ebook img

Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers PDF

309 Pages·2018·5.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers

Numerical Methods for Solving Partial Differential Equations Numerical Methods for Solving Partial Differential Equations A Comprehensive Introduction for Scientists and Engineers George F. Pinder This edition first published 2018 by John Wiley and Sons, Inc. © 2018 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/ go/permissions. The right of George F Pinder to be identified as the author of this work has been asserted in accordance with law. Registered Office John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA Editorial Office 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. LibraryofCongressCataloging-in-PublicationData: Hardback ISBN: 978-1-119-31611-4 Cover image by Charles Bombard Cover design by Wiley Printed in the United States of America. 10 9 8 7 6 5 4 3 2 1 Robert N. Farvolden and John D. Bredehoeft my mentors Contents Preface xi 1 Interpolation 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 De nitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Weirstraus Approximation Theorem . . . . . . . . . . . . . . . . . . . . 3 1.5 Lagrange Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Compare P ((cid:18)) and f^((cid:18)) . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 1.7 Error of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Multiple Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.9 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.10 Error in Approximation by Hermites . . . . . . . . . . . . . . . . . . . . 23 1.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Numerical Di erentiation 33 2.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Two-Point Di erence Formulae . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 Forward Di erence Formula . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Backward Di erence Formula . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.4 Error of the Approximation . . . . . . . . . . . . . . . . . . . . . 36 2.3 Two-Point Formulae from Taylor Series . . . . . . . . . . . . . . . . . . 37 2.4 Three-point Di erence Formulae . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 First-Order Derivative Di erence Formulae . . . . . . . . . . . . 41 2.4.2 Second-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Numerical Integration 55 3.1 Newton-Cotes Quadrature Formula . . . . . . . . . . . . . . . . . . . . . 55 3.1.1 Lagrange Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.3 Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.4 General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1.5 Example using Simpson’s Rule . . . . . . . . . . . . . . . . . . . 59 vii viii CONTENTS 3.1.6 Gauss Legendre Quadrature . . . . . . . . . . . . . . . . . . . . . 59 3.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Initial Value Problems 67 4.1 Euler Forward Integration Method Example . . . . . . . . . . . . . . . . 68 4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.1 Example of Stability . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.5 Lax Equivalence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Runge Kutta Type Formulae . . . . . . . . . . . . . . . . . . . . . . . . 75 (cid:0) 4.6.1 General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6.2 Runge Kutta First-Order Form (Euler’s Method) . . . . . . . . 75 (cid:0) 4.6.3 Runge Kutta Second-Order Form . . . . . . . . . . . . . . . . . 75 (cid:0) 4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Weighted Residuals Methods 83 5.1 Finite Volume or Subdomain Method . . . . . . . . . . . . . . . . . . . . 84 5.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.2 Finite Di erence Interpretation of the Finite Volume Method . . 93 5.2 Galerkin Method for First Order Equations . . . . . . . . . . . . . . . . 94 5.2.1 Finite-Di erence Interpretation of the Galerkin Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3 Galerkin Method for Second-Order Equations . . . . . . . . . . . . . . . 102 5.3.1 Finite Di erence Interpretation ofSecond-Order Galerkin Method111 5.4 Finite Volume Method for Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.1 Example of Finite Volume Solution of a Second-Order Equation 116 5.4.2 Finite Di erence Representation of the Finite-Volume Method for Second-Order Equations . . . . . . . . . . . . . . . . . . . . . 122 5.5 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.5.1 Collocation Method for First-Order Equations . . . . . . . . . . 123 5.5.2 Collocation Method for Second-Order Equations . . . . . . . . . 126 5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6 Initial Boundary-Value Problems 139 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 Two Dimensional Polynomial Approximations . . . . . . . . . . . . . . . 139 6.2.1 Example of a Two Dimensional Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3 Finite Di erence Approximation . . . . . . . . . . . . . . . . . . . . . . 141 6.3.1 Example of Implicit First-Order Accurate Finite Di erence Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.3.2 Example of Second Order Accurate Finite Di erence Approximation in Space . . . . . . . . . . . . . . . . . . . . . . . 146 6.4 Stability of Finite Di erence Approximations . . . . . . . . . . . . . . . 149 6.4.1 Example of Stability . . . . . . . . . . . . . . . . . . . . . . . . . 153 CONTENTS ix 6.4.2 Example Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.5 Galerkin Finite Element Approximations in Time . . . . . . . . . . . . . 158 6.5.1 Strategy One: Forward Di erence Approximation . . . . . . . . . 160 6.5.2 Strategy Two: Backward Di erence Approximation . . . . . . . 161 6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7 Finite Di erence Methods in Two Space 169 7.1 Example Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8 Finite Element Methods in Two Space 181 8.1 Finite Element Approximations over Rectangles . . . . . . . . . . . . . . 181 8.2 Finite Element Approximations over Triangles. . . . . . . . . . . . . . . 195 8.2.1 Formulation of Triangular Basis Functions . . . . . . . . . . . . . 196 8.2.2 Example Problem of Finite Element Approximation over Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.2.3 Second Type or Neumann Boundary-Value Problem . . . . . . . 206 8.3 Isoparametric Finite Element Approximation . . . . . . . . . . . . . . . 211 8.3.1 Natural Coordinate Systems . . . . . . . . . . . . . . . . . . . . 211 8.3.2 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.3.3 Calculation of the Jacobian . . . . . . . . . . . . . . . . . . . . . 219 8.3.4 Example of Isoparametric Formulation . . . . . . . . . . . . . . . 223 8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 9 Finite Volume Approximation in Two Space 239 9.1 Finite Volume Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 239 9.2 Finite Volume Example Problem 1 . . . . . . . . . . . . . . . . . . . . . 246 9.2.1 Problem De nition . . . . . . . . . . . . . . . . . . . . . . . . . . 246 9.2.2 Weighted Residual Formulation . . . . . . . . . . . . . . . . . . . 246 9.2.3 Element Coe cient Matrices . . . . . . . . . . . . . . . . . . . . 248 9.2.4 Evaluation of the Line Integral . . . . . . . . . . . . . . . . . . . 249 9.2.5 Evaluation of the Area Integral . . . . . . . . . . . . . . . . . . . 256 9.2.6 Global Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . . 260 9.3 Finite Volume Example Problem Two . . . . . . . . . . . . . . . . . . . 262 9.3.1 Problem De nition . . . . . . . . . . . . . . . . . . . . . . . . . . 262 9.3.2 Weighted Residual Formulation . . . . . . . . . . . . . . . . . . . 262 9.3.3 Element Coe cient Matrices . . . . . . . . . . . . . . . . . . . . 263 9.3.4 Evaluation of the Source Term . . . . . . . . . . . . . . . . . . . 265 9.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 9.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 10 Initial Boundary-Value Problems 273 10.1 Mass Lumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 10.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 10.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Description:
A comprehensive guide to numerical methods for simulating physical-chemical systemsThis book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than sp
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.