ebook img

Numerical Methods for Eigenvalue Problems PDF

217 Pages·2012·0.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Methods for Eigenvalue Problems

De Gruyter Graduate Lectures Börm / Mehl · Numerical Methods for Eigenvalue Problems Steffen Börm Christian Mehl Numerical Methods for Eigenvalue Problems De Gruyter (cid:48)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:86)(cid:3)(cid:54)(cid:88)(cid:69)(cid:77)(cid:72)(cid:70)(cid:87)(cid:3)(cid:38)(cid:79)(cid:68)(cid:86)(cid:86)(cid:76)(cid:191)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:21)(cid:19)(cid:20)(cid:19)(cid:29)(cid:3)(cid:51)(cid:85)(cid:76)(cid:80)(cid:68)(cid:85)(cid:92)(cid:29) 15A18, 15A22, 15A23, 15A42, 65F15, 65F25; (cid:54)(cid:72)(cid:70)(cid:82)(cid:81)(cid:71)(cid:68)(cid:85)(cid:92)(cid:29) 65N25, 15B57. ISBN 978-3-11-025033-6 e-ISBN 978-3-11-025037-4 (cid:47)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:3)(cid:82)(cid:73)(cid:3)(cid:38)(cid:82)(cid:81)(cid:74)(cid:85)(cid:72)(cid:86)(cid:86)(cid:3)(cid:38)(cid:68)(cid:87)(cid:68)(cid:79)(cid:82)(cid:74)(cid:76)(cid:81)(cid:74)(cid:16)(cid:76)(cid:81)(cid:16)(cid:51)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:39)(cid:68)(cid:87)(cid:68) A CIP catalog record for this book has been applied for at the Library of Congress. (cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:83)(cid:75)(cid:76)(cid:70)(cid:3)(cid:76)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:86)(cid:75)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78) (cid:55)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78)(cid:3)(cid:79)(cid:76)(cid:86)(cid:87)(cid:86)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:191)(cid:72)(cid:30)(cid:3) detailed bibliographic data are available in the internet at http://dnb.d-nb.de. © 2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston Typesetting: Da-TeX Gerd Blumenstein, Leipzig, www.da-tex.de Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen (cid:146)(cid:3)(cid:51)(cid:85)(cid:76)(cid:81)(cid:87)(cid:72)(cid:71)(cid:3)(cid:82)(cid:81)(cid:3)(cid:68)(cid:70)(cid:76)(cid:71)(cid:16)(cid:73)(cid:85)(cid:72)(cid:72)(cid:3)(cid:83)(cid:68)(cid:83)(cid:72)(cid:85) Printed in Germany www.degruyter.com Preface Eigenvaluesandeigenvectorsofmatricesandlinearoperatorsplayanimportantrole whensolvingproblemsfromstructuralmechanics,andelectrodynamics, e.g.,byde- scribing the resonance frequencies of systems, when investigating the long-term be- haviour of stochastic processes, e.g., by describing invariant probability measures, andasatoolforsolvingmoregeneralmathematicalproblems,e.g.,bydiagonalizing ordinarydifferentialequationsorsystemsfromcontroltheory. Thisbookpresentsanumberofthemostimportantnumericalmethodsforfinding eigenvaluesandeigenvectorsofmatrices. Itisbasedonlecturenotesofashortcourse forthird-yearstudentsinmathematics,butitshouldalsobeaccessibletostudentsof physicsorengineeringsciences. Wediscussthecentral ideasunderlying thedifferent algorithms andintroduce the theoretical concepts required to analyze their behaviour. Our goal is to present an easily accessible introduction to the field, including rigorous proofs of all important results,butnotacompleteoverviewofthevastbodyofresearch. Foranin-depthcoverageofthetheoryofeigenvalueproblems,wecanrecommend thefollowingmonographs: (cid:2) J.H.Wilkinson,“TheAlgebraicEigenvalueProblem”[52] (cid:2) B.N.Parlett,“TheSymmetricEigenvalueProblem”[33] (cid:2) G.H.GolubandC.F.VanLoan,“MatrixComputations”[18] (cid:2) G.W.Stewart,“MatrixAlgorithms”[43,44] (cid:2) D.S.Watkins,“Thematrixeigenvalueproblem”[49] We owe a great debt of gratitude to their authors, since this book would not exist withouttheirwork. Thebookisintendedasthebasisforashortcourse(onesemesterortrimester)for third-orfourth-yearundergraduatestudents. Wehaveorganizedthematerialmostly inshortsectionsthatshouldeachfitonesessionofacourse. Somechaptersandsec- (cid:2) tions are marked by an asterisk . These contain additional results that we consider optional,e.g.,rathertechnicalproofsofgeneralresultsoralgorithmsforspecialprob- lems. With one exception, the results of these optional sections are not required for the remainder of the book. The one exception is the optional Section 2.7 on non- unitary transformations, which lays the groundwork for the optional Section 4.8 on theconvergenceofthepoweriterationforgeneralmatrices. vi Preface Inordertokeepthepresentationself-contained, anumberofimportantresultsare provenonlyforspecialcases, e.g., forself-adjointmatricesoraspectrumconsisting onlyofsimpleeigenvalues. Forthegeneralcase,wewouldliketoreferthereaderto themonographsmentionedabove. Deviatingfromthepracticeofcollectingfundamentalresultsinaseparatechapter, weintroducesomeoftheseresultswhentheyarerequired. AnexampleistheBauer– FiketheoremgivenasProposition3.11inSection3.4onerrorestimatesfortheJacobi iterationinsteadofinaseparatechapteronperturbationtheory. Whilethisapproachis certainlynotadequateforareferencework,wehopethatitimprovestheaccessibility oflecturenoteslikethisbookthatareintendedtobetaughtinsequence. WewouldliketothankDanielKressnerforhisvaluablecontributionstothisbook. Kiel,December2011 Berlin,December2011 SteffenBörm ChristianMehl Contents Preface v 1 Introduction 1 1.1 Example: Structuralmechanics ............................... 1 1.2 Example: Stochasticprocesses ............................... 4 1.3 Example: Systemsoflineardifferentialequations ................ 5 2 Existenceandpropertiesofeigenvaluesandeigenvectors 8 2.1 Eigenvaluesandeigenvectors ................................ 8 2.2 Characteristicpolynomials .................................. 12 2.3 Similaritytransformations ................................... 15 2.4 SomepropertiesofHilbertspaces ............................. 19 2.5 Invariantsubspaces ........................................ 24 2.6 Schurdecomposition ....................................... 26 (cid:2) 2.7 Non-unitarytransformations ................................ 33 3 Jacobiiteration 39 3.1 Iteratedsimilaritytransformations............................. 39 3.2 Two-dimensionalSchurdecomposition......................... 40 3.3 Onestepoftheiteration..................................... 43 3.4 Errorestimates ............................................ 47 (cid:2) 3.5 Quadraticconvergence .................................... 53 4 Powermethods 61 4.1 Poweriteration ............................................ 61 4.2 Rayleighquotient.......................................... 66 4.3 Residual-basederrorcontrol ................................. 70 4.4 Inverseiteration ........................................... 73 4.5 Rayleighiteration ......................................... 77 4.6 Convergencetoinvariantsubspace ............................ 79 viii Contents 4.7 Simultaneousiteration ...................................... 83 (cid:2) 4.8 Convergenceforgeneralmatrices ............................ 91 5 QRiteration 100 5.1 BasicQRstep ............................................ 100 5.2 Hessenbergform .......................................... 104 5.3 Shifting ................................................. 113 5.4 Deflation ................................................ 116 5.5 Implicititeration .......................................... 118 (cid:2) 5.6 Multiple-shiftstrategies ................................... 126 (cid:2) 6 Bisectionmethods 132 6.1 Sturmchains ............................................. 134 6.2 Gershgorindiscs .......................................... 141 7 Krylovsubspacemethodsforlargesparseeigenvalueproblems 145 7.1 Sparsematricesandprojectionmethods ........................ 145 7.2 Krylovsubspaces .......................................... 149 7.3 Gram–Schmidtprocess ..................................... 152 7.4 Arnoldiiteration .......................................... 159 7.5 SymmetricLanczosalgorithm ................................ 164 7.6 Chebyshevpolynomials ..................................... 165 7.7 ConvergenceofKrylovsubspacemethods ...................... 172 (cid:2) 8 Generalizedandpolynomialeigenvalueproblems 182 8.1 Polynomialeigenvalueproblemsandlinearization ................ 182 8.2 Matrixpencils ............................................ 185 8.3 DeflatingsubspacesandthegeneralizedSchurdecomposition....... 189 8.4 Hessenberg-triangularform .................................. 192 8.5 Deflation ................................................ 196 8.6 TheQZstep .............................................. 198 Bibliography 203 Index 206 Chapter 1 Introduction Eigenvalueproblemsplayanimportantroleinanumberoffieldsofnumericalmath- ematics: instructuralmechanicsandelectrodynamics,eigenvaluescorrespondtores- onance frequencies of systems, i.e., to frequencies to which these systems respond particularlywell(orbadly,dependingonthecontext). Whenstudyingstochasticpro- cesses,invariantprobabilitymeasurescorrespondtoeigenvectorsfortheeigenvalue1, andfindingthemyieldsadescriptionofthelong-termbehaviourofthecorresponding process. This book gives an introduction to the basic theory of eigenvalue problems and focusesonimportantalgorithmsforfindingeigenvaluesandeigenvectors. 1.1 Example: Structural mechanics Before we consider abstract eigenvalue problems, we turn our attention to some ap- plicationsthatleadnaturallytoeigenvalueproblems. Thefirstapplicationistheinvestigationofresonancefrequencies. Asanexample, we consider the oscillations of a string of unit length. We represent the string as a function uWR(cid:3)Œ0;1(cid:2)!R; .t;x/7!u.t;x/; where u.t;x/ denotes the deflection of the string at time t and position x (cf. Fig- ure1.1). Theoscillationsarethendescribedbythewaveequation @2u @2u .t;x/Dc .t;x/ forallt 2R; x 2.0;1/; @t2 @x2 wherec > 0isaparameterdescribingthestring’sproperties(e.g.,itsthickness). We assumethatthestringisfixedatbothends,i.e.,that u.t;0/Du.t;1/D0 holdsforallt 2R: Sincethedifferentialequationislinear, wecanseparatethevariables: wewrite uin theform u.t;x/Du .x/cos.!t/ forallt 2R; x 2Œ0;1(cid:2) 0

Description:
This textbook presents a number of the most important numerical methods for finding eigenvalues and eigenvectors of matrices. The authors discuss the central ideas underlying the different algorithms and introduce the theoretical concepts required to analyze their behaviour. Several programming exam
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.