umerical imulations N S of coustic esonance A R of olid ocket otor S R M andidate C iviana erretti V F utors T rof aurizio i iacinto P . M D G rof ernardo avini P . B F epartmentof echanicaland erospace ngineering D M A E apienza niversityof ome S ,U R iclo XXIIIC ottoratodiricercain ecnologia eronauticae paziale D “T A S ” epartmentof echanicaland erospace ngineering D M A E apienza niversityof ome S ,U R I L’uomoattraversailpresentecon gliocchibendati. Puòalmassimo immaginareetentaredi indovinareciòchestavivendo. Solopiùtardiglivienetoltoil fazzolettodagliocchielui, gettatounosguardoalpassato,si accorgedichecosaharealmente vissutoenecapisceilsenso. M.Kundera,Gliamoriridicoli II bstract A Theoperativelifeofmanylargesolidrocketmotors(e.g. USSpaceShuttleSRM,Ariane 5 P230 SRM, Titan SRM, P80 SRM, the five-segment test motor ETM-3) is characterized bythepresenceofsustainedlongitudinalpressure(PO,pressureoscillations)andthrust oscillations. Their frequency is close to the first, but sometimes also second or third, acousticmodefrequencyofthecombustionchamber. Althoughtheydonotcompromise themotorlife,suchoscillationsrepresentapointofinterest. Incaseofcouplingwiththe launcherstructuralmodes,theycaninvolvestructuralfailures,interferencesandpayload damages. Further, thrust oscillations can result in guidance and thrust vector control ff complicationsandtheycana ectthemotorperformance. The combustion chamber of an SRM can exhibit a vorticity generation in correspon- dence of propellant corner, obstacle or boundary layer at propellant surface. Once de- tached,thisvorticityisconvectedbytheflowanditimpactswithdownstreamobstacles. Thisinteractiongeneratesacousticsignalthatperturbsthevortexsheddingprocess. The resonantcouplingoccursifacombustionchamberacousticmodeissynchronizedwiththe vortexsheddingfrequency. Thisconditioncorrespondstothegenerationofself-sustained pressure, then thrust, oscillations. These oscillations result from the complex feedback mechanismfedbyvortexsheddingandacousticwaves,andtheyareduetothecoupling betweenfluid-dynamicsinstabilitiesandacousticresonantmodes. Other forms of instabilities can occur in a solid rocket motor, such as combustion ff instabilities. An aspect that can a ect the acoustic coupling is represented by two phase ff flowe ects. Inthiscontext,purelyacousticcouplingisconsidered,andthesephenomena areneglected. Theacousticcouplingsimulationrequiresmodelscapabletodescribeboththeacoustic and the vortical waves, including their interactions. To achieve a complete characteriza- tion of motor instability risk, it is important to obtain an accurate reconstruction of both oscillation amplitude and frequency. A complete description can be obtained by full numerical simulations, but CFD analysis require high computational costs and times, ffi andpresentdi cultiesconcerningthemodeldefinition. Usableforparticularcasesand documented situations, the obtained results are not so accurate. The fundamental char- III IV acteristicsthatmakeareduced-ordermodelausefultool,arethereducedcomputational requirementandthepossibleimprovementofrelevantprocessunderstanding. Rossiter [90, 91] developed a model that describes the aeroacoustic coupling as a feedback loop. Current calculations of SRM stability are based on a simple first-order perturbation solution. The classical approaches used in this context are the acoustic balancemethod,giveninpracticalformbyCulick[27],andthemostcompleteFlandro’s method [45]. Such methods, capable to predict the motor tendency to become unstable, donotprovideinformationsontheinstabilitylevelandonthesystemtriggering. Other ff simplified models have been proposed by Howe [55], Hirshberg and Hulsho [53] that analyzedthevortexsoundproduction. Aparticularattentionhastobeturnedtotheone-dimensionalreducedordermodels derived by Matveev [78] and Jou & Menon [63, 81]. Matveev’s model is based on a ODE system and it describes the acoustic modes excitation, accounting for the acoustic feedback on the vortex shedding. Jou and Menon developed a model for the evaluation ofthecoupled-modeoscillationfrequency. Themainideafollowedinthisresearchisproposedbyprof. B.FaviniandF.Serraglia; theirideaistheuseaquasi-onedimensionalmodel,fortheflowfieldevolutioninasolid rocketmotor,wherethevorticitydynamicsisalsodescribedbyaQ-1-Dmodel. Asfaras weknow,thisisthefirsttimethiskindofmodelinghasbeenadoptedinordertosimulate aero-acoustical phenomenon. Several exploratory studies have been performed in the lastfewyearsontheirapproach,butthemodelreachedacompletedefinitiononlyinthis doctoralthesis. In the present work, the quasi-1D reduced order model AGAR (Aerodynamically GeneratedAcousticResonance)isdevelopedintheaimofsimulatingSRMinternalflows, andconsequentlypressureandthrustoscillations. A model opted of simulating internal ballistics requires to be constituted of several sub-modelsas: a)grainburnbackmodelforthepropellantgrainsurfaceevolutionwith time (GREG, Grain REGression model) b) flow field evolution model (SPINBALL, Solid Propellant rocket motor INternal BALListics model) c) aero-acoustic simulation model (POX,it’snotanacronym). InordertovalidatetheAGARmodelandtoverifyitscapabilityanditsmaincharac- teristics,afirsttestcaseconsideredinthisworkisacoldflowinanaxisymmetricramjet combustor. Thissimplecaseallowsadetailedanalysisoftheinteractionbetweenvortex dynamicsandacousticwaves. Thenthemodelhasbeenappliedtoarealcase,representedbytheP80SRM,thefirst stageofthenewEuropeansmalllauncherVega. Duringitsqualificationanddemonstra- ff tionstaticfiringtests,themotorhasexhibitedfourdi erentphasesofpressureoscillations duringthewholeoperativelife. V ThepresentPh.D.dissertationisorganizedasfollows. Chapter 1 Anoverviewofpressureoscillationphenomenologyinasolidrocketmotor is highlighted. To understand the origin of pressure oscillations, a presentation of the basicphenomenacharacterizingtheaeroacousticcouplingisprovided. Theaeroacoustic resonancecharacterizationiscompletedwiththedescriptionofRossiter’sfeedbackloop model and its possible interpretation. Some notes about flute mode behavior, lock-in phenomenonandcombustioninstabilitiesaregiven. Thevorticalstructuredefinitionand identificationcriteriaarealsopresented. Chapter2 Thestateoftheartofthemostimportantmethodsforaeroacousticmodeling arepresented. Afterageneralhistoricalsummary,themethodsaredescribedintermsof their fundamental features. Generalities are given about the full numerical simulations. ThenMatveev’sandJouandMenon’sreducedordermodelsareintroducedandanalyzed. Chapter 3 An overview of SRM aeroacoustic mathematical model is provided, with special care in the derivation and analysis of the vorticity equation. A description of AGARquasi-onedimensionalmodelispresented. Chapter 4 The validation test case here presented is the simulation of cold flow in an axisymmetric combustor. A comparison with Jou and Menon’s results is provided. The behavior and main characteristics of AGAR model are described, and an analysis of the interactionbetweenvortexdynamicsandacousticwavesisobtained. Chapter 5 The simulation of the aeroacoustic phenomena of P80 solid rocket motor, first stage of Vega launcher, by AGAR model is considered. The experimental data and thenumericalresultsaredescribed,analyzedandcompared. VI ontents C bstract A III istof igures L F XI omenclature N XV cknowledgments A XXI ublications P XXIII eports R XXV olid ocket otor eroacoustics 1 S R M A 1 olidrocketmotors 1.1 S 1 olidrocketmotorpressureoscillations 1.2 S 2 luid dynamicsinstabilitiesandvortexshedding 1.3 F - 3 ortex obstacleinteraction 1.4 V - 5 eroacousticcoupling 1.5 A 7 ossiter smodel 1.6 R ’ 9 lutemodebehaviorandlock in 1.7 F - 11 ossiter smodelinterpretation 1.8 AR ’ 12 ortexdefinitionandidentification 1.9 V 14 ombustioninstabilitiesandstructuraldynamics 1.10 C 15 eroacousticmodeling 2 A 17 tateoftheartoftheaeroacousticmodeling 2.1 S 17 cousticbalancemethod 2.2 A 20 ortexsheddingsourcetermfortheacousticbalancemethod 2.2.1 V 22 ortex soundtheoryandacousticanalogy 2.3 V - 23 ulshoff smodel 2.4 H ’ 25 ydrodynamicstabilityanalysis 2.5 H 26 landro smethod 2.5.1 F ’ 27 nthoine smodelforsubmergenceinteraction 2.6 A ’ 28 nthoine smodelforthe numberatmaximumsoundgeneration 2.7 A ’ M 30 umericalmethod 2.8 N 31 VII VIII CONTENTS educedordermodels 2.9 R 31 ouand enon smodel 2.10 J M ’ 32 atveev smodel 2.11 M ’ 36 athematicalmodelsandtheirnumericalimplementation 3 M 39 onservationlawsandconstitutiveequations 3.1 C 39 cousticfield 3.2 A 41 orticityandcirculation 3.3 V 42 orticityequation 3.4 V 43 eroacousticmodel 3.5 A 45 orticityequation 3.5.1 V 46 ortexcreationandgrowth 3.5.2 V 48 ortexdetachmentcriterion 3.5.3 V 49 cousticexcitation 3.5.4 A 50 tructureofthe model 3.6 S AGAR 51 model 3.7 SPINBALL 51 asdynamicmodel 3.7.1 G 52 nitialandboundaryconditions 3.7.2 I 54 avitymodel 3.7.3 C 54 urningratemodel 3.7.4 B 55 eatingandignitionofthepropellantsurface 3.7.5 H 56 umericalintegrationtechnique 3.7.6 N 57 model 3.8 GREG 59 omments 3.9 C 60 umericalsimulationofoscillatorycoldflows 4 N 61 ouand enon stestcase 4.1 J M ’ 61 4.2 AGARsimulation: inletMachnumberM = 0.32 64 in ortexdetachmentcriterion 4.2.1 V 64 ourcetermsforacousticsexcitationandvorticityequation 4.2.2 S 64 4.2.3 Vorticity(Ω)distribution 65 ressureandvelocitydistribution 4.2.4 P 65 4.2.5 Pressureandvorticity(Ω)fluctuations 67 omments 4.2.6 C 70 nlet achnumbereffect 4.3 I M 70 ortexdetachmentcriterion 4.3.1 V 72 4.3.2 Vorticity(Ω)distribution 73 ressure velocityandspeedofsounddistributions 4.3.3 P , 73 4.3.4 Pressureandvorticity(Ω)fluctuations 73 omments 4.3.5 C 82 onclusions 4.4 C 83
Description: