ebook img

Numerical Optimization with Computational Errors PDF

308 Pages·2016·2.269 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Optimization with Computational Errors

Springer Optimization and Its Applications 108 Alexander J. Zaslavski Numerical Optimization with Computational Errors Springer Optimization and Its Applications VOLUME108 ManagingEditor PanosM.Pardalos(UniversityofFlorida) Editor–CombinatorialOptimization Ding-ZhuDu(UniversityofTexasatDallas) AdvisoryBoard J.Birge(UniversityofChicago) C.A.Floudas(PrincetonUniversity) F.Giannessi(UniversityofPisa) H.D.Sherali(VirginiaPolytechnicandStateUniversity) T.Terlaky(McMasterUniversity) Y.Ye(StanfordUniversity) AimsandScope Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques havebeendeveloped,thediffusionintootherdisciplineshasproceededata rapidpace,andourknowledgeofallaspectsofthefieldhasgrownevenmore profound.Atthesametime,oneofthemoststrikingtrendsinoptimization is the constantly increasing emphasis on the interdisciplinary nature of the field.Optimizationhasbeenabasictoolinallareasofappliedmathematics, engineering,medicine,economics,andothersciences. The series Springer Optimization and Its Applications publishes under- graduate and graduate textbooks, monographs and state-of-the-art exposi- tory work that focus on algorithms for solving optimization problems and alsostudyapplicationsinvolvingsuchproblems.Someofthetopicscovered include nonlinear optimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multi-objectiveprogramming,descriptionofsoftwarepackages,approxima- tiontechniquesandheuristicapproaches. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Alexander J. Zaslavski Numerical Optimization with Computational Errors 123 AlexanderJ.Zaslavski DepartmentofMathematics TheTechnion–IsraelInstitute ofTechnology Haifa,Israel ISSN1931-6828 ISSN1931-6836 (electronic) SpringerOptimizationandItsApplications ISBN978-3-319-30920-0 ISBN978-3-319-30921-7 (eBook) DOI10.1007/978-3-319-30921-7 LibraryofCongressControlNumber:2016934410 MathematicsSubjectClassification(2010):47H09,49M30,65K10 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Thebookisdevotedtothestudyofapproximatesolutionsofoptimizationproblems inthepresenceofcomputationalerrors.Wepresentanumberofresultsonthecon- vergencebehaviorofalgorithmsinaHilbertspace,whichareknownasimportant tools for solving optimization problems and variational inequalities. According to the results known in the literature,these algorithms should converge toa solution. In this book, we study these algorithms taking into account computational errors whicharealwayspresentinpractice.Inthiscasetheconvergencetoasolutiondoes nottakeplace.Weshowthatouralgorithmsgenerateagoodapproximatesolution, if computational errors are bounded from above by a small positive constant. In practiceitissufficienttofindagood approximate solutioninsteadofconstructing a minimizing sequence. On the other hand, in practice computations can induce numericalerrorsandifoneusesoptimizationmethodstosolveminimizationprob- lems these methods usually provide only approximate solutions of the problems. Ourmaingoalis,foraknowncomputationalerror,tofindoutwhatanapproximate solutioncanbeobtainedandhowmanyiteratesoneneedsforthis. This monograph contains 16 chapters. Chapter 1 is an introduction. InChap.2, we study the subgradient projection algorithm for minimization of convex and nonsmooth functions. The mirror descent algorithm is considered in Chap.3. The gradient projection algorithm for minimization of convex and smooth functions is analyzed in Chap.4. In Chap.5, we consider its extension which is used for solvinglinearinverseproblemsarisinginsignal/imageprocessing.Theconvergence of Weiszfeld’s method in the presence of computational errors is discussed in Chap.6.InChap.7,wesolveconstrainedconvexminimizationproblemsusingthe extragradient method. Chapter 8 is devoted to a generalized projected subgradient method for minimization of a convex function over a set which is not necessarily convex. In Chap.9, we study the convergence of a proximal point method in a Hilbert space under the presence of computational errors. Chapter 10 is devoted to the local convergence of a proximal point method in a metric space under the presence of computational errors. In Chap.11, we study the convergence of a proximal point method to a solution of the inclusion induced by a maximal monotone operator, under the presence of computational errors. In Chap.12, the v vi Preface convergenceofthesubgradientmethodforsolvingvariationalinequalitiesisproved under the presence of computational errors. The convergence of the subgradient methodtoacommonsolutionofafinitefamilyofvariationalinequalitiesandofa finitefamilyoffixedpointproblems,underthepresenceofcomputationalerrors,is showninChap.13.InChap.14,westudycontinuoussubgradientmethod.Penalty methods are studied in Chap.15. Chapter 16 is devoted to Newton’s method. The resultsofChaps.2–6,14,and16arenew.Theresultsofotherchapterswereobtained andpublishedduringthelast5years. Theauthorbelievesthatthisbookwillbeusefulforresearchersinterestedinthe optimizationtheoryanditsapplications. RishonLeZion,Israel AlexanderJ.Zaslavski October19,2015 Contents 1 Introduction................................................................. 1 1.1 SubgradientProjectionMethod .................................... 1 1.2 TheMirrorDescentMethod........................................ 4 1.3 ProximalPointMethod............................................. 6 1.4 VariationalInequalities ............................................. 8 2 SubgradientProjectionAlgorithm ....................................... 11 2.1 Preliminaries ........................................................ 11 2.2 AConvexMinimizationProblem.................................. 13 2.3 TheMainLemma................................................... 17 2.4 ProofofTheorem2.4............................................... 19 2.5 SubgradientAlgorithmonUnboundedSets....................... 20 2.6 ProofofTheorem2.8............................................... 22 2.7 Zero-SumGameswithTwo-Players............................... 25 2.8 ProofofProposition2.9 ............................................ 29 2.9 SubgradientAlgorithmforZero-SumGames..................... 35 2.10 ProofofTheorem2.11.............................................. 39 3 TheMirrorDescentAlgorithm ........................................... 41 3.1 OptimizationonBoundedSets..................................... 41 3.2 TheMainLemma................................................... 44 3.3 ProofofTheorem3.1............................................... 47 3.4 OptimizationonUnboundedSets.................................. 48 3.5 ProofofTheorem3.3............................................... 49 3.6 Zero-SumGames ................................................... 53 4 GradientAlgorithmwithaSmoothObjectiveFunction............... 59 4.1 OptimizationonBoundedSets..................................... 59 4.2 AnAuxiliaryResultandtheProofofProposition4.1 ............ 61 4.3 TheMainLemma................................................... 62 4.4 ProofofTheorem4.2............................................... 66 4.5 OptimizationonUnboundedSets.................................. 68 vii viii Contents 5 AnExtensionoftheGradientAlgorithm ................................ 73 5.1 PreliminariesandtheMainResult................................. 73 5.2 AuxiliaryResults ................................................... 75 5.3 TheMainLemma................................................... 78 5.4 ProofofTheorem5.1............................................... 82 6 Weiszfeld’sMethod......................................................... 85 6.1 TheDescriptionoftheProblem.................................... 85 6.2 Preliminaries ........................................................ 87 6.3 TheBasicLemma................................................... 91 6.4 TheMainResult .................................................... 94 6.5 ProofofTheorem6.10.............................................. 98 7 TheExtragradientMethodforConvexOptimization.................. 105 7.1 PreliminariesandtheMainResults................................ 105 7.2 AuxiliaryResults ................................................... 109 7.3 ProofofTheorem7.1............................................... 113 7.4 ProofofTheorem7.3............................................... 115 8 AProjectedSubgradientMethodforNonsmoothProblems .......... 119 8.1 PreliminariesandMainResults.................................... 119 8.2 AuxiliaryResults ................................................... 122 8.3 ProofofTheorem8.1............................................... 126 8.4 ProofofTheorem8.2............................................... 131 9 ProximalPointMethodinHilbertSpaces ............................... 137 9.1 PreliminariesandtheMainResults................................ 137 9.2 AuxiliaryResults ................................................... 140 9.3 ProofofTheorem9.1............................................... 144 9.4 ProofofTheorem9.2............................................... 146 10 ProximalPointMethodsinMetricSpaces............................... 149 10.1 PreliminariesandtheMainResults................................ 149 10.2 AuxiliaryResults ................................................... 156 10.3 TheMainLemma................................................... 158 10.4 ProofofTheorem10.1.............................................. 160 10.5 AnAuxiliaryResultforTheorem10.2 ............................ 161 10.6 ProofofTheorem10.2.............................................. 163 10.7 Well-PosedMinimizationProblems ............................... 164 10.8 AnExample......................................................... 167 11 MaximalMonotoneOperatorsandtheProximalPointAlgorithm... 169 11.1 PreliminariesandtheMainResults................................ 169 11.2 AuxiliaryResults ................................................... 173 11.3 ProofofTheorem11.1.............................................. 175 11.4 ProofsofTheorems11.3,11.5,11.6,and11.7.................... 176 Contents ix 12 TheExtragradientMethodforSolvingVariationalInequalities...... 183 12.1 PreliminariesandtheMainResults................................ 183 12.2 AuxiliaryResults ................................................... 189 12.3 ProofofTheorem12.2.............................................. 193 12.4 TheFinite-DimensionalCase ...................................... 196 12.5 AConvergenceResult.............................................. 198 13 ACommonSolutionofaFamilyofVariationalInequalities .......... 205 13.1 PreliminariesandtheMainResult................................. 205 13.2 AuxiliaryResults ................................................... 210 13.3 ProofofTheorem13.1.............................................. 212 13.4 Examples............................................................ 221 14 ContinuousSubgradientMethod......................................... 225 14.1 BochnerIntegrableFunctions...................................... 225 14.2 ConvergenceAnalysisforContinuousSubgradientMethod ..... 226 14.3 AnAuxiliaryResult................................................. 228 14.4 ProofofTheorem14.1.............................................. 229 14.5 ContinuousSubgradientProjectionMethod....................... 231 15 PenaltyMethods............................................................ 239 15.1 AnEstimationofExactPenaltyinConstrainedOptimization.... 239 15.2 ProofofTheorem15.4.............................................. 243 15.3 Infinite-Dimensional Inequality-Constrained MinimizationProblems............................................. 246 15.4 ProofsofAuxiliaryResults......................................... 253 15.5 ProofofTheorem15.12 ............................................ 255 15.6 ProofofTheorem15.15 ............................................ 258 15.7 AnApplication...................................................... 260 16 Newton’sMethod........................................................... 265 16.1 Pre-differentiableMappings........................................ 265 16.2 ConvergenceofNewton’sMethod................................. 269 16.3 AuxiliaryResults ................................................... 272 16.4 ProofofTheorem16.3.............................................. 274 16.5 Set-ValuedMappings............................................... 279 16.6 AnAuxiliaryResult................................................. 281 16.7 ProofofTheorem16.8.............................................. 285 16.8 Pre-differentiableSet-ValuedMappings........................... 287 16.9 Newton’sMethodforSolvingInclusions.......................... 292 16.10 AuxiliaryResultsforTheorem16.12.............................. 294 16.11 ProofofTheorem16.12 ............................................ 296 References......................................................................... 297 Index............................................................................... 303

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.