ebook img

Numerical Analysis on Time Scales PDF

392 Pages·2022·5.932 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Analysis on Time Scales

SvetlinG.Georgiev,İnciM.Erhan NumericalAnalysisonTimeScales Also of Interest IntegralInequalitiesonTimeScales SvetlinG.Georgiev,2018 ISBN978-3-11-070550-8,e-ISBN(PDF)978-3-11-070555-3 FunctionalAnalysiswithApplications SvetlinG.Georgiev,KhaledZennir,2019 ISBN978-3-11-065769-2,e-ISBN(PDF)978-3-11-065772-2 DataScience TimeComplexity,InferentialUncertainty,andSpacekimeAnalytics IvoD.Dinov,MilenVelchevVelev,2021 ISBN978-3-11-069780-3,e-ISBN(PDF)978-3-11-069782-7 NumericalAnalysis AnIntroduction TimoHeister,LeoG.Rebholz,FeiXue,2019 ISBN978-3-11-057330-5,e-ISBN(PDF)978-3-11-057332-9 RealAnalysis MeasureandIntegration MaratV.Markin,2019 ISBN978-3-11-060097-1,e-ISBN(PDF)978-3-11-060099-5 Svetlin G. Georgiev, İnci M. Erhan Numerical Analysis on Time Scales | MathematicsSubjectClassification2010 Primary:34N05,39A10,41A05;Secondary:65D05,65L05 Authors Prof.Dr.SvetlinG.Georgiev Prof.Dr.İnciM.Erhan KlimentOhridskiUniversityofSofia AtılımUniversity DepartmentofDifferentialEquations DepartmentofMathematics FacultyofMathematicsandInformatics 06830Ankara 1126Sofia Turkey Bulgaria [email protected] [email protected] ISBN978-3-11-078725-2 e-ISBN(PDF)978-3-11-078732-0 e-ISBN(EPUB)978-3-11-078734-4 LibraryofCongressControlNumber:2022936834 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Coverimage:maxkabakov/iStock/GettyImagesPlus Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Numericalanalysisisanextremelyimportantfieldinmathematicsandothernatural sciences.Almostallreallifeproblemsthataremodeledmathematicallydonothave exactsolutions.Moreover,themathematicalmodelsoftenhaveanonlinearstructure whichmakesthemevenmoredifficulttosolveanalytically.Inthissense,thedevel- opmentandconstructionofefficientnumericalmethodsgainabigsignificance.Mo- tivatedbythisfact,thestudiesrelatedtothedevelopmentofnewpowerfulnumerical methodsorimprovementoftheexistingonesarestillcontinuing. Inparticular,numericalsolutionsofdifferentialequationsareofgreatimportance sincemanyprocessesinnaturearetimedependentandtheirmathematicalmodelsare usuallydescribedbypartialorordinarydifferentialequationsandoften,bydifference equations.Thetheoryoftimescalesanddynamicequations,ontheotherhand,uni- fiesthecontinuousanddiscretemodels,thusprovidingamoregeneralviewtothe subject. Dynamic equations, which describe how quantities change across the time or space, arise in any field of study where measurements can be taken. Most realistic mathematicalmodelscannotbesolvedusingthetraditionalanalyticalmethodsfor dynamicequationsontimescales.Theymustbehandledwithcomputationalmeth- odsthatdeliverapproximatesolutions. Untilrecently,therewereveryfewstudiesrelatedtonumericalmethodsontime scales.Inthelastfewyears,someinitialresultsonthesubjecthavebeenpublished, whichinitiatedthedevelopmentofnumericalanalysisontimescales. Thisbookisdevotedtodesigning,analyzing,andapplyingcomputationaltech- niquesfordynamicequationsontimescales.Thebookprovidesmaterialforatypical firstcourse.Thisbookisanintroductiontonumericalmethodsforinitialvalueprob- lemsfordynamicequationsontimescales. Thebookcontains12chapters.InChapter1,theLagrange,σ-Lagrange,Hermite, andσ-Hermitepolynomialinterpolationsareintroduced.Fromtheseinterpolations, approximationsforthedeltaderivativeofcontinuouslydelta-differentiablefunctions arededucted.InChapter2,formulaefornumericalintegrationontimescalesarede- rivedandtheassociatedapproximationerrorsareestimated.InChapter3,linearin- terpolatingsplines,linearinterpolatingσ-splines,cubicandHermitesplinesarein- troduced. Chapter 4 is presented as a study of the Euler method. Chapters 5 and 6 considertheTaylorseriesmethodsoforder-2andorder-pandanalyzeconvergenceof thesemethods.LinearmultistepmethodsareinvestigatedinChapter7.Chapter8con- tainstheanalysisofRunge–Kuttamethods.Chapter9dealswiththeseriessolution methodforfractionaldynamicequationsanddynamicequationsontimescales.The AdomianpolynomialsmethodisinvestigatedinChapter10.Chapter11isdevotedto weaksolutionsandvariationalmethodsforsomeclassesoflineardynamicequations ontimescales.Nonlineardynamicequationsandvariationalmethodsareinvestigated inChapter12. https://doi.org/10.1515/9783110787320-201 VI | Preface Wepresumethatthereadersarefamiliarwiththebasicnotionsontimescales such as forward and backward jump operators, graininnes function, right and left scattered,denseandisolatedpoints,aswellaswiththebasiccalculusconceptson timescalessuchasthedeltadifferentiationandintegrationandtheirproperties,el- ementaryfunctionsontimescales,Taylorformula.Forthereaderswhoarestudying thetimescalesforthefirsttime,wesuggestlearningthesebasicnotionsandconcepts fromthenumerousreferencesgiveninthisbookandelsewhere. Thetextmaterialofthisbookispresentedinahighlyreadable,mathematically solidformat.Manypracticalproblemsareillustrated,displayingawidevarietyofso- lutiontechniques.Theauthorswelcomeanysuggestionsfortheimprovementofthe text. Paris/Ankara,July2022 SvetlinGeorgiev İnciErhan Contents Preface|V 1 Polynomialinterpolation|1 1.1 Lagrangeinterpolation|1 1.2 σ-Lagrangeinterpolation|9 1.3 Hermiteinterpolation|21 1.4 σ-Hermiteinterpolation|31 1.5 Deltadifferentiation|39 1.6 Advancedpracticalproblems|41 2 Numericalintegration|44 2.1 Newton–Cotesformulae|44 2.2 σ-Newton–Cotesformulae|51 2.3 Errorestimates|60 2.4 σ-Errorestimates|61 2.5 Compositequadraturerules|62 2.6 σ-Compositequadraturerules|67 2.7 TheEuler–Maclaurenexpansion|75 2.8 Theσ-Euler–MaclaurenExpansion|76 2.9 ConstructionofGaussquadraturerules|79 2.10 ErrorestimationforGaussquadraturerules|83 2.11 σ-Gaussquadraturerules|83 2.12 Errorestimationforσ-Gaussquadraturerules|85 2.13 Advancedpracticalproblems|86 3 Piecewisepolynomialapproximation|89 3.1 Linearinterpolatingsplines|89 3.2 Linearinterpolatingσ-splines|93 3.3 Cubicsplines|100 3.4 Hermitecubicsplines|114 3.5 Advancedpracticalproblems|119 4 TheEulermethod|122 4.1 Analyzingthemethod|122 4.2 Localtruncationerror|123 4.3 Globaltruncationerror|126 4.4 Numericalexamples|128 4.5 Advancedpracticalproblems|146 5 Theorder2Taylorseriesmethod–TS(2)|149 VIII | Contents 5.1 Analyzingthemethod|149 5.2 ConvergenceoftheTS(2)method|151 5.3 Thetrapezoidrule|155 5.4 Numericalexamples|157 5.5 Advancedpracticalproblems|166 6 TheorderpTaylorseriesmethod–TS(p)|168 6.1 AnalyzingtheorderpTaylorseriesmethod|168 6.2 ConvergenceanderroranalysisoftheTS(p)method|170 6.3 The2-stepAdams–Bashforthmethod–AB(2)|176 6.4 Numericalexamples|177 6.5 Advancedpracticalproblems|186 7 Linearmultistepmethods–LMMs|188 7.1 Two-stepmethods|188 7.2 Consistencyoftwo-stepmethods|189 7.3 Constructionoftwo-stepmethods|191 7.4 k-Stepmethods|195 7.5 Consistencyofk-stepmethods|196 7.6 Numericalexamples|198 7.7 Advancedpracticalproblems|203 8 Runge–Kuttamethods–RKMs|204 8.1 One-stagemethods|204 8.2 Two-stagemethods|205 8.3 Three-stagemethods|207 8.4 s-Stagemethods|209 8.5 Numericalexamples|210 8.6 Advancedpracticalproblems|226 9 Theseriessolutionmethod–SSM|227 9.1 Preliminariesonseriesrepresentations|227 9.2 TheSSMfordynamicequations|230 9.3 TheSSMforCaputofractionaldynamicequation|232 9.4 Numericalexamples|236 9.5 Advancedpracticalproblems|248 10 TheAdomianpolynomialsmethod|249 10.1 Analyzingthemethod|249 10.2 First-ordernonlineardynamicequations|255 10.3 Numericalexamples|257 10.4 Advancedpracticalproblems|265 Contents | IX 11 Weaksolutionsandvariationalmethodsforsomeclassesoflinear first-orderdynamicsystems|266 11.1 Variationalmethodsforfirst-orderlineardynamicsystems–I|266 11.2 Variationalmethodsforfirst-orderlineardynamicsystems–II|273 11.3 Advancedpracticalproblems|279 12 Variationalmethodsfornonlineardynamicequations|281 12.1 Existenceofsolutions|281 12.2 Necessaryconditionsfortheexistenceofsolutions|288 12.3 Advancedpracticalproblems|299 A Rolle’stheorem|303 B FréchetandGâteauxderivatives|309 B.1 Remainders|309 B.2 DefinitionanduniquenessoftheFréchetderivative|311 B.3 TheGâteauxderivative|317 C Pötzsche’schainrules|319 C.1 Measurechains|319 C.2 Pötzsche’schainrule|321 C.3 AgeneralizationofPötzsche’schainrule|323 D Lebesgueintegration.Lp-spaces.Sobolevspaces|329 D.1 TheLebesguedeltaintegral|329 D.2 Thespaces𝕃p(𝕋)|343 D.3 Sobolev-typespacesandgeneralizedderivatives|346 D.4 Weaksolutionsofdynamicalsystems|360 D.5 AGronwall-typeinequality|372 E Mazur’stheorem|377 Bibliography|379 Index|381

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.