ebook img

Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics PDF

15 Pages·2009·1.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics

Fluid-StructureInteraction. Theory,NumericsandApplications pp.283–294 HerrschingamAmmersee,29.9.-1.10.2008 Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics M.Razzaq,S.Turek,J.Hron,J.F.Acker,F.Weichert,M.Wagner,I.Q.Grunwald,C.Roth,andB.F.Romeike Asanexampleforfluid-structureinteractioninbiomedicalproblems,theinfluenceofendovascularstentimplan- tationontocerebralaneurysm hemodynamicsis numericallyinvestigated. The aim is to study the interactionof theelasticwallsoftheaneurysmwiththegeometricalshapeoftheimplantedstentstructureforprototypical2D configurations. This study can be seen as a basic step towards the understandingof the resulting complex flow phenomenaso thatin future aneurysm ruptureshallbe suppressed by an optimalsetting forthe implantedstent geometry.Fromthemathematicalside,numericaltechniquesforsolvingtheproblemoffluid-structureinteraction withanelasticmaterialinalaminarincompressibleviscousflowaredescribed.AnArbitraryLagrangian-Eulerian (ALE)formulationisemployedinafullycoupledmonolithicway,consideringtheproblemasonecontinuum.The mathematicaldescription andthe numericalschemes are designedin such a way thatmore complicatedconsti- tutiverelations(andmorerealisticforbiomechanicsapplications)forthefluidaswellasthestructuralpartcan beeasilyincorporated. Weutilizethewell-knownQ P finiteelementpairfordiscretizationinspacetogainhigh 2 1 accuracyandperformastime-steppingthe2ndorderCrank-Nicholson,resp.,Fractional-Step-q -schemeforboth solidandfluidparts. TheresultingnonlineardiscretizedalgebraicsystemissolvedbyaNewtonmethodwhichap- proximatestheJacobianmatricesbythedivideddifferencesapproach,andtheresultinglinearsystemsaresolved by iterative solvers, preferably of Krylov-multigrid type. Preliminary results for the stent-assisted occlusion of cerebralaneurysmarepresented. Sincetheseresultsarecurrentlyrestrictedto2Dconfigurations,theaimisnot to predict quantitatively the complex interaction mechanisms between stents and elastic walls of the aneurysm, buttoanalysequalitativelythebehaviourofthe elasticityofthewallsvs. thegeometricaldetailsofthestentfor prototypicalflowsituations. 1 Introduction Inthiscontribution,weconsiderthegeneralproblemofviscousflowinteractingwithanelasticbodywhichisbeing deformedby the fluid action. Such a problem is of great importancein many real life applications, and typical examplesofthistypeofproblemaretheareasofbiomedicalfluidswhichincludetheinfluenceofhemodynamic factorsinbloodvessels, cerebralaneurysmhemodynamics,jointlubricationanddeformablecartilageandblood flow interactionwith elastic veins(Appanaboyinaet al., 2008), (Valenciaet al., 2008), (Fernandezet al., 2008), (Tezduyaretal.,2007),(Tezduyaretal.,2008).Thetheoreticalinvestigationoffluid-structureinteractionproblems iscomplicatedbytheneedofa mixeddescriptionforbothparts: While forthesolidpartthenaturalviewisthe material(Lagrangian)description,forthefluiditisusuallythespatial(Eulerian)description. Inthecaseoftheir combinationsomekindofmixeddescription(usuallyreferredtoastheArbitraryLagrangian-Euleriandescription or ALE) has to be used which brings additionalnonlinearity into the resulting equations (see (Hron and Turek, 2006b)). Thenumericalsolutionoftheresultingequationsofthefluid-structureinteractionproblemposesgreatchallenges sinceitincludesthefeaturesofstructuralmechanics,fluiddynamicsandtheircoupling.Themoststraightforward solutionstrategy, mostly used in the available software packages(see for instance (Hron et al., 2002)), is to de- coupletheproblemintothefluidpartandsolidpart,foreachofthosepartsusingsomewellestablishedmethod ofsolution;thentheinteractionprocessisintroducedasexternalboundaryconditionsineachofthesubproblems. Thishastheadvantagethattherearemanywelltestednumericalmethodsforbothseparateproblemsoffluidflow andelasticdeformation,whileontheotherhandthetreatmentoftheinterfaceandtheinteractionisproblematic dueto highstiffnessand sensitivity. In contrast, the monolithicapproachdiscussed here treats the problemas a 283 singlecontinuumwiththecouplingautomaticallytakencareofasinternalinterface. Besideashortdescriptionoftheunderlyingnumericalaspectsregardingdiscretizationandsolutionprocedurefor thismonolithicapproach(see(Razzaqetal.,2008),(HronandTurek,2006a)),weconcentrateonprototypicalnu- mericalstudiesfor2Daneurysmconfigurations. Thecorrespondingparametrizationwasbasedonabstractionsof biomedicaldata(i.e.,cutplanesof3DspecimensfromNewZealandwhiterabbitsaswellascomputertomographic andmagneticresonanceimagingdataofhumanneurocrania).Inourstudies,weallowthewallsoftheaneurysmto beelasticandhencedeformingwiththeflowfieldinthevessel. Moreover,weexamineseveralconfigurationsfor stentgeometrieswhichclearlyinfluencetheflowbehaviorinsideoftheaneurysmsuchthataverydifferentelastic displacementofthewallsisobservedtoo. Wedemonstratethateithertheelasticmodelingoftheaneurysmwalls as well as the properdescription of the geometricaldetails of the shape of the aneurysmand particularlyof the stentsisofgreatimportanceifthecomplexinteractionbetweenstructureandfluidshallbequantitativelyanalyzed in future, especially in view of more realistic blood flow models and anisotropicconstitutive laws of the elastic walls. 2 Fluid-structureinteractionproblemformulation Thegeneralfluid-structureinteractionproblemconsistsofthedescriptionofthefluidandsolidfields,appropriate interfaceconditionsat the interface andconditionsfor the remainingboundaries,respectively. In this paper, we considerthe flow of an incompressibleNewtonianfluid interactingwith an elastic solid. We denote the domain occupiedbythefluidbyW bandthesolidbyW satthetimet∈[0,T]. LetG 0=W¯b∩W¯sbethepartoftheboundary t t t t t where the elastic solid interacts with the fluid. In the following, the description for both fields fields and the interfaceconditionsareintroduced. Furthermore,discretizationaspectsandsolutionproceduresarepresentedin thenextsection. 2.1 Constitutiverelationsforthefluid ThefluidisconsideredtobeNewtonian,incompressibleanditsstateisdescribedbythe velocityand pressure fieldsvb, pbrespectively.Theconstantdensityofthefluidisr bandthekinematicviscosityisdenotedbyn b. The balanceequationsare: Dvb r b =divs b, divvb=0 in W b (1) Dt t Inordertosolvethebalanceequationsweneedtospecifytheconstitutiverelationsforthestresstensors. Forthe fluidweusetheincompressibleNewtonianrelation s b=−pbI+m ((cid:209) vb+((cid:209) vb)T), (2) where m representsthedynamicviscosityofthefluidand pb istheLagrangemultipliercorrespondingto thein- compressibilityconstraintin(1). Thematerialtimederivativedependsonthechoiceofthereferencesystem.There arebasically3alternativereferencesystems: theEulerian,theLagrangian,andtheArbitraryLagrangian-Eulerian formulation. Themostcommonlyuseddescriptionforthefluid-structureinteractionistheALEdescription. For the ALE formulationpresentedin thispaper, correspondingdiscretizationtechniquesare discussed in section 3. Letusremarkthatalsononnewtonianflowmodelscanbeusedformodelingbloodflow,forinstanceofPowerLaw typeorevenincludingviscoelasticeffects(see(Damaniketal.,2008))whichisplannedforfutureextensions. 2.2 Constitutiverelationsforthestructure The structure is assumed to be elastic and compressible. Its configurationis described by the displacementus, withvelocityfieldvs= ¶ us. Thebalanceequationsare: ¶ t ¶ vs r s +r s((cid:209) vs)vs=divs s+r sg, in W s. (3) ¶ t t WritteninthemorecommonLagrangiandescription,i.e.withrespecttosomefixedreference(initial)stateW s,we have ¶ 2us r s =div(Js sF−T)+r sg, in W s. (4) ¶ t2 284 Theconstitutiverelationsforthestresstensorsforthecompressiblestructurearepresented,however,alsoincom- pressiblestructurescanbehandledinthesameway(see(HronandTurek,2006b)).Thedensityofthestructurein theundeformedconfigurationisr s. Thematerialelasticityischaracterizedbyasetoftwoparameters,thePoisson ration sandtheYoungmodulusE. Alternatively,thecharacterizationisdescribedbytheLame´coefficientsl sand theshearmodulusm s. Theseparameterssatisfythefollowingrelations l s m s(3l s+2m 2) n s= E = (5) 2(l s+m s) (l s+m s) E n sE m s= l s= , (6) 2(1+n s) (1+n s)(1−2n s) where n s =1/2 for a incompressible and n s <1/2 for a compressible structure. In the large deformationcase it is common to describe the constitutive equation using a stress-strain relation based on the Green Lagrangian straintensorE andthe2.Piola-KirchhoffstresstensorS(E)asafunctionofE.The2.Piola-Kirchhoffstresscanbe obtainedfromtheCauchystresss s as Ss=JF−1s sF−T, (7) andtheGreen-LagrangetensorE as 1 E = (FTF−I). (8) 2 Inthispaper,thematerialisspecifiedbygivingtheCauchystresstensors s bythefollowingconstitutivelawfor theSt.Venant-Kirchhoffmaterialforsimplicity 1 s s= F(l s(trE)I+2m sE)FT Ss=l s(trE)I+2m sE. (9) J J denotesthedeterminantofthedeformationgradienttensorF,definedasF=I+(cid:209) us. Similarasinthecaseof morecomplexbloodflowmodels,alsomorerealisticconstitutiverelationsfortheanisotropicbehaviorofthewalls ofaneurysmscanbeincludedwhichhoweverisbeyondthescopeofthiscontribution. 2.3 Interactionconditions Theboundaryconditionsonthefluid-solidinterfaceareassumedtobe s bn=s sn, vb=vs, on G 0, (10) t where n is a unit normalvector to the interface G 0. This implies the no-slip condition for the flow and that the t forcesontheinterfaceareinbalance. 3 Discretizationandsolutiontechniques Inthisstudy,werestrictatthemomenttotwodimensionswhichallowssystematictestsoftheproposedmethods forbiomedicalapplicationsinaveryefficientwaysuchthatthequalitatitivebehaviourcanbecarefullyanalyzed. Thecorrespondingfullyimplicit,monolithictreatmentofthefluid-structureinteractionproblemsuggeststhatan A-stablesecondordertimesteppingschemeandthatthesamefiniteelementsforboththesolidpartandthefluid regionshould be utilized. Moreover, to circumventthe fluid incompressibility constraints, we have to choose a stablefiniteelementpair. Forthatreason,theconformingbiquadratic,discontinuouslinearQ P pair,seeFigure 2 1 1forthelocationofthedegreesoffreedom,ischosenwhichwillbeexplainedinthenextsection. 3.1 Spacediscretization LetusdefinetheusualfinitedimensionalspacesUfordisplacement,V forvelocity,Pforpressureapproximation asfollows U ={u∈L¥ (I,[W1,2(W )]2),u=0on¶ W }, V ={v∈L2(I,[W1,2(W )]2)∩L¥ (I,[L2(W )]2),v=0on¶ W }, t t P={p∈L2(I,L2(W ))}, 285 y v ,u h h x p ,¶ ph,¶ ph h ¶ x ¶ y Figure1:LocationofthedegreesoffreedomfortheQ P element. 2 1 thenthevariationalformulationofthefluid-structureinteractionproblemistofind(u,v,p)∈U×V×Psuchthat theequationsaresatisfiedforall(z ,x ,g )∈U×V×Pincludingappropriateinitialconditions.ThespacesU,V,P onaninterval[tn,tn+1]wouldbeapproximatedinthecaseoftheQ ,P pairas 2 1 U ={u ∈[C(W )]2,u | ∈[Q (T)]2 ∀T ∈T ,u =0on¶ W }, h h h h T 2 h h V ={v ∈[C(W )]2,v | ∈[Q (T)]2 ∀T ∈T ,v =0on¶ W }, h h h h T 2 h h P ={p ∈L2(W ),p | ∈P(T) ∀T ∈T }. h h h h T 1 h Letusdenotebyun theapproximationofu(tn),vn theapproximationofv(tn)and pn theapproximationof p(tn). h h h ConsiderforeachT ∈T thebilineartransformationy :Tˆ →T totheunitsquareT. Then,Q (T)isdefinedas h T 2 Q (T)= q◦y −1:q∈span<1,x,y,xy,x2,y2,x2y,y2x,x2y2> (11) 2 T (cid:8) (cid:9) withninelocaldegreesoffreedomlocatedatthevertices,midpointsoftheedgesandinthecenterofthequadri- lateral. ThespaceP(T)consistsoflinearfunctionsdefinedby 1 P (T)= q◦y −1:q∈span<1,x,y> (12) 1 T (cid:8) (cid:9) with the function value and both partial derivatives located in the center of the quadrilateral, as its three local degrees of freedom, which leads to a discontinuous pressure. The inf-sup condition is satisfied (see (Boffi and Gastaldi,2002));however,thecombinationofthebilineartransformationy withalinearfunctiononthereference squareP (T)wouldimplythatthebasisonthereferencesquaredidnotcontainthefullbasis. So,themethodcan 1 atmostbefirstorderaccurateongeneralmeshes(see(Arnoldetal.,2002),(BoffiandGastaldi,2002)) b kp−p k=O(h). (13) h The standard remedy is to consider a local coordinate system (x ,h ) obtained by joining the midpoints of the opposingfacesofT (see(Arnoldetal.,2002),(RannacherandTurek,1992),(Turek,1999)).Then,wesetoneach elementT P(T):=span<1,x ,h >. (14) 1 Forthiscase,theinf-supconditionisalsosatisfiedandthesecondorderapproximationisrecoveredforthepressure aswellasforthevelocitygradient(see(BoffiandGastaldi,2002),(Gresho,1990)) kp−p k=O(h2) and k(cid:209) (u−u )k =O(h2). (15) h h 0 Forasmoothsolution,theapproximationerrorforthevelocityintheL -normisoforderO(h3)whichcaneasily 2 bedemonstratedforprescribedpolynomialsorforsmoothdataonappropriatedomains. 3.2 Timediscretization Inviewofamorecompactpresentation,theappliedtimediscretizationapproachisdescribedonlyforthefluidpart (see(Razzaq,2009)formoredetails). Inthefollowing,werestricttothe(standard)incompressibleNavier-Stokes equations v −n D v+v·(cid:209) v+(cid:209) p=f, divv=0, in W ×(0,T], (16) t 286 forgivenforcefandviscosityn ,withprescribedboundaryvaluesontheboundary¶ W andaninitialconditionat t=0. Then,theusualq -schemefortimediscretizationreads: Basicq -scheme: GivenvnandK=t −t ,thensolveforv=vn+1and p=pn+1 n+1 n v−vn +q [−n D v+v·(cid:209) v]+(cid:209) p=gn+1, divv=0, in W (17) K withrighthandsidegn+1:=q fn+1+(1−q )fn−(1−q )[−n D vn+vn·(cid:209) vn]. The parameter q has to be chosen dependingon the time-stepping scheme, e.g., q =1 for the Backward Euler (BE), or q =1/2 for the Crank-Nicholson-scheme(CN) whichwe prefer. The pressure term (cid:209) p=(cid:209) pn+1 may bereplacedbyq (cid:209) pn+1+(1−q )(cid:209) pn,butwithappropriatepostprocessing,bothstrategiesleadtosolutionsofthe sameaccuracy.Inallcases,weendupwiththetaskofsolving,ateachtimestep,anonlinearsaddlepointproblem ofgiventypewhichhasthentobediscretizedinspaceasdescribedabove. Thesetwomethods,CN andBE,belongtothegroupofOne-Step-q -schemes. TheCNschemecanoccasionally sufferfromnumericalinstabilities becauseof its onlyweak dampingproperty(notstronglyA-stable), while the BE-schemeisoffirstorderaccuracyonly(however: itisagoodcandidateforsteady-statesimulations). Another methodwhichhasproventohavethepotentialtoexcelinthiscompetitionistheFractional-Step-q -scheme(FS). It uses three different values for q and for the time step K at each time level. In (Razzaq et al., 2008), (Turek etal.,2006)weadditionallydescribedamodifiedFractional-Step-q -schemewhichparticularlyforfluid-structure interactionproblemsseemstobeadvantageous.Adetaileddescriptionwillappearinthethesis(Razzaq,2009). 3.3 Solutionalgorithms Thesystemofnonlinearalgebraicequationsarisingfromthegoverningequationsdescribedabovereads Suu Suv 0 u fu  Svu Svv kB  v = fv  (18) c BT c BT 0 p f  u s v f    p  whichisatypicalsaddlepointproblem,whereSdescribesthediffusiveandconvectivetermsfromthegoverning equations. Theabovesystemofnonlinearalgebraicequations(18)issolvedusingNewtonmethodasbasicitera- tion. ThebasicideaoftheNewtoniterationistofindarootofafunction,R(X)=0,usingtheavailableknown functionvalueanditsfirstderivative,whereX=(u ,v ,p )∈U ×V ×P. OnestepoftheNewtoniterationcan h h h h h h bewrittenas ¶ R −1 Xn+1=Xn− (Xn) R(Xn). (19) (cid:20)¶ X (cid:21) 1. LetXnbesomestartingguess. 2. SettheresiduumvectorRn=R(Xn)andthetangentmatrixA= ¶ R(Xn). ¶ X 3. Solveforthecorrectiond X Ad X=Rn. 4. Findoptimalsteplengthw . 5. UpdatethesolutionXn+1=Xn−wd X. Figure2: OnestepoftheNewtonmethodwithlinesearch. This basic iteration can exhibit quadratic convergenceprovided that the initial guess is sufficiently close to the solution. To ensure the convergenceglobally, some improvementsof this basic iteration are used. The damped Newton method with line search improves the chance of convergenceby adaptively changing the length of the correctionvector.ThesolutionupdatestepintheNewtonmethod(19)isreplacedby Xn+1=Xn−wd X, (20) 287 where the parameterw is determinedsuch thata certain error measure decreases(see (Turek,1999), (Hronand Turek, 2006a) for more details). The Jacobian matrix ¶ R(Xn) can be computed by finite differences from the ¶ X residualvectorR(X) ¶ R [R](Xn+a e )−[R](Xn−a e ) (Xn)≈ i j j i j j , (21) (cid:20)¶ X(cid:21) 2a ij j wheree aretheunitbasisvectorsinRnandthecoefficientsa areadaptivelytakenaccordingtothechangeinthe j j solutionin the previoustime step. Sincewe knowthe sparsity patternof theJacobianmatrixin advance,which is given by the used finite element method, this computation can be done in an efficient way so that the linear solverremainsthedominantpartintermsoftheCPUtime(see(Turek,1999),(TurekandSchmachtel,2002)for more details). A good candidate, at least in 2D, seems to be a direct solver for sparse systems like UMFPACK (see (Davis and Duff, 1999)); while this choice provides very robust linear solvers, its memory and CPU time requirements are too high for larger systems (i.e. more than 20.000 unknowns). Large linear problems can be solvedbyKrylov-spacemethods(BiCGStab,GMRes,see(Barrettetal.,PA1994))withsuitablepreconditioners. OnepossibilityistheILUpreconditionerwithspecialtreatmentofthesaddlepointcharacterofoursystem,where weallowcertainfill-inforthezerodiagonalblocks,see(BramleyandWang,1997). Asanalternative,wealsoutilizeastandardgeometricmultigridapproachbasedonahierarchyofgridsobtained by successive regular refinement of a given coarse mesh. The complete multigrid iteration is performed in the standarddefect-correctionsetupwiththeVorF-typecycle. Whileadirectsparsesolver(DavisandDuff,1999) isusedforthecoarsegridsolution,on finerlevelsa fixednumber(2or 4)ofiterationsbylocalMPSC schemes (Vanka-likesmoother)(Turek,1999),(Vanka,1985),(HronandTurek,2006a)isperformed. Suchiterationscan bewrittenas uvll++11=uvll−w (cid:229) SSuvuu||WW ii SSuvvv||WW ii kB0|W i−1ddeefflulv. pl+1 pl elementW icuBTs|W i cvBTf|W i 0  deflp The inverse of the local systems (39×39) can be done by hardware optimized direct solvers. The full nodal interpolationisusedastheprolongationoperatorPwithitstransposedoperatorusedastherestrictionR=PT (see (Hronetal.,2002),(Turek,1999)formoredetails). 4 Problemdescription Inthefollowing,weconsiderthenumericalsimulationofspecialproblemsencounteredintheareaofcardiovas- cularhemodynamics,namelyflowinteractionwiththick-walleddeformablematerial,whichcanbecomeauseful toolfordeeperunderstandingoftheonsetofdiseasesofthehumancirculatorysystem,asforexamplebloodcell andintimaldamagesinstenosis,aneurysmrupture,evaluationofthenewsurgerytechniquesofheart,arteriesand veins(see (Appanaboyinaetal., 2008),(Lo¨hneretal., 2008)(Valenciaet al., 2008)andthereincited literature). Inthiscontribution,prototypicalstudiesareperformedforbrainaneurysm.Theword‘aneurysm’comesfromthe latinwordaneurysmawhichmeansdilatation.Aneurysmisalocaldilatationinthewallofabloodvessel,usually anartery,duetoadefect,diseaseorinjury. Typically,astheaneurysmenlarges,thearterialwallbecomesthinner andeventuallyleaksorruptures,causingsubarachnoidhemorrhage(SAH)(bleedingintobrainfluid)orformation ofabloodclotwithinthebrain.Inthecaseofavesselrupture,thereisahemorrhage,andwhenanarteryruptures, thenthehemorrhageismorerapidandmoreintense.Inarteriesthewallthicknesscanbeupto30%ofthediameter anditslocalthickeningcanleadtothecreationofananeurysmsothattheaimofnumericalsimulationsistorelate the aneurysmstate (unruptureor rupture)with wall pressure, wall deformationand effectivewall stress. Sucha relationshipwouldprovideinformationforthediagnosisandtreatmentofunruptureandruptureofananeurysm byelucidatingtheriskofbleedingorrebleeding,respectively. Inordertousetheproposednumericalmethodsforaneurysmhemodynamics,simplifiedtwo-dimensionalexam- ples,whichhoweverincludetheinteractionoftheflowwiththedeformablematerial,areconsidered.Flowthrough adeformableveinwithelasticwallsofabrainaneurysmissimulatedtoanalysequalitativelythedescribedmeth- ods; here, the flow is drivenby prescribingthe flow velocityatthe inflow partof the boundarywhile the elastic partoftheboundaryiseitherfixedorstress-free. Bothendsofthewallsarefixedattheinflowandoutflow,and theflowisdrivenbyaperiodicalchangeoftheinflowattheleftend. 288 4.1 Geometryoftheproblem Forconvenience,thegeometryofthefluiddomainunderconsiderationiscurrentlybasedon2Dmodels(seeFig. 3) which allows us to concentrate on the detailed qualitative evaluation of our approachbased on the described monolithicALEformulation. Theunderlyingconstructionofthe(2D)shapeoftheaneurysmcanbeexplainedas follows: • Thebentbloodvesselisapproximatedbyquartercirclesaroundtheorigin. • Theinnermostcirclehastheradius6mm,thenexthas8mm,andthelastonehas8.25mm. • Thisresultsinonerigidinnerwallandanelasticwallbetween8mmand8.25mmofthickness0.25mm. Figure 3: Left: Schematic drawing of the measurement section. Middle: Mesh without stents (776 elements). Right:Meshwithstents(1431elements)whicharepartofthesimulations. The aneurysmshape is approximatedby two arcs and lines intersecting the arcs tangentially. The midpointsof thearcsarethesame(-6.75;6),theyhavetheradius1.125mmand1.25mm. Theyareintersectedtangentiallyby linesatangularvalue1.3radians. Thisresultsinawallthicknessof0.125mmfortheelasticaneurysmwalls(see Fig.3).Theexaminedstentsareofcircularshape,placedontheneckoftheaneurysm,andweusethree,resp.,five stents (simplified ‘circles’ in 2D as cutplanesfrom 3D configurations)of differentsize and position. The stents alsoconsistofagrid, immersedin thebloodflow, whichislocatedatthe inletofthe aneurysmso thatin future elasticdeformationsofthestentscanbeincluded,too,sinceinreallife,thestentisamedicaldevicewhichconsists ofawiremetalwiretube. Stentsaretypicallyusedtokeeparteriesopenandarelocatedonthevesselwallwhile thisstentisimmersedinthebloodflow(Fig.3). Thepurposeofthisdeviceistoreducethefluxintoandwithin theaneurysminordertooccludeitbyaclotorrupture.Theaneurysmisthenintersectedwiththebloodvesseland allmissingangularvaluesandintersectionpointscanbedetermined. 4.2 Boundaryandinitialconditions The(steady)velocityprofile,toflowfromtherighttotheleftpartofthechannel,isdefinedasparabolicinflow, namely vb(0,y)=U¯(y−6)(y−8). (22) Correspondingly,thepulsatileinflowprofileforthenonsteadytestsforwhichpeaksystoleanddiastoleoccurfor D t=0.25sandD t=0.75srespectively,isprescribedas vb(t,0,y)=vb(0,y)(1+0.75sin(2p t)). (23) The natural outflow condition at the lower left part effectively prescribes some reference value for the pressure variable p, here p =0. While this value could be arbitrarily set in the incompressible case, in the case of a compressible structure this might have influence onto the stress and consequently the deformation of the solid. Theno-slipconditionisprescribedforthefluidontheotherboundaryparts,i.e.topandbottomwall, stentsand fluid-structureinterface. 289 5 Numericalresults The newtonian fluid used in the tests has a density r b =1.035×10−6kg/mm3 and a kinematic viscosity n b = 3.38mm2/swhichissimilartothepropertiesofblood.IfweprescribetheinflowspeedU¯ =−50mm/s,thisresults ina ReynoldsnumberRe≈120basedon the prescribedpeaksystole inflowvelocityandthewidth ofthe veins which is 2mm such that the resulting flow is within the laminar region. Parameter values for the elastic vein in thedescribedmodelareasfollows: Thedensityoftheupperelasticwallisr s =1.12×10−6kg/mm3,solidshear modulus is m s =42.85kg/mms2, Poisson ratio is n p =0.4, Young modulus is E =120kN/mm2. As described before,theconstitutiverelationsusedforthematerialsaretheincompressibleNewtonianmodel(2)forthefluid and a hyperelastic neo-Hookean material for the solid. This choice includes most of the typical difficulties the numericalmethodhastodealwith,namelytheincompressibilityandsignificantdeformations. Fromamedicalpointofview,theuseofstentsprovidesanefficienttreatmentformanagingthedifficultentityof intracranialaneurysms. Here, thethicknessoftheaneurysmwallisattenuatedandtheaneurysmhemodynamics changessignificantly.Sincethepurposeofthisdeviceistocontrolthefluxwithintheaneurysminordertoocclude itbyaclotorrupture,theresultingflowbehaviorintoandwithintheaneurysmisthemainobjective,particularly inviewofthedifferentstentgeometries. Therefore,wedecidedforthe2Dstudiestolocatethe(2Dpartsofthe) stentsonlyindirectconnectiontotheaneurysm. ComparingourstudieswiththeCFDliterature(see(Fernandezetal.,2008),(Appanaboyinaetal.,2008),(Valencia etal.,2008),(Torrietal.,2007a),(Torrietal.,2007b)), severalresearchgroupsfocusonCFD simulationswith realistic3Dgeometries,buttypicallyassumingrigidwalls. Incontrast,weconcentrateonthecomplexinteraction between elastic deformations and flow perturbations induced by the stents. At the moment, we are only able to perform these simulations in 2D, however, with these studies we should be able to analyse qualitatively the influence of geometrical details onto the elastic material behavior, particularly in view of more complex blood modelsandconstitutiveequationsforthestructure.Therefore,theaimsofourstudiescanbedescribedasfollows: 1. Whatistheinfluenceoftheelasticityofthewallsontotheflowbehaviorinsideoftheaneurysm,particularly w.r.t.theresultingshapeoftheaneurysm? 2. Whatistheinfluenceofthegeometricaldetailsofthe(2D)stents,thatmeansshape,size,position,ontothe flowbehaviorintoandinsideoftheaneurysm? 3. Do both aspects, small-scale geometrical details as well as elastic fluid-structure interaction, have to be consideredsimultaneouslyorisoneofthemnegligibleinfirstorderapproximation? 4. AremodernnumericalmethodsandcorrespondingCFDsimulationstoolsabletosimulatequalitativelythe multiphysicsbehaviorofsuchbiomedicalconfigurations? Inthefollowing,weshowsomecorrespondingresultsforthedescribedprototypicalaneurysmgeometry,firstfor thesteadystateinflowprofile,followedbynonsteadytestsforthepulsatileinflow,bothwithrigidandelasticwalls, respectively. 5.1 Steadyconfigurations Duetothegiveninflowprofile,whichisnottime-dependent,andduetothelowRenumbers,theflowbehaviour leadstoasteadystatewhichonlydependsontheelasticityandtheshapeofthestents. Moreover,forthefollowing simulations, we only treat the aneurysm wall as elastic structure. Then, the aneurysm undergoes some slight deformationswhichcanhardlybeseeninthefollowingfigures. Howevertheyresultinadifferentvolumeofthe flowdomain(seeFig.6)andleadtoasignificantlydifferentlocalflowbehavioursincethespacingbetweenstents andelasticwallsmaychange(seethesubsequentcolorpictures). 290 Figure 4: Deformed mesh for steady configuration without stents, with elastic wall (left). Mesh for rigid wall (right). Figure5:Deformedmeshforsteadyconfigurationwithstents: 3stents(left)and5stents(right). 26.65 no stents, elastic fundus no stents, rigid walls 3 stents, elastic fundus 5 stents, elastic fundus 26.6 26.55 volume 26.5 26.45 26.4 26.35 1 2 3 4 5 6 7 8 time step Figure6:Resultingvolumeofthefluiddomainfordifferentconfigurations. Inthefollowingpictures,wevisualizethedifferentflowbehaviourbycoloringduethevelocitymagnitudeandby showingcorrespondingvectorplotsinsideoftheaneurysm.Particularlytheinfluenceofthenumberofstentsonto thecompletefluidflowthroughthechannelincludingtheaneurysmcanbeclearlyseen. 291 Figure7:Rigidwallwithoutstents. Figure8:Elasticaneurysmwallwithoutstents. Figure9:Elasticaneurysmwallwith3stents. Figure10:Elasticaneurysmwallwith5stents. 292

Description:
Fernandez, M. A.; Gerbeau, J.-F.; Martin, V.: Numerical simulation of blood flows through a porous interface. Meth. Fluids., 11, (1990), 587–620. 296
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.