ArenbergDoctoralSchoolofScience,Engineering&Technology FacultyofEngineering DepartmentofElectricalEngineering(ESAT) Numerical methods for the best low multilinear rank approximation of higher-order tensors Mariya Ishteva Promotors: Dissertationpresentedinpartial Prof. dr. ir. SabineVanHuffel fulfillmentoftherequirementsfor Prof. dr. ir. LievenDeLathauwer thedegreeofDoctor inEngineering December2009 Numerical methods for the best low multilinear rank approximation of higher-order tensors Mariya Ishteva Jury: Dissertationpresentedinpartial Prof. dr. ir. AnnHaegemans,president fulfillmentoftherequirementsfor Prof. dr. ir. SabineVanHuffel,promotor thedegreeofDoctor Prof. dr. ir. LievenDeLathauwer,promotor inEngineering Prof. dr. ir. JoosVandewalle Prof. dr. ir. MarcVanBarel Prof. dr. ir. P.-A.Absil(UCL) Prof. dr. ir. RodolpheSepulchre(ULg) Prof. dr. ir. LarsEldén(LinköpingUniv.,Sweden) December2009 ©KatholiekeUniversiteitLeuven–FacultyofEngineering KasteelparkArenberg1/2200,B-3001Leuven(Belgium) Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaargemaaktwordendoormiddelvandruk,fotocopie,microfilm,elektronischofop welkeanderewijzeookzondervoorafgaandeschriftelijketoestemmingvandeuitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint,microfilmoranyothermeanswithoutwrittenpermissionfromthepublisher. D/2009/7515/143 ISBN978-94-6018-163-4 Foreword TheresearchworkpresentedinthisthesiswascarriedoutattheDepartmentofElectrical Engineering(ESAT)oftheKatholiekeUniversiteitLeuveninthepresenceofcompetent andenthusiasticprofessorsandcolleagues.ThisPhDwouldhavebeenimpossiblewithout theirprofessionalandmoralsupport. In particular, first and foremost, I would like to thank my supervisors Prof. Sabine Van HuffelandProf. LievenDeLathauwer. ThankyouSabineforbelievinginme,foryour advice,guidance,exampleandforthenicesocialeventsinyourhouse. Lieven,thankyou foryourcompetence,foralwaysshowingmetherightdirection,answeringmynumerous questions, letting me represent you at important conferences en dat je altijd Nederlands hebtgesprokentegenmij. I am particularly grateful to Prof. P.-A. Absil for agreeing being in my advisory committee, for being an understanding co-author, for his manifold suggestions and improvements and for believing in me. Merci. My thanks go also to Prof. Marc Van Barelforhisavailability, constructivesuggestions, adviceandforthecarefulreadingof thethesis.IamhonoredthatProf.JoosVandewalleandProf.RodolpheSepulchreagreed to take part in the examination committee and am grateful for their valuable feedback. Thanks to Prof. Ann Haegemans for acting as a chairman and the flexibility in solving administrative issues. Special thanks to Prof. Lars Eldén, not only for coming from abroad for my preliminary defence and for the critical reading of the thesis but also for the invitation to visit the Linköping University in the autumn of 2007. This is greatly appreciated. TherearesomemorepeoplethatIwouldliketothankpersonally:Prof.PetkoPetkovwho introducedmetoSabine;DianaSimaforherhelpfuladviceonbothscientificandpersonal level; Berkant Savas for the nice stay in Linköping and Bart Vandereycken and Michel Journée for the interesting conversations and updates at the DYSCO meetings. Thanks also to all people I met at the conferences for their interest, time and useful discussions andthankstoalltheothersIforgottomentioninthislist. i ii My current and former colleagues from SCD and in particular BioMed, including our temporary visitors from other universities, provided a wonderful working atmosphere. Thisisespeciallytrueformyofficematesthroughtheyears,thefrequent“guests”from other offices and the everyday company for lunch. The list is too long but I need to mention at least Maria Isabel and Anca. Thanks for all meaningful and meaningless discussionsthatleadtoacontinuousgoodmood.Iwouldalsoliketothankoursecretaries andtechnicalstafffortheirconstantprofessionalhelp. Specialthanksandwarmgreetingstoallmyfriendsfromcloseandfaraway,especially toAylinandIliafortheirlong-termfriendshipandtoDylanforhislanguagecorrections, adviceonhowtodoaPhDbutmostlyforthelateevenings’conversationsandforbeing there. I nakra(cid:31), no sъvsem ne na posledno m(cid:31)sto, speciani blagodarnosti na Nina (mama), Kamen (tate), Saxo (brat mi) i Nikola (polovinkata) za neprestannata podkrepa, v(cid:31)ra, l(cid:24)bov, vnimanie i nasъrqeni(cid:31) ot blizo i daleq, kakto i za mnogo drugi newa, za koito ne vъrvi da pixa tuk, no we vi predam liqno. Pozdravi i celuvki ;) Abstract In multilinear algebra, the basic quantities are generalizations of vectors and matrices, calledhigher-ordertensors.Theyareusedinmanyapplicationfields,suchashigher-order statistics,signalprocessingandscientificcomputing. Efficientandreliablealgorithmsfor manipulatingthesestructuresarethushighlyappreciated. Matricesaresecond-ordertensorswithwell-studiedproperties. Thematrixrankisawell- understood concept. In particular, the low-rank approximation of a matrix is essential forvariousresultsandalgorithms. Thesolutiontothelow-rankapproximationproblem isknownandgivenbythetruncatedsingularvaluedecomposition(SVD).However,the matrix rank and its properties are not easily or uniquely generalizable to higher-order tensors. Thisthesisisdevotedtoageneralizationofthematrixcolumnandrowrank,namelythe multilinear rank. We focus on the best low multilinear rank approximation of higher- ordertensors. Givenahigher-ordertensor,wearelookingforanothertensor,ascloseas possibletotheoriginaloneandwithmultilinearrankboundedbyprespecifiednumbers. Thisapproximationisusedfordimensionalityreductionandsignalsubspaceestimation. Higher-order generalizations of SVD exist but their truncation results in a suboptimal solution of the problem. A refinement by iterative algorithms is required. The higher- orderorthogonaliterationisonesuchalgorithmwithlinearconvergencespeed. We aim for conceptually faster algorithms. However, standard optimization algorithms face a difficulty caused by unwanted symmetry property of the cost function. Namely, there are infinitely many equivalent solutions whereas numerical algorithms have nice convergence properties if the solutions are isolated. We remove the symmetry problem by working on quotient matrix manifolds, a concept studied in the field of optimization onmanifolds. Wedevelopthreenewalgorithms,basedonNewton’smethod,trust-region schemeandconjugategradients. Wealsodiscusstheissueoflocalminimaandconsider aparticularapplicationofthealgorithms. iii Notation Listofsymbols a,b,...,a ,b ,... scalars a,b,... vectors A,B,... matrices A,B,... tensors aijk,(A)ijk elementofA atposition(i,j,k) Ai=a subtensorofA obtainedbyfixingtheindexi A mode-nmatrixrepresentationofatensorA (n) I identitymatrix I unittensor(diagonaltensorwithonesonitsdiagonal) H Hankelmatrix U,V,W singularvectormatrices I,I ,I ,I ,N,R,... specialscalarsandupperbounds 1 2 3 exp exponentialfunction {·} j √ 1 − p 1) 3.141592653589793or2)thequotientmap Aˆ low≈multilinearrankapproximationofA xˆ estimateofx s ithsingularvalue i s (n) ithmode-nsingularvalue i grad gradient Hess Hessian M manifold x ,h update/tangentvectors VX verticalspaceatX HX horizontalspaceatX x horizontalliftofx Ph orthogonalprojectionontothehorizontalspaceatX X v vi Listofsets R thesetofrealnumbers C thesetofcomplexnumbers Rm n real(m n)-matrix × RI1×I2×I3 realI1 ×I2 I3tensor Rn×p theset×ofal×lfull-rank(n p)-matrices,n p, ∗ Rn×p= X Rn×p:det(×XTX)=0,n p≥ O th∗eortho{gon∈algroup(thesetof6allorth≥ogo}nal(p p)-matrices), p O = X Rp p:XTX=XXT =I × p × { ∈ } St(p,n) theStiefelmanifold(thesetofallcolumn-wiseorthonormal(n p)-matrices), St(p,n)= X Rn p:XTX=I,n p × × { ∈ ≥ } Ssym(p) thesetofallsymmetricmatricesoforder p, Ssym(p)= S Rp×p:ST =S { ∈ } Sskew(p) thesetofallskew-symmetric(orantisymmetric)matricesoforder p, Sskew(p)= W Rp×p:W T = W { ∈ − } Basicoperations AT transposeofthematrixA A 1 inverseofA − [ab] matrixwithcolumnsaandb vec(A) vectorrepresentationofA(allcolumnsofAstackedaftereachother) a absolutevalueofa | | , inner/scalarproduct h· ·i A Frobeniusnorm, trace(ATA) k k det(A) determinantofA p diag(v) squarediagonalmatrixwithvectorvasdiagonal trace(A) traceofthematrixA,(cid:229) a ii sym(B) (B+BT)/2 skew(B) (B BT)/2 − rank() rank · rankn(A) mode-nrankofA im(f) imageof f col(Y) thecolumnspaceofY, Ya:a Rp { ∈ } [Y] theequivalenceclassofY S sum (cid:213) product Cartesianproduct,A B:= (a,b ) i j × × { } Kroneckerproduct,A B:=[a B] ij ⊗ ⊗ a b outerproductofvectorsaandb ◦ A nM mode-nproductofatensorA andamatrixM • a b aisequivalenttob ∼ a b aisapproximatelyequaltob ≈ belongsto ∈
Description: