ebook img

Numerical methods for solving linear elliptic PDEs: Direct solvers and high order accurate ... PDF

229 Pages·2015·5.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical methods for solving linear elliptic PDEs: Direct solvers and high order accurate ...

Numerical methods for solving linear elliptic PDEs: Direct solvers and high order accurate discretizations by Sijia Hao B.S.,University of Science and Technology of China, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Applied Mathematics 2015 This thesis entitled: Numerical methods for solving linear elliptic PDEs: Direct solvers and high order accurate discretizations written by Sijia Hao has been approved for the Department of Applied Mathematics Per-Gunnar Martinsson Gregory Beylkin James Bremer Bengt Fornberg Zydrunas Gimbutas Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Hao, Sijia (Ph.D., Applied Mathematics) Numerical methods for solving linear elliptic PDEs: Direct solvers and high order accurate discretizations Thesis directed by Professor Per-Gunnar Martinsson This dissertation describes fast and highly accurate techniques for solving linear elliptic boundary value problems associated with elliptic partial differential equations such as Laplace’s, Helmholtz equations and time-harmonic Maxwell’s equation. It is necessary to develop efficient methods to solve these problems numerically. The techniques we develop in this dissertation are applicable to most linear elliptic PDEs, especially to the Helmholtz equation. This equation models frequency domain wave-propagation, and has proven to be particularly difficult to solve using existing methodology, in particular in situations where the computational domain extends over dozens or hundreds of wave-lengths. One of the difficulties is that the linear systems arising upon discretization are ill-conditioned that have proven difficult to solve using iterative solvers. The other is that errors are aggregated over each wave-length such that a large number of discretization nodes are required to achieve certain accuracy. The objective of this dissertation is to overcome these difficulties by exploring three sets of ideas: 1) high order discretization, 2) direct solvers and 3) local mesh refinements. In terms of “high-order” discretization, the solutions to the PDEs are approximated by high-order polynomials. We typically use local Legendre or Chebyshev grids capable of resolving polynomials up to degree between 10 and 40. For solving the linear system formed upon high-order discretization, there exist a broad range of schemes. Most schemes are “iterative” methods such as multigrid and preconditioned Krylov methods. In contrast, we in this thesis mainly focus on “direct” solvers in the sense that they construct an approximation to the inverse of the coefficient matrix. Such techniques tend to be more robust, versatile and stable compared to the iterative techniques. Finally, local mesh refinement techniques are developed to effectively deal with sharp iv gradients, localized singularities and regions of poor resolution. A variety of two-dimensional and three-dimensional problems are solved using the three techniques described above. Dedication I dedicate this dissertation to my family, especially my parents and my sister, who have encouraged and supported me for so many years. vi Acknowledgements First and foremost, I would like to thank my advisor Gunnar Martisson, who has supported and advised me through my time at University of Colorado. Without his knowledge and help, this dissertation would never have been possible. Next, Iwouldliketothankallmycommitteemembersfortheirtimeandinteresttomywork. A special thank you to Gregory Beylkin who has provided valuable suggestions on my dissertation. The faculty in the Department of Applied Mathematics are awesome. The Grandview Gang, especially Tom Manteuffel and Steve McCormick have provided guidance in my first two years of study. During my six years life at Boulder, I am fortunate to make some great friends who helped ease the stress. Kuo Liu and Lei Tang are generous to share their experience. Ying Zhao, Qian Li and Liang Zhang have been so supportive of me and for that, I am grateful. Finally, thankyoutomysisterandparentswhowerealwaystheretoencourageme. vii Contents Chapter 1 Introduction 1 1.1 Theme I: High order methods for boundary integral equations in the plane. . . . . . 4 1.1.1 High-order Nystr¨om discretization and quadrature schemes . . . . . . . . . . 5 1.1.2 Local mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Direct solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Theme II: Acoustic scattering involving rotationally symmetric scatterers . . . . . . 7 1.2.1 A single rotationally symmetric scatter. . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Multibody scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Theme III: Scattering in variable wave-speed media in 2D and 3D . . . . . . . . . . 10 1.3.1 Direct solver via composite spectral discretization . . . . . . . . . . . . . . . 10 1.3.2 Local mesh refinement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Accelerated 3D direct solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Structure of dissertation and overview of principle contributions . . . . . . . . . . . . 12 2 High-order accurate methods for Nystr¨om discretization of integral equations on smooth curves in the plane 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 Overview of Nystr¨om discretization . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Types of singular quadrature schemes . . . . . . . . . . . . . . . . . . . . . . 22 viii 2.1.3 Related work and schemes not compared . . . . . . . . . . . . . . . . . . . . 24 2.2 A brief review of Lagrange interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Nystr¨om discretization using the Kapur-Rokhlin quadrature rule . . . . . . . . . . . 25 2.3.1 The Kapur–Rokhlin correction to the trapezoidal rule . . . . . . . . . . . . . 25 2.3.2 A Nystr¨om scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Nystr¨om discretization using the Alpert quadrature rule . . . . . . . . . . . . . . . . 27 2.4.1 The Alpert correction to the trapezoidal rule . . . . . . . . . . . . . . . . . . 27 2.4.2 A Nystr¨om scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Nystr¨om discretization using modified Gaussian quadrature . . . . . . . . . . . . . . 30 2.5.1 Modified Gaussian quadratures of Kolm–Rokhlin . . . . . . . . . . . . . . . . 31 2.5.2 A Nystr¨om scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Nystr¨om discretization using the Kress quadrature rule. . . . . . . . . . . . . . . . . 34 2.6.1 Product quadratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.2 The Kress quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.3 A Nystr¨om scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.7.1 A 1D integral equation example. . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7.2 Combined field discretization of the Helmholtz equation in R2 . . . . . . . . . 40 2.7.3 Effect of quadrature scheme on iterative solution efficiency . . . . . . . . . . 43 2.7.4 The Laplace BVP on axisymmetric surfaces in R3 . . . . . . . . . . . . . . . 46 2.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Asimplifiedtechniquefortheefficientandhighlyaccuratediscretizationofboundaryintegral equations in 2D on domains with corners 50 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 A linear algebraic observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Matrix skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ix 3.4 Outline of the solution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 A high-order Nystr¨om discretization scheme for Boundary Integral Equations Defined on Rotationally Symmetric Surfaces 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2 Applications and prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1.3 Kernel evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1.4 Principal contributions of present work . . . . . . . . . . . . . . . . . . . . . 64 4.1.5 Asymptotic costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Fourier Representation of BIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.2 Truncation of the Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 Nystr¨om discretization of BIEs on the generating curve . . . . . . . . . . . . . . . . 69 4.3.1 Quadrature nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.2 A simplistic Nystr¨om scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.3 High-order accurate Nystr¨om discretization . . . . . . . . . . . . . . . . . . . 70 4.4 The full algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.2 Cost of computing the coefficient matrices . . . . . . . . . . . . . . . . . . . . 71 4.4.3 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Accelerations for the Single and Double Layer Kernels Associated with Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 x 4.5.1 The Double Layer Kernels of Laplace’s Equation . . . . . . . . . . . . . . . . 74 4.5.2 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5.3 Evaluation of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Fast Kernel Evaluation for the Helmholtz Equation . . . . . . . . . . . . . . . . . . . 79 4.6.1 Rapid Kernel Calculation via Convolution . . . . . . . . . . . . . . . . . . . . 79 4.6.2 Application to the Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . 81 4.7 Fast evaluation of fundamental solutions in cylindrical coordinates . . . . . . . . . . 83 4.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.8.1 Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.8.2 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Anefficientandhighlyaccuratesolverformulti-bodyacousticscatteringproblemsinvolving rotationally symmetric scatterers 93 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Mathematical formulation of the scattering problem . . . . . . . . . . . . . . . . . . 96 5.3 Discretization of rotationally symmetric scattering bodies . . . . . . . . . . . . . . . 97 5.3.1 Nystr¨om discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.2 A single rotationally symmetric scatterer . . . . . . . . . . . . . . . . . . . . 99 5.3.3 Multibody scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.4 A block-diagonal pre-conditioner for the multibody scattering problem . . . . . . . . 102 5.5 Accelerated multibody scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.6.1 Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.6.2 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.6.3 Accelerated scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.7 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Description:
Numerical methods for solving linear elliptic PDEs: of the difficulties is that the linear systems arising upon discretization are ill-conditioned that.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.