ebook img

Numerical PDE-Constrained Optimization PDF

129 Pages·2015·1.741 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical PDE-Constrained Optimization

SpringerBriefs in Optimization SeriesEditors PanosM.Pardalos Ja´nosD.Pinte´r StephenRobinson Tama´sTerlaky MyT.Thai SpringerBriefsinOptimizationshowcasealgorithmicandtheoreticaltechniques,case studies, and applications within the broad-based field of optimization. Manuscripts related to the ever-growing applications of optimization in applied mathematics, engi- neering,medicine,economics,andotherappliedsciencesareencouraged. Forfurthervolumes: http://www.springer.com/series/8918 Juan Carlos De los Reyes Numerical PDE-Constrained Optimization JuanCarlosDelosReyes CentrodeModelizacio´nMatema´tica(MODEMAT) andDepartmentofMathematics EscuelaPolite´cnicaNacionalQuito Quito Ecuador ISSN2190-8354 ISSN2191-575X(electronic) SpringerBriefsinOptimization ISBN978-3-319-13394-2 ISBN978-3-319-13395-9(eBook) DOI10.1007/978-3-319-13395-9 LibraryofCongressControlNumber:2014956766 Mathematics SubjectClassification (2010):49K20,49K21,49J20,49J21,49M05,49M15,49M37,65K10, 65K15,35J25,35J60,35J86. SpringerChamHeidelbergNewYorkDordrechtLondon © TheAuthor(s)2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknown orhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissions thatmayhavebeenmade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) ToMar´ıaSoledadandEsteban Preface Inrecentyears,thefieldofpartialdifferentialequation(PDE)-constrainedoptimization hasreceivedasignificantimpulsewithlargeresearchprojectsbeingfundedbydifferent national and international agencies. A key ingredient for this success is related to the wideapplicabilitythatthedevelopedresultshave(e.g.,incrystalgrowth,fluidflow,or heat phenomena). In return, application problems gave rise to further deep theoretical and numerical developments. In particular, the numerical treatment of such problems hasmotivatedthedesignofefficientcomputationalmethodsinordertoobtainoptimal solutionsinamanageableamountoftime. AlthoughsomebooksonoptimalcontrolofPDEshavebeeneditedinthepastyears, they are mainly concentrated on theoretical aspects or on research-oriented results. At themoment,thereisalackofstudentaccessibletextsdescribingthederivationofopti- malityconditionsandtheapplicationofnumericaloptimizationtechniquesforthesolu- tionofPDE-constrainedoptimizationproblems.Thistextisdevotedtofillthatgap. Bypresentingnumericaloptimizationmethods,theirapplicationtoPDE-constrained problems, the resulting algorithms and the corresponding MATLAB codes, we aim to contribute to make the field of numerical PDE-constrained optimization accessible to advancedundergraduatestudents,graduatestudents,andpractitioners. Moreover,recentresultsintheemergingfieldofnonsmoothnumericalPDE-constrai- nedoptimizationarealsopresented.Uptotheauthor’sknowledge,suchresultsarenot partofanymonographyet.Weprovideanoverviewonthederivationofoptimalitycon- ditionsandonsomesolutionalgorithmsforproblemsinvolvingboundconstraints,state constraints,sparsityenhancingcostfunctionals,andvariationalinequalityconstraints. After an introduction and some preliminaries on the theory and approximation of partial differential equations, the theory of PDE-constrained optimization is presented. vii viii Existenceofoptimalsolutionsandoptimalityconditionsareaddressed.Weuseageneral frameworkthatallowstotreatbothlinearandnonlinearproblems.Firstorderoptimality conditions are presented by means of both a reduced approach and a Lagrange multi- plier methodology. The derivation is also illustrated with several examples, including linearandnonlinearones.Alsosufficientsecond-orderconditionsaredevelopedandthe applicationtosemilinearproblemsisexplained. The next part of the book is devoted to numerical optimization methods. Classical methods (descent, Newton, quasi-Newton, sequential quadratic programming (SQP)) arepresentedinageneral Hilbert-spaceframeworkandtheirapplicationtothespecial structureofPDE-constrainedoptimizationproblemsexplained.Convergenceresultsare presentedexplicitlyforthePDE-constrainedoptimizationstructure.Thealgorithmsare carefullydescribedandMATLABcodes,forrepresentativeproblems,areincluded. Thebox-constrainedcaseisaddressedthereafter.Thischapterfocusesonboundcon- straints on the design (or control) variables. First- and second-order optimality condi- tions are derived for this special class of problems and solution techniques are stud- ied. Projection methods are explained on basis of the general optimization algorithms developedinChap.4.Inaddition,thenonsmoothframeworkofprimal-dualandsemis- mooth Newton methods is introduced and developed. Convergence proofs, algorithms, andMATLABcodesareincluded. In the last chapter, some representative nonsmooth PDE-constrained optimization problems are addressed. Problems with cost functionals involving the L1-norm, with state constraints, or with variational inequality constraints are considered. Numerical strategiesforthesolutionofsuchproblemsarepresentedtogetherwiththecorrespond- ingMATLABcodes. This book is based on lectures given at the Humboldt-University of Berlin, at the UniversityofHamburg,andatthefirstEscueladeControlyOptimizacio´n(ECOPT),a summer school organized together by the Research Center on Mathematical Modeling (MODEMAT) at EPN Quito and the Research Group on Analysis and Mathematical ModelingValpara´ıso(AM2V)atUSMChile. Contents 1 Introduction...................................................... 1 1.1 IntroductoryExamples ......................................... 1 1.1.1 OptimalHeating........................................ 1 1.1.2 OptimalFlowControl ................................... 2 1.1.3 ALeastSquaresParameterEstimationProbleminMeteorology 3 1.2 AClassofFinite-DimensionalOptimizationProblems .............. 4 2 BasicTheoryofPartialDifferentialEquationsandTheirDiscretization . 9 2.1 NotationandLebesgueSpaces .................................. 9 2.2 WeakDerivativesandSobolevSpaces ............................ 10 2.3 EllipticProblems.............................................. 13 2.3.1 PoissonEquation ....................................... 13 2.3.2 AGeneralLinearEllipticProblem......................... 15 2.3.3 NonlinearEquationsofMonotoneType .................... 16 2.4 DiscretizationbyFiniteDifferences .............................. 20 3 TheoryofPDE-ConstrainedOptimization ........................... 25 3.1 ProblemStatementandExistenceofSolutions ..................... 25 3.2 FirstOrderNecessaryConditions ................................ 27 3.2.1 DifferentiabilityinBanachSpaces......................... 27 3.2.2 OptimalityCondition.................................... 30 3.3 LagrangianApproach .......................................... 33 3.4 SecondOrderSufficientOptimalityConditions..................... 38 ix x Contents 4 NumericalOptimizationMethods................................... 43 4.1 DescentMethods ............................................. 44 4.2 Newton’sMethod ............................................. 53 4.3 Quasi-NewtonMethods ........................................ 60 4.4 SequentialQuadraticProgramming(SQP)......................... 65 5 Box-ConstrainedProblems......................................... 69 5.1 ProblemStatementandExistenceofSolutions ..................... 69 5.2 OptimalityConditions ......................................... 70 5.3 ProjectionMethods............................................ 75 5.4 PrimalDualActiveSetAlgorithm(PDAS) ........................ 80 5.5 SemismoothNewtonMethods(SSN) ............................. 86 6 NonsmoothPDE-ConstrainedOptimization.......................... 91 6.1 SparseL1-Optimization ........................................ 91 6.2 PointwiseStateConstraints ..................................... 96 6.3 VariationalInequalityConstraints ................................ 101 6.3.1 InequalitiesoftheFirstKind.............................. 103 6.3.2 InequalitiesoftheSecondKind ........................... 110 References............................................................ 119 Index ................................................................ 123 Chapter 1 Introduction 1.1 IntroductoryExamples 1.1.1 OptimalHeating Let Ω be a bounded three-dimensional domain with boundary Γ, which represents a body that has to be heated. We may act along the boundary by setting a temperature u=u(x)and,inthatmanner,change thetemperaturedistributioninsidethebody. The goaloftheproblemconsistsingettingascloseaspossibletoagivendesiredtemperature distributionz (x)inΩ . d Mathematically,theproblemmaybewrittenasfollows: (cid:2) (cid:2) 1 α min J(y,u)= (y(x)−z (x))2dx+ u(x)2ds, d 2 Ω 2 Γ subjectto: ⎫ −Δ y=0 inΩ ,⎬ ∂y =ρ(u−y) inΓ,⎭Stateequation ∂n u ≤u(x)≤u , Controlconstraints a b where u ,u ∈ R such that u ≤ u . The control constraints are imposed if there is a b a b a technological limitation on the maximum or minimum value of the temperature to be controlled. The scalar α>0 can be interpreted as a control cost, which, as a by- product,leadstomoreregularsolutionsoftheoptimizationproblem.Thefunctionρ(x) ©TheAuthor(s)2015 1 J.C.DelosReyes,NumericalPDE-ConstrainedOptimization, SpringerBriefsinOptimization, DOI10.1007/978-3-319-13395-9 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.