ebook img

Numerical Simulation of Acoustofluidic Manipulation by Radiation Forces and Acoustic Streaming ... PDF

166 Pages·2015·12.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Simulation of Acoustofluidic Manipulation by Radiation Forces and Acoustic Streaming ...

ETH Library Numerical Simulation Tools for the Design and the Analysis of Acoustofluidic Devices Doctoral Thesis Author(s): Hahn, Philipp Publication date: 2015 Permanent link: https://doi.org/10.3929/ethz-a-010606727 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Diss. ETH No. 23041 Numerical Simulation Tools for the Design and the Analysis of Acoustofluidic Devices A thesis submitted to attain the degree of DOCTOR OF SCIENCE of ETH ZURICH (Dr. sc. ETH Zurich) presented by PHILIPP HAHN MSc., University of Wisconsin-Madison born March 20, 1984 citizen of Germany accepted on the recommendation of Prof. Dr. Jürg Dual, examiner Prof. Dr. Henrik Bruus, co-examiner 2015 Acknowledgements The present work was carried out at the Institute of Mechanical Systems (IMES) at ETH Zürich from 2010 to 2015. I would like to express my gratitude for valuable contributions to this work and for the support I received: • Prof. Dr. Jürg Dual, my supervisor, for his guidance and for the opportunity to pursue this research project. I particularly appreciated the excellent work- ing conditions at the institute and the academic freedom to explore the full spectrum of theoretical, numerical, and experimental research. • Prof. Dr. Henrik Bruus for kindly accepting to be my co-examiner, reviewing my thesis, and supporting me with expert feedback. • MyformeradvisorsProf. Dr. PeterEberhardfromtheUniversityofStuttgart, Prof. Dan Negrut from the University of Wisconsin at Madison, and Dr. Abhinandan Jain from JPL Caltech. I continue to benefit from everything I learned from them. • Ueli Marti and Jean Claude Tomasina for immediate solutions for all kinds of electronic and mechanical problems. • Allthestudentsthathavewrittenathesisundermysupervision. Inparticular, I am happy that the numerical research in our group will be continued by Thierry Baasch in his PhD project. • Gabriela Squindo, Beate Fonfé, and Dr. Stephan Kaufmann for their excellent administrative and IT support. • Robert Ernst for the afternoon workout sessions. • All my colleagues at the Center of Mechanics for the discussions over lunch and the good time we had together. Finally, I would like to thank my family and my friends for their support throughout the whole time. Philipp Hahn Zurich, Juli 2015 iii Contents Abstract vii Zusammenfassung ix List of Symbols and Acronyms xiii 1. Introduction 1 1.1. Acoustofluidic particle manipulation . . . . . . . . . . . . . . . . . . . 1 1.1.1. A brief history of theoretical acoustofluidics . . . . . . . . . . 2 1.1.2. Alternative manipulation techniques . . . . . . . . . . . . . . 2 1.1.3. Applications of acoustofluidic particle manipulation . . . . . . 4 1.2. Overriding research question . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4. Numerical modeling of acoustofluidic processes . . . . . . . . . . . . . 9 1.4.1. Governing equations . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2. Device modeling . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.3. Modeling of acoustic streaming . . . . . . . . . . . . . . . . . 21 1.4.4. Modeling of acoustic radiation forces . . . . . . . . . . . . . . 26 1.4.5. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 33 2. A Numerically Efficient Damping Model for Acoustic Resonances in Mi- crofluidic Cavities 35 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2. Damped device resonances . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.1. Basic device model . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.2. Quantification of losses in a device . . . . . . . . . . . . . . . 40 2.3. Damping mechanisms in the fluid cavity . . . . . . . . . . . . . . . . 44 2.3.1. Viscous damping in the bulk . . . . . . . . . . . . . . . . . . . 45 2.3.2. Thermal damping in the bulk . . . . . . . . . . . . . . . . . . 46 2.3.3. Viscous damping at the cavity walls . . . . . . . . . . . . . . . 46 2.3.4. Thermal damping at the cavity walls . . . . . . . . . . . . . . 48 2.3.5. Viscous damping due to suspended particles . . . . . . . . . . 50 2.3.6. Radiation losses . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.7. Other losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.4.1. Validation for viscous damping at cavity walls . . . . . . . . . 56 2.4.2. Validation for thermal damping at cavity walls . . . . . . . . . 61 2.4.3. Validation for viscous damping due to suspended particles . . 62 2.5. Implementation of an efficient numerical device model . . . . . . . . . 65 v Contents 2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Modeling and Optimization of Acoustofluidic Micro-Devices 73 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2. Modeling of acoustofluidic Devices . . . . . . . . . . . . . . . . . . . . 76 3.2.1. The Basic Device Model . . . . . . . . . . . . . . . . . . . . . 76 3.2.2. Advanced Modeling and Acoustic Streaming . . . . . . . . . . 78 3.2.3. Material Properties and Loss Mechanisms . . . . . . . . . . . 79 3.2.4. Remarks on the Numerical Implementation . . . . . . . . . . . 81 3.3. Device Design by Genetic Algorithm Optimization . . . . . . . . . . . 82 3.3.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.2. Parametrization of the Device . . . . . . . . . . . . . . . . . . 83 3.3.3. Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.4. Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4. Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.4.1. Optimization of a Planar Resonator . . . . . . . . . . . . . . . 85 3.4.2. Optimization of a 3D Micro-Device . . . . . . . . . . . . . . . 89 3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. NumericalSimulationofAcoustofluidicManipulationbyRadiationForces and Acoustic Streaming for Complex Particles 95 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2. Numerical model for the simulation of acoustofluidic particle motion . 99 4.2.1. Time-harmonic device model . . . . . . . . . . . . . . . . . . . 99 4.2.2. Acoustic streaming in the fluid cavity . . . . . . . . . . . . . . 102 4.2.3. Acoustic radiation forces and torques on complex particles . . 103 4.2.4. Time-averaged particle dynamics model . . . . . . . . . . . . . 104 4.3. Simulation results and discussion . . . . . . . . . . . . . . . . . . . . 107 4.3.1. Rotation of a glass micro-fiber . . . . . . . . . . . . . . . . . . 108 4.3.2. Trajectory of an alumina micro-disk in a 1D field . . . . . . . 109 4.3.3. Trajectory of a red blood cell in a realistic micro-device . . . . 115 4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5. Conclusions and Outlook 119 A. Material parameters 123 B. Numerical expressions 125 References 129 Curriculum vitae 143 List of Publications 145 Journal publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Conference proceedings: talks and posters . . . . . . . . . . . . . . . . . . 146 Book contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 vi Abstract The research domain of acoustofluidics is concerned with the effects of acoustic fields inside fluidic devices. The arising time-averaged phenomena called acoustic streaming and acoustic radiation forces can be used to manipulate fluid-suspended micro-particlesinacontactlessfashion. Ihasbeenshownthatacoustofluidicparticle handling has some clear advantages over competing technologies like hydrodynamic, dielectrophoretic, magnetophoretic, or optical manipulation strategies. Acoustoflu- idic particle manipulation does not require specific electric, magnetic, or optical particle properties and it is known for excellent cell viability when processing living biological samples like cells, bacteria, or larger organisms. Massively parallel parti- cle manipulation can be achieved easily because the acoustic force fields spread over the volume of the fluid cavity, enabling the simultaneous manipulation of hundreds or thousands of particles at a time. During the past years, a number of promis- ing applications in the miniaturization of process steps in the life sciences has been demonstrated by experimental acoustofluidic setups. In this context, miniaturiza- tion is key for the development of novel products such as medical diagnostic rapid tests since it allows to drastically reduce the sample size and the processing time. Despite the significant economic potential of these applications, acoustofluidic de- vices did not have their large-scale commercial break through yet. This is mainly due to the fact that commercial process standards are challenging to meet in terms of reliability, integrability, and efficiency. Thecomplexityoftheunderlyingphysicsishighbecausetheinteractionsbetween the piezo-electric transducer, the structural device design, the device support, and the loading with different fluid-particle suspensions give rise to a large variety of acoustofluidic effects. At first glance, most experimental setups look simple but the interdependencies are too involved to be understood intuitively. This limits the success of classical design approaches based on "design-experiment-redesign- experiment-...". Due to the microscale of the device and the acoustofluidic effects, experimental analysis techniques can also not provide sufficient insight to develop a good sense of cause and effect. This is an important problem for both the analysis of existing devices and the design of new devices. As the field of acoustofluidics is moving toward commercial applications, the problem will become even more cru- cial. An increased control over the device design and the acoustofluidic processes is required to meet commercial standards. Numerical modeling can play a key role in meeting theses goals. In this thesis, the numerical modeling of acoustofluidic devices and processes is reviewed and augmented to gain a more detailed understanding of acoustofluidic devices, the underlying physical effects, and their interplay. A second goal is to advance simulation models to a degree of accuracy that allows a quantitative pre- vii Abstract diction of acoustofluidic manipulation processes and the use of automatic device design strategies. Damping limits the attainable acoustic amplitudes and acoustofluidic forces for the particle manipulation but it is not easily included in a numerical device model. In the acoustofluidic community, losses in the fluid are often approximated by an empirically estimated loss factor. However in reality, the fluid cavity loss factor can vary dramatically within a narrow frequency bandwidth because of its sensitivity on the mode-specific boundary layer pattern at the cavity walls. To achieve a quantita- tively accurate prediction of the acoustofluidic forces, a damping model including all relevant acoustofluidic damping effects is developed. Semi-analytical expressions are derived for the use in numerically efficient 3D simulations of realistic acoustofluidic micro-devices. In order to make a first step toward a more systematic and widely automatic device design approach, the combination of numerical device simulation and opti- mization routines is investigated. The discussion includes the mathematical formu- lation of the optimization problem, the definition of a suitable objective function, and the parameterization of the device design. Further, the implementation of the optimization loop is addressed alongside with practical recommendations for the chosen genetic algorithm optimization. The planar resonator with an established set of optimal layer thicknesses serves as a validation example for the new device de- sign strategy. The optimization of a typical 3D micro-device indicates that devices can be designed to generate any physically feasible acoustic mode shape at maxi- mum pressure amplitude. The presented automatic design approach can speed up and facilitate the design-process of acoustofluidic micro-devices. It represents a step toward the development of commercial level devices as optimal device performance and integrability into other process steps can be achieved. The numerical prediction of acoustofluidic particle motion is of great help for the design, the analysis, and the physical understanding of acoustofluidic devices. It also allows a simple and direct comparison with experimental observations. A 3D trajectory simulation setup is presented to cover the full spectrum, comprising a time-harmonic device model, an acoustic streaming model of the fluid cavity, a radi- ation force simulation, and the calculation of the hydrodynamic drag. The acoustic radiation forces and the hydrodynamic drag are calculated numerically to handle particles of arbitrary shape, structure, and size. In this way, complex 3D particle translation and rotation inside experimental micro-devices can be predicted. Differ- ent applications of non-spherical particle manipulation are simulated and validated against experimental observations. To demonstrate the full capability of the simula- tion setup, the motion of a red blood cell inside a realistic micro-device is simulated under the simultaneous effects of acoustic streaming and radiation forces. viii Zusammenfassung Das Forschungsgebiet der Akustofluidik beschäftigt sich mit den physikalischen Ef- fekten in flüssigkeitsgefüllten Kavitäten, welche durch akustische Felder hervorge- rufen werden. Akustische Strahlungskräfte (acoustic radiation force) und akustisch induzierteStrömungen(acousticstreaming)könnenzurManipulationvonMikropar- tikeln in Flüssigkeiten genutzt werden. Gegenüber alternativen Technologien wie Dielektrophorese, Magnetophorese, sowiehydrodynamischeroderoptischerPartikel- manipulation, hat die akustofluidische Partikelmanipulation klare Vorteile. Im Ge- gensatz zu den genannten Technologien ist die Anwendung der akustofluidischen Partikelmanipulation nicht durch spezielle elektrische, magnetische oder optische AnforderungenandiePartikelbeschaffenheitbeschränkt. InExperimentenmitleben- den Proben wie Zellen, Bakterien oder größeren Organismen hat sich zudem gezeigt, dasshervorragendeÜberlebensquotenerreichtwerdenkönnen. Dasichdiegenutzten akustofluidischen Krafteffekte über das gesamte Fluidvolumen erstrecken, können hunderte oder tausende Partikel gleichzeitig manipuliert werden können, was für viele Anwendungen vorteilhaft ist. Mithilfe akustofluidischer Ansätze ist es in den letzten Jahren gelungen eine Vielzahl biowissenschaftlicher Prozessschritte zu miniaturisieren. Dadurch kann eine enorme Reduktion der Testvolumina und der Prozesszeitenerzieltwerden, wasfürdieEntwicklungneuartigerGerätewiediagnos- tischer Schnelltests für Medizinanwendungen von essenzieller Bedeutung ist. Trotz demhohemwirtschaftlichenPotentialistesbislangjedochnochnichtgelungenkom- mertiellen Anwendungen im großen Maßstab zu erschließen. Ein Hauptgrund dafür ist die Schwierigkeit die hohen Anforderungen bezüglich Verlässlichkeit, Integrier- barkeit und Effizienz zu erreichen. Die meisten akustofluidischen Geräte erscheinen einfach. Die Komplexität der zugrunde liegenden physikalischen Effekte ist jedoch sehr hoch weil das Zusam- menspiel zwischen der piezoelektrischen Anregung, den Strukturkomponenten, der Auflage und der Befüllung mit unterschiedlichen Fluid-Partikel Suspensionen eine große Bandbreite akustofluidischer Effekte hervorruft. Zieht man zudem noch die Abhängigkeit der Effekte von verschiedenen Parametern in Betracht, ist es meist nicht mehr möglich ein intuitives Verständnis der Zusammenhänge zu erlangen. Der ErfolgklassischerEntwicklungsstrategien, basierendaufdemPrinzip"Konstruktion- Experiment-Anpassung-Experiment-..." wird dadurch stark begrenzt. Aufgrund ex- trem kleiner Gerätedimensionen können auch experimentelle Analyse- und Messver- fahren derzeit keinen hinreichend detaillierten Einblick in die physikalischen Vor- gänge im Innern der Mikrokavität bieten. Ursache-Wirkungs-Zusammenhänge blei- ben so schwer zu erkennen. Dies ist ein großes Problem für die Analyse bestehender und die Konstruktion neuer Experimente, besonder dann, wenn kommerzielle An- wendungenangestrebtwerden. EineverbesserteKontrolleüberdieakustofluidischen Effekte und die Gerätekonstruktion ist erforderlich, um die erforderlichen Prozess- ix

Description:
2.4.2. Validation for thermal damping at cavity walls . 61. 2.4.3. Validation for viscous damping due to suspended particles 62. 2.5. tutorial series [24]. With the growing performance of computing hardware and readily available sim- ulation software, numerical acoustofluidic device models
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.