinthewood modelwhichintroducesnewcomplexitiesandnewpropagationmodes. Thisgrainanglewouldbe similartoaBraggfiberwithtorsion,whichwasnotconsideredinourpreviouswork. Also,theratio betweenthewavelengthandthedimensionsoftheringsisdifferent,producingsubtleeffectsthathave forcedustodevelopanewnumericalapproachtosolvethefinalequations. Whileinourprevious calculations, collocation methods were successfully used, in this case an implicit, unconditionally stable,RKalgorithmhasbeendevelopedinordertoavoidlargenumericalinstabilitiesproducedby themodesplittingintroducedbythegrainangledependenceontherelativepermittivity. 2.2. NumericalSimulation Duetomathematicalconstraints,conductivitycannotbeeasilyintroducedintheexactmodel, becausetheMaxwellequationscannotbedecoupled. Therefore,adetailednumericalsimulationofan idealizedcylindricalsampleofwoodhasbeenperformedinordertostudytheeffectofmoistureon microwavepropagation. ThecommercialsoftwareCSTMicrowaveStudio® [22],whichimplementsa finite-integraltechnique(FIT)approach,wasused. Thesamplewasformedbyconcentricallylayersoftwodifferentpermittivitiescorrespondingto typicalepsilonvaluesofpoplar[27]usingthedielectricCartesiantensorfacilityofCST(Computer Simulation Technology). The exact values are shown in Figure 1. Summer and spring rings are independentlyconsidered. Experimentaldielectricandconductivitydataforbothdryandwetwood wereobtainedfrom[28–31]. Thethicknessofgrowthringsinsidepoplarhasbeentakenfrompictures ofseveralsamplesfromtheMadridareaandaroundedmeanvaluehasbeenusedforthesimulations. Thus, thisstudymustbeconsideredasageneraldescriptionofmicrowavepropagationinsidean actualringstructuredwoodbutnotadetailedanalysisofaparticularwoodsample. Theselectedfrequencyforourstudyhasbeen3GHzfornumericalconvenienceinthecaseofthe semianalyticalcalculations. Thepermittivityvaluescanbeconsideredalmostunalteredfromthemore common2.45GHzaccordingto[27]. However,accordingtotheelectricfielddistributionshownin Figures2and3fordryandwetpoplarsample,theeffectofthemicrowavefrequencyisnoticeable inspiteoftheconstantvalueofthepermittivityatthosefrequencies. Animportantconsequenceof theseresultsistherequirementofseveralfrequenciestoachieveamorehomogenouselectricfield distributioninsidewood. Forests 2018,9,106 6of16 Forests 2018, 9, x FOR PEER REVIEW 6 of 16 Forests 2018, 9, x FOR PEER REVIEW 6 of 16 Figure 1. Structural configuration of dielectric tensors and excitation used for CST (Computer Figure 1. Structural configuration of dielectric tensors and excitation used for CST (Computer Simulation Technology) analysis. SimuFlaigtiuorne T1e. cShtnruoclotugrya)l acnonafliygsuisra.tion of dielectric tensors and excitation used for CST (Computer Simulation Technology) analysis. Figure 2. Electric field distribution inside dry poplar. (a) f = 2.45 GHz 50% permittivity variation ; (b) f = 3 GHz 50% permittivity variation; (c) f = 2.45 GHz 100% permittivity variation; and (d) f = 3 GHz Figure 2. Electric field distribution inside dry poplar. (a) f = 2.45 GHz 50% permittivity variation; (b) Figur1e002%. pEelermctirtitcivfiiteyl vdardiaistitorinb. utioninsidedrypoplar. (a)f =2.45GHz50%permittivityvariation; f = 3 GHz 50% permittivity variation; (c) f = 2.45 GHz 100% permittivity variation; and (d) f = 3 GHz (b)f =1030%G Hpezrm50it%tiviptye vrmariiatttiivonit.y variation; (c) f = 2.45 GHz 100% permittivity variation; and ( d)f =3GHz100%permittivityvariation. Forests 2018,9,106 7of16 Forests 2018, 9, x FOR PEER REVIEW 7 of 16 Alimitationofourstudyisthatrealwoodhasdifferentgrowthringthicknesses,heterogeneous A limitation of our study is that real wood has different growth ring thicknesses, heterogeneous zoneswithdefects,moisturegradients,gaps,etc.,whichcouldbeintroducedinfuturestudies. zones with defects, moisture gradients, gaps, etc., which could be introduced in future studies. Figure 3. Electric field distribution inside wet poplar. (a) f = 2.45 GHz 50% permittivity variation; Figure3. Electricfielddistributioninsidewetpoplar. (a)f =2.45GHz50%permittivityvariation; (b) f = 3 GHz 50% permittivity variation; (c) f = 2.45 GHz 100% permittivity variation; and (d) f = 3 (b)f =3GHz50% permittivity variation; (c) f = 2.45 GHz 100% permittivity variation; and GHz 100% permittivity variation. (d)f =3GHz100%permittivityvariation. 3. Results and Discussion 3. ResultsandDiscussion In both models, analytical and numerical, axial excitation and propagation of microwaves are studied. The timber is excited by an incident plane wave along the z-axis, the electric field is Inbothmodels,analyticalandnumerical,axialexcitationandpropagationofmicrowavesare perpendicular to the cylinder axis, and so the magnetic field, as shown in Figure 1. The relative studied. The timber is excited by an incident plane wave along the z-axis, the electric field is permittivity function used for the semianalytical analysis is shown in Figure 4. The semianalytical perpendicular to the cylinder axis, and so the magnetic field, as shown in Figure 1. The relative model shows a slow modulation of the amplitude of the electric field due to the periodic nature of permittivityfunctionusedforthesemianalyticalanalysisisshowninFigure4. Thesemianalytical the dielectric layers of wood, as can be seen in Figures 5 and 6. The behavior of this permittivity modelshowsaslowmodulationoftheamplitudeoftheelectricfieldduetotheperiodicnatureofthe function is modelled on [28]. For simplicity and easier convergence of the RK algorithm, uniform dielecgtrroicwltahy reirnsg otfhiwckonoedss, aasndca an lboweesre evnariinatFioing ubreetsw5eeann ddif6f.erTehnet wbeohodav dioierleocftrtihc ivsaplueersm iint ttihveit ryadfuianlc tion ismoddierellcetdiono nw[a2s8 ]u.sFedo.r Tsihmisp ilsi ccilteyaralny da elaimsiietratcioonn voef rtgheen sceemoifanthaelyRticKala mlgoodrietlh amnd,u onniefo orfm thger omwatinh ring thicknreeasssoanns dfora ulosiwnge ralvsaor aia ftuilol nnubmetewriecealn sdimifufelarteinont wtooolo. dThduies,l ethcetr ricesvualtlsu aerse innotth eexarcatdlyi atlhde israemctei oans was used.thTeh oinseiss ccallecaurllaytead luimsinitga etixopneroimftehnetasl epmopilaanr adlayttai.c almodelandoneofthemainreasonsforusing For the previous reasons, the semianalytical method is restricted to only 5 rings, while the full alsoafullnumericalsimulationtool. Thus,theresultsarenotexactlythesameastheonescalculated numerical simulations range from 5 growth rings to 20. The thickness of growth rings are taken form [27]. usingexperimentalpoplardata. The semianalytical results can be seen as a validation technique for this study. The length of the Forthepreviousreasons,thesemianalyticalmethodisrestrictedtoonly5rings,whilethefull sample is 1 m in both methods. The semianalytical and numerical simulations have been done at numerical simulations range from 5 growth rings to 20. The thickness of growth rings are taken 3 GHz because the wavelength at that frequency is comparable to the diameter of the wood sample. form[27]. Thesemianalyticalresultscanbeseenasavalidationtechniqueforthisstudy. Thelengthof thesampleis1minbothmethods. Thesemianalyticalandnumericalsimulationshavebeendoneat 3GHzbecausethewavelengthatthatfrequencyiscomparabletothediameterofthewoodsample. Forests 2018,9,106 8of16 Forests 2018, 9, x FOR PEER REVIEW 8 of 16 Forests 2018, 9, x FOR PEER REVIEW 8 of 16 MoreoMvoerre,otvheart, fthreaqt ufreenqucyenicsys iism siimlairlatro ttoh tehev valaulueew whhiicchh iiss eemmpploloyyeded ini ncocmommemrceiarcl imalicmroiwcraovwe advryeindgr ying Moreover, that frequency is similar to the value which is employed in commercial microwave drying ovenso[v3e2n,s3 3[3]2.,33]. ovens [32,33]. Figure 4. Relative permittivity function used for the calculation of the electric field in the exact model. FigurFei4g.uRree 4la. Rtievleatpiveer mpeirtmtivitittiyviftyu nfucnticotinonu suesdedf oforrt thhee ccaallccuullaattiioonn oof fthteh eeleecletrcitcr fiicelfide ilnd tihne tehxeacetx macotdmel.o del. Figure 5. Particular solution with analytical analysis of the electric field inside a cylindrical wood Figure 5. Particular solution with analytical analysis of the electric field inside a cylindrical wood Figursea5m.pPlae rwtichuenla trhseo cluortiroenctiwveit fhacatnoar lfyotri ctahlea enffaelcytsiviseo rfeltahteiveel epcetrrmicifttieivldityin iss i0d.e70a acnydli nthder gicraalinw aonogdles iasm ple sample when the corrective factor for the effective relative permittivity is 0.70 and the grain angle is whenαth =e 4c5o°.r rectivefactorfortheeffectiverelativepermittivityis0.70andthegrainangleisα=45◦. α = 45°. The periodic structure produces the modification of the values of the relative permittivity, ThepTehreio pdeirciosdtriuc csttururectpurroe dpurcoedsutchese mtheo dmifiocdaiftiicoantioonf tohfe tvhael uveasluoefs tohfe trheel arteivlaetipvee rpmeirtmtiivttiitvyi,twy, hich, which, in turn, modifies the electromagnetic field modes inside the wood cylinder. In order to apply in turwmnhi,circmohw,o idanvi tfieu eprsnro, tmphaeogdaeitfliieoecnst rtthooe mt healeeg cdnteretoatmiilceadgfi nesetlutdidc ymfi eoolfdd i nemtseoridnneassli idrniensigdt hest etrhuwec twouoroedo dofc c ywylloiinnodddee, rrh.. iIgnhI onerrd oferrerd qteour eanptocpielays p ply microwave propagation to the detailed study of internal ring structure of wood, higher frequencies microuwpa tvo etepnrso opf aGgHazti (omnictrootwhaevdese itna itlheed msmtu drayngoef)i anrtee nrnecaelsrsianryg. sHtrouwcetvuerre, aotf swucoho sdh,ohrti gwhaevrelfernegqtuhes,n cies up to tens of GHz (microwaves in the mm range) are necessary. However, at such short wavelengths, uptottheen esfofefcGt oHf zlim(mitiecdr oswkina vdeespitnh tahned minmcreraasnegde a)ttaerneunaeticoens ssahroyu.ldH boew setvuedri,edat csaurecfhulslhy.o Brteswidaevse, ltehne gths, the effect of limited skin depth and increased attenuation should be studied carefully. Besides, the theefcfoemctpouftalitmionitaeld desmkiannddse parteh faanr dhiginhcerre, asos etdhisa twteilnl ubae tcioonnssidheoruedld inb feustutured wieodrkcsa.r Ieff suulclyh. aBcecusirdaceys ,the computational demands are far higher, so this will be considered in future works. If such accuracy compcuotualtdio bnea lpdraecmticaanlldy saacrheiefvaerdh, iag hneorn,-sinovtahsiivsew dielltebremcinoantsioidn eoref dtreine faugteus rweowuoldrk bse. Ipfossusicbhlea, cfcour racy could be practically achieved, a non-invasive determination of tree ages would be possible, for example. couldbepracticallyachieved,anon-invasivedeterminationoftreeageswouldbepossible,forexample. example. The solutions are valid only for certain values of the effective relative permittivity (permittivity ThesTohlue tsioolnustioanres avrael ivdaloidn olynlfyo rfocre cretratianinv vaalulueess ooff tthhee eeffffeecctitvive ererlealtaivtiev peeprmeritmtivitittiyv (iptyer(mpietrtimviittyt ivity eigenvalues) due to the existence of discrete propagation modes inside the cylindrical material. These eigeneviagleunevsa)ludeus)e dutoe ttoh tehee exxiisstteennccee oof fdidscisrectree tperoppraogpataigona tmioondems iondsiedse tihnes icdyelintdhreiccayl mlinatderriiacla. lThmeasete rial. eigenvalues are calculated by means of an iterative procedure which runs the RK algorithm searching Theseeiegiegnevnavluaelus aersea craelccualalcteudl abtye dmebaynsm oef aann siteorfaatinvei tperroacteidvuerep wrohciecdh ururensw thhei cRhK raulgnosritthhemR seKaraclhgiongri thm for the correct behavior of the solutions. In this case, the azimuthal number of the selected searchfpoirnro gptahfgoea rtcitoohrner emccoto rdbreee chista lvb =ieo h1r. a Tovfhi oetrrheoef ofsrteoh,l euetvsieoornlyus .tm ioIonnd set.h iIsins c htchaarissaec,c taethsrieez ,eatdhz ibemya uazt ihdmaelfu intnhiutaeml vnbaeulrum eo bof ef trthhoeef estfhefleeeccsttieevldee cted propagation mode is l = 1. Therefore, every mode is characterized by a definite value of the effective propagationmodeisl=1. Therefore,everymodeischaracterizedbyadefinitevalueoftheeffective relativ epermittivity, whichcanbeexpressedasacorrectionfactormultiplyingthemeaneffective relativepermittivity. Forests 2018, 9, x FOR PEER REVIEW 9 of 16 Forestsr2e0la18ti,v9e, 1p0e6rmittivity, which can be expressed as a correction factor multiplying the mean effective9 of16 relative permittivity. Figure 6. A particular solution with analytical analysis of the electric field inside a cylindrical wood Figure6.Aparticularsolutionwithanalyticalanalysisoftheelectricfieldinsideacylindricalwoodsample sample when the corrective factor for the effective relative permittivity is 0.66 and the grain angle is whenthecorrectivefactorfortheeffectiverelativepermittivityis0.66andthegrainangleisα=30◦. α = 30°. TheeTxhaec texmacotd meloadlello awllsowthse thvea vriaartiiaotinono foft htheeg grraaiinn aannggllee,, αα. .TThhe egrgariani annagnleg ilse diesfdineefidn aesd thaes atnhgelea ngle betwebeentwtheeent itmheb teimrabxeris aaxinsd anthde thwe owoododlo lgosg.s.I tIti sis tthhee lloonnggiittuuddininaal lararrarnagnegmeemnet noft wofowodo toimdbtiemrsb oerr tshoe rthe pattern resulting from this. From an analytical perspective, if the grain angle had been inserted patternresultingfromthis. Fromananalyticalperspective,ifthegrainanglehadbeeninserteddirectly directly in the cylindrical Maxwell’s equations, they would not be separable. In fact, helicoidal inthecylindricalMaxwell’sequations,theywouldnotbeseparable. Infact,helicoidalcoordinates coordinates should be used, but the model was too complex for the present study. Instead of a full should be used, but the model was too complex for the present study. Instead of a full helicoidal helicoidal model, we have made the hypothesis that the effect of the grain angle can be considered model,wehavemadethehypothesisthattheeffectofthegrainanglecanbeconsideredusingonlyits using only its variation inside the dielectric permittivity profile. variationinsidethedielectricpermittivityprofile. The numerical simulation of the grain angle would imply a helicoidally arrangement of different Twhoeondu emlemereicnatsl, ssiom tuhalat tpioanraomfetthriec gfurnacintioannsg slheowulodu blde uimsepdl yinsaidhee ltihceo Cidaarltleysiaarnr daniegleecmtreicn tteonfsodri foffe rent woodtheele CmSeTn stosf,tswoarthe.a Itnp tahrisa mregeatrridc, fthuen acntiaolnytsicsahl omuolddebl eisu mseodre ignesniderealt,h aeltChoaurgtehs icaonndduicetlievcittyri ceftfeecntsso rof theCSarTe shoafrtwd atore .inItnrotdhuiscer,e gifa radd,dtihtieonaanl ahlyytpicoathlemseosd aerlei snmoto mreagdeen. eDruael, atolt hthoeu glihmcitoantidounsc toivf itbyotehf fects arehaarpdptrooainchtreos,d wuec eh,aivfea odpdtietdio fnoar lah cyopmobtihneesde sstaurdeyn, cootmmpaadrien.gD thuee rteosuthltes floimr ait naetiuotnrasl ogfrabiont ahnagplep arnoda ches, dry wood. Then, the effect of moisture is studied using numerical analysis and the grain angle wehaveoptedforacombinedstudy,comparingtheresultsforaneutralgrainangleanddrywood. variation uses the analytical model. Then,theeffectofmoistureisstudiedusingnumericalanalysisandthegrainanglevariationusesthe In Figures 5 and 6, we can compare the results for α = 45° and 30°, respectively. It must be noted analyticalmodel. that the correction factor for the effective relative permittivity changes with the value of the grain InFigures5and6,wecancomparetheresultsforα=45◦ and30◦,respectively. Itmustbenoted angle, so that the corrections are 0.70 for α = 45° and 0.66 α = 45°. The ability to calculate the grain thattahnegcleo irsr eimctpioorntafnatc, tboercafuosret ghreaienf faencgtliev ies rreellaatteidv ewpitehr tmhei tmtievcihtyancichaal nstgreesngwthi tohf wthoeodv.a Tluhee eofffetchtieveg rain anglev,asloueth oaft tthhee rceolartrievcet ipoenrsmaitrteiv0it.y7 0dfuoer tαo =the4 5g◦raainnd an0.g6l6e αco=rre4c5ti◦o.nT ihs ecaalbciulliatytedto bcya lmcuelaantse othf eang rain angleiitseriamtivpeo rbtiasnect,tiboenc aalugsoerigthrmai nwahnicghle fiinsdres lathtee dcowrriethct tahseymmpectohtaicn ibceahlasvtiroern goft hthoef owsociolldat.inTgh efieelfdfesc tive valueionfsitdhee wreolaotdiv aeftpeerr ma inttuimvibtyerd oufe rtiongths.e Tghraeisne acnaglcluelactoirornesc taioren tiismcea lccuonlastuemdibnyg maneda nnsuomfearniciatlelyra tive bisectuionnstaablgleo, reivthenm uwsinhgic thhefi inmdpslitchite Rcuonrrgeec–tKaustytam aplgtoortiitchmbe fhoarv tihoer porfopthaegaotsiocnil lsatetipn. gDfiueel tdos tihniss,i donelyw ood two decimal figures and five rings are considered in Figures 5 and 6, while the numerical model— afteranumberofrings. Thesecalculationsaretimeconsumingandnumericallyunstable,evenusing which discards the grain angle influence—can be calculated for a larger number of rings. theimplicitRunge–Kuttaalgorithmforthepropagationstep. Duetothis,onlytwodecimalfigures The CST simulations have been done without considering the grain angle. The numerical values andfiveringsareconsideredinFigures5and6,whilethenumericalmodel—whichdiscardsthegrain for the simulations were: length = 1 m, number of cylindrical layers = from 5 to 20, radius = from 35 angleinfluence—canbecalculatedforalargernumberofrings. to 145 mm. Growth ring thickness are different depending on the season. One type has been set to 10 Tmhme CanSdT tshiem outhleart itoon 5s mhmav. Tehbee veanludeos noef twhei tdhioeluecttcroicn csoindsetarinnt goft heaechg rlaayinera hnagvlee b.eTehne tankuemn ferroimca [l2v7]a lues forthaensdim thuelya tairoen sshwowerne i:nl eFnigguthre =1.1 m,numberofcylindricallayers=from5to20,radius=from35to 145mm. Growthringthicknessaredifferentdependingontheseason. Onetypehasbeensetto10mm andth eotherto5mm. Thevaluesofthedielectricconstantofeachlayerhavebeentakenfrom[27] andtheyareshowninFigure1. ThenumericalFITsimulationallowsthestudyofalayerofgrowthrings. Ingeneral,theresults inFigures7–12provethecriticaleffectofthenumberofringsontheelectricfielddistributioninside ofpoplarwood. Besides,thiseffectisnottrivialaccordingtotheradialelectricfieldvariationseen inFigures13–18. Theelectricfieldmaximavarieswiththenumberofthegrowthringsboth,inthe Forests 2018, 9, x FOR PEER REVIEW 10 of 16 The numerical FIT simulation allows the study of a layer of growth rings. In general, the results in Figures 7–12 prove the critical effect of the number of rings on the electric field distribution inside Forests 2018,9,106 10of16 of poplar wood. Besides, this effect is not trivial according to the radial electric field variation seen in Figures 13–18. The electric field maxima varies with the number of the growth rings both, in the radial radialandlongitudinaldirections. Adirectconsequenceoftheseresultsforheatingapplicationsisthat and longitudinal directions. A direct consequence of these results for heating applications is that the thethermaldistributioninsidewoodwouldvarycriticallyfromonesampletoanotherwithdifferent thermal distribution inside wood would vary critically from one sample to another with different thicknesses. Forthecalculations,twoextremecasesofthepermittivityvariationbetweengrowthrings thicknesses. For the calculations, two extreme cases of the permittivity variation between growth (50%and100%),accordingtotheliterature[28],havebeenstudied. ComparingFigure7,Figure9, rings (50% and 100%), according to the literature [28], have been studied. Comparing Figures 7, 9, andFigure11(50%dielectricvariation)withFigures8,10and12(100%dielectricvariation)itcanbe and 11 (50% dielectric variation) with Figures 8, 10 and 12 (100% dielectric variation) it can be concludedthattheeffectofthisvariableisveryimportant. Forexample,inFigures7and8itcanbe concluded that the effect of this variable is very important. For example, in Figures 7 and 8 it can be oobbsseerrvveedd tthhaatt tthhee mmoosstt rreemmaarrkkaabbllee cchhaannggeess iinn tthhee eelleeccttrriicc fifieelldd ddiissttrriibbuuttiioonn,, aarree pprroodduucceedd bbeettwweeeenn tthhee 55--rriinngg ssaammpplleess aanndd tthhee 1155--rriinngg ssaammpplleess,, iinn bbootthh,, tthhee rraaddiiaall aanndd tthhee aaxxiiaall ddiirreeccttiioonn.. TThhiiss iimmpplliieess tthhaatt,, eevveenn iiff ttwwoop poopplalarrs asammpplelsesh havaeveth tehes asmameed idmimenesniosinosn,sth, tehireierl eecltercitcraicn adntdh etrhmeramlbael hbaevhiaovricoarn cbane cboem copmletpeldetdedif fdeirfefnert.ent. IInn FFiigguurreess 99––1122 tthhee iinnflfluueennccee ooff mmooiissttuurree oonn tthhee ddiissttrriibbuuttiioonn ooff tthhee eelleeccttrriicc fifieelldd iinnssiiddee ppooppllaarr wwoooodd iiss eexxpplloorreedd.. AAccccoorrddiinngg ttoo tthheessee rreessuullttss,, tthheerree aarree ttwwoo mmaaiinn ccoonncclluussiioonnss ooff tthhiiss:: tthhee eelleeccttrriicc fifieelldd ddiissttrriibbuuttiioonn iiss ccoommpplleetteellyy aalltteerreedd bbyy tthhee pprreesseennccee ooff mmooiissttuurree aanndd tthhee nnuummbbeerr ooff rriinnggss cchhaannggeess tthhiiss bbeehhaavviioorr iinn aa nnoonn--pprreeddiiccttaabbllee wwaayy.. FFoorr eexxaammppllee,, iinn tthhee fifivvee rriinnggss ccaassee,, mmooiissttuurree pprroodduucceess aa nnoottiicceeaabbllee cceennttrraall ffooccuussiinngg eeffffeecctt mmaakkiinngg tthhee wwoooodd ssaammppllee ssiimmiillaarr ttoo aa mmeettaalllliicc wwaavveegguuiiddee.. OOnn tthhee ccoonnttrraarryy,, tthhee 1100--rriinngg ccaassee sshhoowwss aa ccoommpplleetteellyy ooppppoossiittee bbeehhaavviioorr,, ffrroomm aa cceennttrraall ddiissttrriibbuuttiioonn iinn tthhee ddrryy ccaassee ttoo aa mmuucchh aatttteennuuaatteedd rraaddiiaall ddiissttrriibbuuttiioonn.. TThhee aaxxiiaall ddiissttrriibbuuttiioonn iiss aallssoo nnoottiicceeaabbllyy aalltteerreedd.. TThhee iimmpplliiccaattiioonnss ffoorr hheeaattiinngg aapppplliiccaattiioonnss aarree cclleeaarr.. AA ddeettaaiilleedd ssttuuddyy ooff tthhee rraaddiiaall eelleeccttrriicc fifieelldd ddiissttrriibbuuttiioonn iiss sshhoowwnn iinn FFiigguurreess 1133––1188.. IInn tthhiiss sseett ooff fifigguurreess,, tthhee ccoommbbiinneedd aanndd ccoommpplleexx iinntteerraaccttiioonn aammoonngg tthhee aannaallyyzzeedd vvaarriiaabblleess aarree mmoorree cclleeaarrllyy sseeeenn.. TThhee mmaaxxiimmuummo offt htheee leelcetcrtircicfi feiledldis ids idspislpaclaecdedfr ofrmomth ethcee ncteenrtetor atod aif fdeirfefenrtepnot spitoiosnitidoenp denepdeinngdionngt ohne nthuem nbuemrobferth oef gthroew grthowritnhg rsi.nAglss. oA,ltshoe, sthhae psehaopfeth oef ethleec terlieccfitreicld fideilsdt rdibisutrtiiobnutiisognr iesa gtlryeaatflfye catfefde.cted. Figure 7. Electric field distribution inside dry poplar wood with different values of the number of Figure7. Electricfielddistributioninsidedrypoplarwoodwithdifferentvaluesofthenumberof growth rings with 50% permittivity variation at 3 GHz. growthringswith50%permittivityvariationat3GHz.
Description: