J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G 120 Tuomas Airaksinen Numerical Methods for Acoustics and Noise Control ABSTRACT Airaksinen,Tuomas Numericalmethodsforacousticsandnoisecontrol Jyväskylä: UniversityofJyväskylä,2010,58p.(+includedarticles) (JyväskyläStudiesinComputing ISSN1456-5390;120) ISBN978-951-39-4031-7 Finnishsummary Diss. This dissertation considers numerical methods for wave propagation modelling and noise control. The first part of the dissertation discusses an efficient method for solving time-harmonic wave equations in acoustic (the Helmholtz equation) and elastic domains (the Navier equation). The solver is based on precondition- ingaKrylovsubspacemethod,suchasGMRES,withapproximationsofdamped variants of the corresponding wave equations. An algebraic multigrid method is used in approximating the inverse of damped operators. The method can be used in complex three-dimensional computational domains with varying mate- rialproperties. The second part of the dissertation considers noise control problems. Two different noise control problems are discussed in detail. First, a shape optimiza- tion of a duct system with respect to sound transmission loss is discussed. The sound transmission loss is maximized at multiple frequency ranges simultane- ously, by adjusting the shape of a reactive muffler component. The noise re- duction problem is formulated as a multiobjective optimization problem for the NSGA-IIgeneticalgorithm. Thediscussedmethodprovidesanefficientapproach to design muffler components. Second, a novel method is introduced for assess- ingtheeffectivenessoftheoptimalanti-noiseforlocalsoundcontrolinastochas- tic domain. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations, is modelled using the finite element method in the frequency domain. In a model problem, a significant noise reduc- tionisdemonstratedparticularlyatlowerfrequencies. Keywords:acoustics, preconditioning, noise control, finite element method, op- timization,stochasticdomain,geneticalgorithm,shapeoptimization, duct,reactivemuffler JYVÄSKYLÄ STUDIES IN COMPUTING 120 Tuomas Airaksinen Numerical Methods for Acoustics and Noise Control Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2 lokakuun 9. päivänä 2010 kello 12. Academic dissertation to be publicly discussed, by permission of the Faculty of Information Technology of the University of Jyväskylä, in the building Agora, Auditorium 2, on October 9, 2010 at 12 o'clock noon. UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2010 Numerical Methods for Acoustics and Noise Control JYVÄSKYLÄ STUDIES IN COMPUTING 120 Tuomas Airaksinen Numerical Methods for Acoustics and Noise Control UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2010 Editor Timo Männikkö Department of Mathematical Information Technology, University of Jyväskylä Pekka Olsbo, Sini Rainivaara Publishing Unit, University Library of Jyväskylä Cover picture: BMW Series 3 2005, wikipedia.org License: http://creativecommons.org/licenses/by-sa/3.0/deed.en URN:ISBN:978-951-39-4037-9 ISBN 978-951-39-4037-9 (PDF) ISBN 978-951-39-4031-7 (nid.) ISSN 1456-5390 Copyright © 2 0 1 0 , by University of Jyväskylä Jyväskylä University Printing House, Jyväskylä 2010 Author TuomasAiraksinen [email protected] DepartmentofMathematicalInformationTechnology, UniversityofJyväskylä,Finland Supervisors Dr. JariToivanen DepartmentofMathematicalInformationTechnology, UniversityofJyväskylä,Finland Dr. ErkkiHeikkola NumerolaLtd Jyväskylä,Finland Reviewers Prof. OliverErnst InstitutfürNumerischeMathematikundOptimierung TechnischeUniversitätBergakademie Freiberg,Germany Dr. RadekTezaur AeronauticsandAstronautics StanfordUniversity,USA Opponent Prof. MartinBerggren DepartmentofComputingScience UmeåUniversity,Sweden ACKNOWLEDGMENTS IwouldliketoexpressveryspecialthanksandpraisetoGodforhisundisputable guidance with respect to my studies and personal life and for the promise of John6:47 eternallife( ). IalsowanttogiveheartfulthankstoDr. JariToivanenand Dr. Erkki Heikkola for their professional and devoted supervision through my Ph.D. project. Thanks to my workmate Jukka Räbinä for his good company – I willmissthelunchbreaksandthepleasantatmosphereinourlab. Thankstomy parents, Harri and Eeva Airaksinen, for love and support. Finally, thanks to my friendsforallthefriendship,support,andprayers. LIST OF FIGURES FIGURE1 Theone-dimensionalfluidelement......................................... 12 FIGURE2 Finiteelementmeshexamples................................................ 18 FIGURE3 Five-pointstencil. ................................................................. 19 FIGURE4 Thecrosscutofaductsystem................................................. 24 FIGURE5 Selectedcoarselevelnodesinalgebraicmultigridmethod........ 31 FIGURE6 Across-sectionofthesolutionofNavierprobleminacube....... 31 FIGURE7 Solutionofthescatteringproblem. ......................................... 33 FIGURE8 MemoryusagewithrespecttoCPUtime;comparisonbetween exactcontrollabilityanddampedpreconditionermethod. ........ 34 FIGURE9 TheeigenvaluesofpreconditionedHelmholtzandNavierprob- lems..................................................................................... 38 FIGURE10 Paretooptimality................................................................... 40 FIGURE11 The diagram of a muffler component and optimal example solution................................................................................ 43 FIGURE12 The non-dominated fronts of the optimization of the muffler component........................................................................... 43 FIGURE13 Thetransmissionlossasafunctionoffrequency. ..................... 43 FIGURE14 Athree-dimensionalmodelofthecarcabinofaBMW330i....... 47 FIGURE15 Driver’spostureparameters................................................... 48 FIGURE16 Theexpectedvalueofattenuationandstandarddeviation........ 48 FIGURE17 Exampleplotofthenoisecontrolinacarcabin........................ 49 LIST OF TABLES TABLE1 FirstrootsofBesselderivativefunction, J b = 0. ....... 14 m(cid:48) j j TABLE2 The iteration counts for the cube problem for the Helm- (cid:0) (cid:1) holtzandNavierequations. ............................................ 32 TABLE3 Thenumberofmillionsoffloatingpointoperations(MFLOPs) fortheHelmholtzandNavierequations. ......................... 33 CONTENTS ABSTRACT ACKNOWLEDGMENTS LISTOFFIGURESANDTABLES CONTENTS LISTOFINCLUDEDARTICLES 1 INTRODUCTION ............................................................................ 9 2 PHYSICSOFSOUND....................................................................... 11 2.1 Acousticwaveequation............................................................ 11 2.2 Time-harmonicelasticwaveequation(Navierequation) .............. 15 3 NUMERICALMETHODSFORACOUSTICMODELLING.................. 17 3.1 DiscretizationmethodsforPDEs................................................ 17 3.2 SolutionmethodsforPDEs........................................................ 20 3.3 Otheracousticsimulationmethods ........................................... 22 3.4 Ductacousticsmodelling .......................................................... 23 4 DAMPEDPRECONDITIONERMETHOD ......................................... 28 4.1 Problemformulation ................................................................ 29 4.2 Numericalmeasurementsandcomparisonofperformance .......... 31 4.3 Spectralanalysisandnumericalstudyofeigenvalues .................. 34 5 SOUNDCONTROLPROBLEMS....................................................... 39 5.1 Solvinganoptimizationproblem............................................... 40 5.2 Shapeoptimizationofareactivemuffler..................................... 41 5.3 Othershapeoptimizationproblems ........................................... 42 5.4 Activenoisecontrolestimationinastochasticdomain................. 44 6 CONCLUSIONS .............................................................................. 50 YHTEENVETO(FINNISHSUMMARY)..................................................... 52 REFERENCES.......................................................................................... 54 INCLUDEDARTICLES
Description: