ebook img

Numerical Simulation of Chemically Reactive Hypersonic Flows PDF

155 Pages·2006·18.426 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Simulation of Chemically Reactive Hypersonic Flows

Numerical Simulation of Chemically Reactive Hypersonic Flows VonderFakulta¨tfu¨rMaschinenwesender Rheinisch-Westfa¨lischenTechnischenHochschuleAachen zurErlangungdesakademischenGradeseinesDoktors derIngenieurwissenschaftengenehmigteDissertation vorgelegtvon SanjeevKumar,M.Tech. aus Motihari,Indien Berichter: Universita¨tsprofessorDr.-Ing.H.Olivier Universita¨tsprofessorDr.-Ing.J.Ballmann Tagdermu¨ndlichenPru¨fung: 22.Dezember2005 DieseDissertationistaufdenInternetseitenderHochschulbibliothekonlineverfu¨gbar. Berichte aus der Luft- und Raumfahrttechnik Sanjeev Kumar Numerical Simulation of Chemically Reactive Hypersonic Flows D 82 (Diss. RWTH Aachen) Shaker Verlag Aachen 2006 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.ddb.de. Zugl.: Aachen, Techn. Hochsch., Diss., 2005 Copyright Shaker Verlag 2006 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers. Printed in Germany. ISBN-10: 3-8322-5065-4 ISBN-13: 978-3-8322-5065-2 ISSN 0945-2214 Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • eMail: [email protected] Preface ThepresentthesisistheresultofmyworkasaresearchscholarattheShockWaveLaboratoryof theAachenUniversity,Germany.PartofthisworkwasfundedbytheGermanResearchFoundation (DFG)undertheGraduatestudyprogramme”Transportprocessesinhypersonicflow”. I am greatly indebted to Prof. Dr.-Ing. Herbert Olivier, the Institute director and my supervisor, forprovidingmetheexcitingopportunitytoworkonthisresearchproject,andforhiscompetent guidanceandmotivationthroughouttheproject.Hisdiverseinterestandexperienceinthefieldof hypersonicflows,playedamajorroleinthecompletionofthisresearchproject.Hehadbeenvery supportivetomethroughoutmystayattheinstitute.Ithasbeenagreatexperiencetoworkunderhis supervision. I would like to express my deep gratitude to Prof. Dr.-Ing. Josef Ballmann for providingme the opportunitytoworkwithQUADFLOW,andforhisexcellentsuggestionsinthepresentationofthe results.Heplayedamajorroleinshapingthemainpartofthisresearch.Thisworkcouldnothave beencompletedwithouthisfinancialsupport,whenitwasmostneeded. IamespeciallygratefultoPriv.-Doz.Dr.SiegfriedMu¨llerforthevaluablehelpandconsistentgui- danceonrealgasmodellingandgridadaptation.Hehasbeenverysupportiveonmanyoccasions duringthisresearch.IwouldliketoexpressmyspecialthankstoDr.-Ing.FrankD.Bramkampfor hisconsistentguidancerelatedtotheflowsolverpartofQUADFLOW,andDipl.-Math.PhilippLam- byforprovidingthegridsneededforthecomputations.Thesethreepeoplearethefounderdevelopers oftheQUADFLOWanditwasanenrichingexperiencewhileworkingwiththem. MyspecialthanksgoestomycolleagueDipl.-Phys.FlorianZus,whojoinedtheinstitute,atthelater stageofmythesis.Wehadsomuchfruitfuldiscussionsonrealgasmodelling,whichhelpedmealot ininterpretingthecomputationalresults.Iwasfortunatetohavesuchacolleague. IwishtothankDr.-Ing.BirgitU.Reinartzforherexcellentsuggestionsrelatedtoshock-shockinter- actionstopic. IwishtoexpressmythankstoallmycolleaguesoftheShockWaveLaboratory,fortheirsupport andthegreatenjoyableworkenvironmenttheycreatedintheinstitute.Ithasbeenagreatpleasureto workwithallofthem. Last,butnotleast,IwouldliketothankmywifePunamforhertrust,supportandencouragement throughoutthisresearchwork. Abstract Tostudytheatmosphericreentryphaseofaspacevehicle,itisnecessarytounderstandcorrectlythe thermochemicalnonequilibriumprocessescoupledwiththeaerodynamicphenomenaofthiscritical phase.Inatypicalhypersonicflowaboutabluntbody,thestrengthofthebowshockissuchthatthe regionbetweenthebodysurfaceandshockisthesiteofintensivethermochemicalprocesses.The differentinternalenergymodesofthemoleculesarefarfromtheirequilibriumstate.Theenergyex- changesbetweenthesedifferentmodesoccuraccordingtotheindividualrelaxationtimeassociated toeachprocesses.Detailedphysico-chemicalmodelsforairinchemicalandthermalnonequilibrium areneededforarealisticpredictionofhypersonicflowfields.Oneofthekeyissuesinthedesignof ahypersonicvehicleistheevaluationofaerodynamicheating.Especially,shock-shockinterference heatingphenomenaisanimportantandcriticalprobleminthedevelopmentofair-breathinghyperso- nicvehicles.OfspecialinterestistheEdneytypeIVinteraction,becauseitisknowntogeneratethe highestlocalloadsinpressureandheattransfer.Anumberofnumericalstudiesonshock-shockinter- ferenceproblemshavebeenconducted.Mostofthesestudies,however,assumeaperfectgasmodel. Forhigh-enthalpyhypersonicshock-shockinteractions,however,realgaseffectsbecomeimportant. Realgaseffectscanhaveanoticeableimpactonflowfeatures,suchasshockstand-offdistanceina bluntbodyflowandsurfaceheatingrates.Becauseoftheirimportance,realgaseffectshaverecently beenthefocusofseveralstudies.Animprovedunderstandingoftheinfluencesofrealgaseffectson theshockinteractionphenomenonreducesasignificantelementofriskinthedesignofhypersonic vehicles. Intheframeworkofthepresentwork,theadaptiveCFDcodeQUADFLOWhasbeenextendedfora fivecomponentsairmodel.Differentthermochemicalmodelswereimplemented.Theuncertainties associatedwiththephysico-chemicalmodellingandtheirinfluenceontheflowfieldsarediscussed with the help of computationalresults. Further, an attempt has been made to improvethe under- standingofinfluenceoftherealgaseffectsonthetypeIVshock-shockinteractionsbythepresent computationalstudy.Inthisregard,aseriesofnumericalsimulationsoftheexperimentsconductedat GALCITT5hypervelocityshocktunnelonshock-shockinteractionswerecarriedout.Thecomputed resultsarediscussedincomparisonwiththeexperimentalresultsandcomputationalresultsofDLR FLOWer-Code,whichisanon-adaptiveRANS-solver. Contents Listoffigures VII Listofsymbols XIV 1 Introduction 1 1.1 Relevantphysicsofhypersonicflows. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Shock-shockinteraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Objectiveofthepresentwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Physicalmodelling 5 2.1 Governingequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Thermochemicalmodelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Thermodynamicrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1.1 Differentformsofenergy . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1.2 Mixtureproperties . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Chemicalkineticmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Vibration-dissociationcoupling . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3.1 Parkmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 TreanorandMarronemodel . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Relaxationprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.4.1 Vibrational-translationalenergyexchange . . . . . . . . . . . . . 22 2.2.4.2 Vibrational-vibrationalenergyexchange . . . . . . . . . . . . . . 24 2.3 Transportphenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Masstransport-Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Momentumtransport-Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 Energytransport-Heatconduction . . . . . . . . . . . . . . . . . . . . . . 27 3 Numericalmethod 29 3.1 Gridgeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Finitevolumediscretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 Numericalfluxformulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1.1 Discretizationofinviscidfluxes . . . . . . . . . . . . . . . . . . . 32 Contents V 3.3.1.2 Extensiontohigherorderaccuracy . . . . . . . . . . . . . . . . . 34 3.3.1.3 Discretizationofdiffusivefluxes . . . . . . . . . . . . . . . . . . 35 3.4 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.1 Supersonicinflowcondition . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.2 Supersonicoutflowcondition . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.3 Wallboundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.4 Planeofsymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Time-integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Two-dimensionalaxisymmetricEulerequations . . . . . . . . . . . . . . . . . . . . 37 3.7 One-dimensionalEulerequationsforsteadyflow . . . . . . . . . . . . . . . . . . . 38 4 Relaxationbehindnormalshocks 39 5 Computationoftwodimensionalflows 50 5.1 Inviscidnonreactiveflowoveradoubleellipse . . . . . . . . . . . . . . . . . . . . . 50 5.2 Inviscidairflowoveracircularcylinder . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3 Nitrogenflowoveracircularcylinder . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Inviscidairflowoverasphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6 Shock-on-shockinteractioninhypersonicviscousflow 72 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2 Shock-waveinterferencepatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2.1 TypeIIIinterferencepattern . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2.2 TypeIVinterferencepattern . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3 Realgaseffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.4 Reviewofpreviouswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5 ResultsandDiscussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.5.1 Flowswithoutshock-shockinteraction . . . . . . . . . . . . . . . . . . . . 81 6.6 Flowswithshockimpingement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.6.1 CaseA,shockangle . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.2 CaseA,shockangle . . . . . . . . . . . . . . . . . . . . . . . . 90 6.6.3 CaseB,shockangle . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.4 CaseB,shockangle . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.6.5 CaseC,shockangle . . . . . . . . . . . . . . . . . . . . . . . . 102 6.6.6 CaseC,shockangle . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.7 Summaryoftheresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.