ebook img

Numerical analysis of Thai members of the Eugenia-Syzygium group (Myrtaceae) PDF

29 Pages·1999·1.7 MB·English
by  ParnellJ
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical analysis of Thai members of the Eugenia-Syzygium group (Myrtaceae)

BLUMEA 44 (1999) 351-379 Numericalanalysis of Thai membersof the Eugenia-Syzygium group(Myrtaceae) J. Parnell Herbarium,School ofBotany,TrinityCollege,Dublin,Ireland Summary Four differentanalyses ofThai Syzygium show, with very small discrepancies, that onesmaller monophyletic and onelargerpolyphyletic group can be recognised. The smallermonophyletic group warrants sectional rank asSyzygium section Jambosa and consists ofS.anacardiifolium, S. aqueum, S. diospyrifolium,S. formosum, S.foxworthianum,S. jambos, S. lakshanakarae, S.malaccense,S.megacarpum, S.papillosum,S.pseudoformosum,S.pycnanthum,S. samarangense, S.scortechinii and S.siamense. Keywords-. Eugenia,Jambosa,Syzygium,cladistics,pheneticanalysis, phylogenetic analysis. Introduction TheMyrtaceaearea moderatelysized,mostly southernhemisphere family containing between 132and 150generaandsomewherebetween3,675and3,900species (Johnson et al., 1988;Kochummen, 1995;Lemmens, 1995; Mabberley, 1997;Schmid, 1980; all provide slightly differentestimates). Despite its modest size the family poses a disproportionately large number ofcomplex taxonomic problems evident at many levelsinthetaxonomichierarchy. Forexample, McVaugh(1968)describedthespecies ofAmericanMyrtaceaeas "distressinglyalikeinaspectandinmostindividualcharac- teristics, making identificationand classificationofbothgeneraandspecies a corre- spondingly difficultand tediousmatter." WithintheMyrtaceaetwounequallysizedsubfamilieswererecognised by Niedenzu (1893): theMyrtoideae andLeptospermoideae. TheMyrtoideae haveonly 60 genera (Nic Lughadha &Proen§a, 1996)butcontainapproximately two-thirds(2,375) ofthe species known intheentirefamily (Schmid, 1980).These species occur intheNew andOldWorldtropics, aremainly shrubs ortrees ofwet-forests, usually haveanin- feriorovary, andalmostalways possess opposite broadleaves anda fleshy indehis- centfruit.Theothersubfamily,theLeptospermoideae, containsmore genera(72)than theMyrtoideae but fewerspecies (1,300). Its species are largely Australasian,have alternate,spiral or opposite leaves, an inferioror superior ovary and, usually, a dry dehiscentfruit. Niedenzu's(1893) subfamilialdivisions are convenientandstill used (e.g. Hora, 1978andNic Lughadha & 1996). However, severalrecent studiesindicate thatNiedenzu'sclassificationisunsatisfactory(e.g. Johnson& Briggs, 1984orSchmid, 1972,1980). Johnson& Briggs (1984) developedaninformalsystem ofalliancesand 352 BLUMEA Vol. 44, No. 2, 1999 suballiances through cladisticanalysis ofa fairly large and comprehensive dataset (Briggs&Johnson, 1979;Johnson& Briggs, 1984). Though thealliancesappearwell- supported their interrelationships and boundaries remain somewhat controversial. Johnson& Briggs (1984)concludethatNiedenzu's (1893) divisionofthefamily on the basisoffruitcharacteristics is not phylogenetically supportable: theiralliances andsuballiances cross traditionalsubfamilialboundaries. Twoalliancesareofparticular concern inthispaper- theAcmenaand Myrtoideae s.s. alliances(Johnson &Briggs, 1984)or,morespecifically, theAcmenaandEugenia alliances(Johnson etal., 1988). Though traditionally placed closetoeachotherinthe fleshy fruitedMyrtoideae, thesealliancesappearfarapartphylogenetically (Johnson & Briggs, 1984). Indeedthey could scarcely be much furtherapart in Johnson & Briggs' cladogram wherein theEugenia alliance(including Jossinia Comm.exDC.) is ina cladewhichincorporates theLeptospermum alliancewhilsttheAcmenaalliance forms an altogether separate clade with, amongst others, the Eucalyptus alliance. However, in alatercompromise classificationboth alliances are placed together in the subfamily Myrtoideae (Johnson etal., 1988).InthispaperIadheretothis latter conceptanduse the term Myrtoideae initstraditionalsense. TheAcmenaandEugenia alliancescontaintwoofthemosttaxonomicallyconfused generain theMyrtaceae- Eugenia L.and Syzygium Gaertn. anda numberofother generawhich have, at one time oranother, beencleavedofffromor reunitedwith them.Schmid(1972)pointed outthattherewereabout35generic nameswhichhave beenorcouldbereducedtoSyzygium s.l.andatleastanother30assignable toEugenia s.l.Sincethenthenumberofsegregateshas increasedwith, forexample,thedescription of WaterhouseaHyland and MonimiastrumJ.Gueho & A.J. Scott. Together these generaforma"vastarrayofmoreor less closelyalliedspecies" (Ashton, 1981).This 'array', dominatedbyEugenia andSyzygium, is very large- IndexKewensis hasover 3,000species listedunderEugenia andover 1,000underSyzygium. Undoubtedly this does not reflect thetrue balance in numbersofspecies between thesegenerawhen they are consideredinthe strict sense as even now many authorsprefer, becauseof historical precedent, toignore thedifferencesbetweenthem. Schmid(1972)provides themostcomprehensive reviewofthestatusofSyzygium s.l.andmakes clearwhyEugenia/Syzygium wereconfused.Schmid'swork summarises nearlyalloftherelevantreferencesandarguments,andis thereforenot repeated here. Table 1 summarisestherelevantsections ofSchmid(1972) together withJohnson& Briggs (1984). As canbe seen fromTable 1: 1)thereis someoverlapinallofthemosteasily observabledifferentialmorpholo- gical charactersbetweenEugenia andSyzygium (e.g. pubescence of vegetative and/ orreproductive parts,fugacity ofbractsandbracteoles,presenceorabsenceofapseu- dostipeandfusionofthecotyledons); 2) thereare ± nomeristiccharactersinthistable.Thisreflects thefact that,as far asIknow, therehavebeennopublished studiesdealing withmorphometric variation withinthegroup; 3) thereappeartobe sometruly diagnosticcharacteristics(e.g. pathwayofvascular supply to theovules, presence of siliceousrays, elongation ofvessel-ray pits, carpel number), howevernoneofthese, withthepossible exception ofthe latter, are easily J.Parnell: Numerical analysis ofThai Eugenia-Syzygium 353 Table 1.Majordifferential and diagnosticcharacteristics ofEugeniaandSyzygium. Datafrom Schmid (1972),Johnson & Briggs (1984)andpersonal observation.The percentageofspe- ciesestimatedtohave atraitare shown and are largelytakenfromSchmid(1972). CChhaarraacctteerr EEuuggeenniiaass..ss.. SSyyzzyyggiiuumm ss..ll.. PPuubbeesscceennccee ooffvveeggeettaattiivvee UUssuuaallllyypprreesseenntt((9900%%)) RRaarreellyy pprreesseenntt((55%%)) aanndd//oorr rreepprroodduuccttiivveeppaarrttss BBrraaccttssaanndd bbrraacctteeoolleess PPrreesseenntt aanndd ccoonnssppiiccuuoouuss FFuuggaaccoouussaanndd iinnccoonnssppiiccuuoouuss ((8800%%)) ((9955%%)) PPsseeuuddoossttiippee11 AAbbsseenntt ((9999%%)) PPrreesseenntt ((9922%%)) CCoottyylleeddoonnss UUssuuaallllyy ffuusseedd UUssuuaallllyyffuussiioonn aabbsseenntt DDeeggrreeeeoofffflloorraall ttuubbee pprroolloonn-- ++NNoottpprroolloonnggeedd PPrroolloonnggeedd ggaattiioonn aabboovvee tthheeoovvaarryy PPeerriiaanntthh UUssuuaallllyy llaarrggee aanndd ccoonnssppicic-- UUssuuaallllyyssmmaallllaannddiinnccoonnssppicic-- uuoouuss uuoouuss SSuurrffaacceeooffsseeeedd--ccooaatt SSmmooootthh RRoouugghh PPaatthhwwaayy ooffvvaassccuullaarr TTrraannsseeppttaall AAxxiillee ssuuppppllyyttoooovvuulleess VVeesssseellss MMoossttllyy ggrroouuppeedd MMoossttllyy ssoolliittaarryy EElloonnggaattiioonnooffvveesssseell--rraayy ppiittss CCoonnssiiddeerraabbllyyeelloonnggaatteedd IIssooddiiaammeettrriicc oorr mmooddeerraatteellyy eelloonnggaatteedd BBoorrddeerreeddppiittssffrroommffiibbrreess AAbbsseenntt PPrreesseenntt AAppoottrraacchheeaallppaarreenncchhyymmaa AAbbsseenntt PPrreesseenntt PPaarraattrraacchheeaall ppaarreenncchhyymmaa CCoonnfflluueenntt oorrbbaannddeedd SSccaannttyy SSiilliicceeoouuss iinncclluussiioonnssiinn rraayyss PPrreesseenntt AAbbsseenntt NNuummbbeerr ooffccaarrppeellss 22 44--55 NNuummbbeerr ooffsseeeeddssffoorrmmiinngg SSeeeeddss rreedduucceedd ttoo 11 oorr22 MMoossttoovvuulleess ffoorrmmiinnggsseeeeddss ffrroommoovvuulleess 1) Pseudostipeasdefined byWilson (1957)=pseudostalkofHenderson (1949). observed.In generaltheworkofSchmid(1972), Johnson& Briggs (1984)andothers isbasedonasmallfractionoftheEugenia/Syzygium complex; thereforetheirconclu- sionsmay beoflimitedapplication. On theother handthesheer numberofspecies involvedmakeitunrealistictoexpecttheassemblage ofatrulycomprehensive dataset whichwillallow foranall-inclusivephylogenetic analysis andinarguableresolution ofthe controversy. Assemblage of data ona regional basis in the hope ofeventual amalgamation offers the only potential solution.An additionaldifferencebetween Eugenia andSyzygium not showninTable1 is thatEugenia is alargely tropical New Worldgenus(though EugeniaahernianaC.B.Rob.isfoundinthePhilippines), whilst Syzygium is astrictly tropical OldWorldgenus. Although phenetic analysis ofa partial dataset is not problematic - phylogenetic analysis ofsuch datacanonly bejustified if: 1) representatives cover thecomplete rangeofvariabilityofthegenus; 2) theapomorphies usedareunique on aworld-widescaleandnotjusttothestudy area in question (Esser etal., 1998); 3) aconservativeapproach to monophyletic groupdelimitationfromanyresulting cladogram is taken. Thesecriteriaaremet inthispaper. 354 BLUMEA Vol. 44, No. 2, 1999 In the absence ofcontradictory evidence on monophyly, Syzygium, the more geo- graphicallyconfinedandsmallerofthetwo genera,appearsthe bettergenus to start analysis withandis theone dealtwithhere. THECONCEPT OF SYZYGIUMADOPTED IN RECENT SOUTH-EASTASIANFLORAS Historical precedent is a particular problem in South-EastAsia where the genus Syzygium is centred.Ashton (1981)points out that"through thelatterpartofthe 19th century a broad generic definitionoperated inAsiatic floras with all species being consideredaspartofEugenia.” Even nowadays some authors continuetoutiliseone orothergeneric namefortheentireconstellationofspecies (e.g. Kochummen,1995) whilstothersacknowledge thatnew combinationsareneededbutrefusetomakethem (Lemmens, 1995).Whilst such procedures promote nomenclaturalstability they perpetuatetheuseofinaccuratenamesandmakeitpsychologically more difficultto introducethenecessary new combinations. Despite the strength ofhistorical precedent there have been three concepts ofthe Syzygium/Eugenia complex adopted inrecent South-EastAsianfloras. Concept 1 — The simplest concept,andthat whichcurrent evidenceindicates is themostinaccurate,is theall-inclusiveoneusedby Henderson(1949),Kochummen (1995)andLemmens(1995) whereinasingle enormous genus- Eugenia - is recog- nised.However,itisobviousfrom Schmid(1972) and Johnson&Briggs (1984) that thisconceptisanuninformativeoption, thatEugenia andSyzygium aredistinguishable andthereforethisconcepthas latterlybeenadoptedmerely forthesakeofconvenience. Henderson(1949)acceptsconvenienceasavaliddeterminantofaclassificatory struc- ture andproduces furtherevidence to suggestthatEugenia andSyzygium are notin reality distinct fromeachother. Healso points out that such a single large genus is unwieldy andthat "attempts to split itup have not met with conspicuous success"; hethenproceeds tosplitEugenia intofivesections basedon featuresofthecalyx and androecium(Table 2). Henderson's section Fissicalyx contains only two rare species, both endemic to Malaysia, andbothofwhichhave the sameapomorphic characteristics - that their stamens are not attachedtotherimofthe calyx-tubebut occur scatteredover its sur- Table2. Sectionaldifferences within Eugenias.l.according toHenderson (1949). § =section. CChhaarraacctteerr §§ CClleeiissttooccaallyyxx §§ SSyyzzyyggiiuumm §§ AAccmmeennaa §§ FFiissssiiccaallyyxx §§EEuu--eeuuggeenniiaa CCaallyyxx--ttuubbeepprroodduucceedd YYeess YYeess YYeess YYeess NNoo aabboovveeoovvaarryy SSttaammeennssmmaarrggiinnaall YYeess YYeess YYeess NNoo YYeess oonnddiisscc lliinniinngg ccaallyyxx--ttuubbee AAnntthheerr--cceellllss ddiivvaarr-- NNoo NNoo YYeess NNoo NNoo iiccaattee CCaallyyxx ccaallyyppttrraattee YYeess NNoo NNoo NNoo NNoo J.Parnell: Numerical analysis ofThai Eugenia-Syzygium 355 Table 3.Henderson’s (1949)division ofhis sectionSyzygium intogroups. Henderson’s calyx- tube charactersinclude thepseudostipe:acharacter described in detail by Chantaranothai & Parnell (1994a). Character Group 1 Group2 Group 3 Group 4 Group5 Calyx-tube atleast 1 cm Yes Yes No No Yes long Calyx-tubecampanulate, 1 1 1 1 2 funnel-shaped,urceo- late orsubglobose(1) orCalyx-tube fusi- form,peg-shaped, clavateorgradually narrowed (2) Inflorescence short Yes No No Usuallyno Varied Inflorescencesfew- Yes No No No Usuallyno flowered faceandthatthecalyx-tube splitsafteranthesisintosix or seven irregular segments. Thesedifferencesare sufficientlygreattosuggestthatHendersonwasunduly conserva- tiveandthatthesespecies should, probably, besegregated intoaseparate genus.As Henderson'sotherfoursections occurinThailandphylogenetic analysis, as undertaken herein,is stilljustifiable. SectionsCleistocalyxandAcmenacontainonlytheirepithet bestowing generaandare separated by autapomorphies fromthe othersections (viz. calyx calyptrate andanthersdivaricate,respectively). Section Syzygium containsthe vast majority ofspecies andwas furthersubdividedby Henderson(1949) into five groupsonthebasis ofcalyx andinflorescencecharacters(Table3). Henderson'sgroups are entirely novel anddo not correspond topreviously recog- nised genera.Henderson was also the first author touse a biometriccharacter(the lengthof thecalyx-tube)tosubdividethiscomplex. Otherauthors, forexample Hung- ta& Ru-hwai(1982), dividethegenusSyzygium intosections andseriesonthebasis of differencesin characters such as flower length, petals eitherfree or fused, and inflorescencetype.Unfortunately manyspecies aretoo littleknown toallowthemto beeasily accommodatedin theirsystem. Concept 2— Thissecondconceptallowsforseparation ofSyzygium fromEugenia but givesnorecognition toanyothergeneric segregates.It conformstothatofAlston (1931) (who,in hisrevisionofSriLankanmaterial, reduced Jambosato synonymy withSyzygium whilstmaintainingthesplitbetweenSyzygium andEugenia) andmore orless tothose ofAshton (1981), Hartley & Perry (1973), andAiry Shaw (1949). Concept 3— The third concept of the complex is themost divisive. In itsmost fissibleformit was adopted by Merrill& Perry (1938, 1939) whoaccepted a large seriesofgeneric segregatesincludingAcmenaand Cleistocalyx. However,Merrill& Perry didnot acceptJambosa:: a genus or subgenus definedina varietyofways [on thebasis ofitslarge leaves, flowers andfruits(Ridley, 1922)]or differingonly inits centrifugal inflorescence (Bentham& Hooker, 1865). Similarconcepts have been utilisedby Kostermans (1981)and Hyland (1983). In addition, Merrill(1950a, b), 356 BLUMEA Vol. 44, No. 2, 1999 though not Perry (pers. comm. inSchmid, 1972), also accepted thefurthersegregate Jossinia:agenusorsubgenus distinguished fromEugenia largelyby itsbroadstamini- ferousdisc (Bentham& Hooker, 1865)as wellas manyseededfruitsandlongradicle according to DeCandolle(1828). Ho (1992) accepted aspects ofMerrill& Perry's conceptandrecognised Acmena,Cleistocalyx, Syzygium, andEugenia. Noneofthese segregates were supported by Schmid(1972) whowas unableto distinguish any of them. Previous analyses ofthe Eugenia/Syzygium controversy have relied on alpha- taxonomic methods- littlephenetic or phylogenetic analysis has been undertaken. Thispaperuses regional datafullyrepresentative oftheSyzygium complex inaphenetic and phylogenetic analysis, with particular emphasis placed on theuse ofbiometric characteristicsandthe question ofhomogeneity ofSyzygium. MATERIALS AND METHODS Datawere in part drawnfromChantaranothai(1989): furtherdatawere collectedby re-examinationofherbariummaterialcitedinthisworkandof newmaterial(Simpson etal., 1995,provides furtherdetailsofthesecollections). Thedatausedinthispaper arebasedonexaminationofallthe availablematerial(c. 4,000specimens) ofthese taxa from A, AAU, ABD, BK, BKF, BM, C, E, K, L, MEL, OXF, P, PDA, PSU, SING, TCD,Uandonthebasisoffield-collections.Thereare89species intheAcmena andEugenia alliancespresentinThailand(Chantaranothai &Parnell, 1994a). Chan- taranothai& Parnell (1994a), Parnell(1995), Parnell & Nic Lughadha (1992) and Parnell& Chantaranothai(1996)provide detailsofallofthetaxa ofSyzygium s.l.in Thailandandfurtherdetailsofthecharacters recordedforthesespecies. A very few (5) species ofSyzygium s.l., includedin Chantaranothai& Parnell(1994a), are not dealtwithbecausetheavailablematerialwas inadequate toallowthem tobe scored. Normally,forphylogenetic analysis suchaprocedure wouldbeunacceptable, itbeing bettertohave representation ofall taxa thanall characters. However,as previously stated, thisanalysis uses arepresentative selectionofspecies in thegenusSyzygium whichrepresentation is not diminishedby theaboveprocedure. Alist ofthetaxa in- cludedin thispaperis given inAppendix Table 1. Chantaranothai& Parnell(1994a) assigned these84 species togeneraas follows: 81 species toSyzygium s.s., 1 species toAcmena (autapomorphy, anthers divaricate), 4toCleistocalyx (autapomorphy, calyx calyptrate) and3to Eugenia (autapomorphy, inflorescenceand/orvegetative parts hairy). Ofthesegeneraonlyone, themostdistinctive,,-Acmena,wasdefinedas anoutgroup forphylogenetic analysis, though representatives of,Eugenia and Cleistocalyx were addedas possible outgroups too. ANALYSES UNDERTAKEN Anumberofdifferenttypesofanalysis wereundertaken.For morphometricphenetic analysis two fundamentally differenttechniques were used. Firstly the datawere ordinated. J.Parnell: Numerical analysis ofThai Eugenia-Syzygium 357 PrincipalComponents Analysis (PCA)isdesignedforcontinuously varying orquantita- tive dataormultistatedataexpressed onascaleofreasonablelength. Withmostbiolo- gical datasetsPCA willextractas manysummaryaxes as thereareoriginal variables in the data.However, only the first few axes represent effective summariesofthe data.OnthebasisofParnell&Needham(1998)only thosecomponentswhichsatisfied Frontier's (1976)criterionas well as the firstcomponentwhichhis scheme signals maybetrivialbutwhichstillmeets theheuristicKaiser-Guttmanncriterionwereused. TheprogrammeusedwasDatadesk5.0.1(cf.DataDescription Inc.,Ithaca,NewYork). DiscriminantAnalysis (DSC),was usedtotestwhetherpre-defined groupsofspecies visualised on PCA were or were not statistically distinguishable. This multivariate extension ofanalysis ofvariance (Marriott, 1974) was performed in both stepwise and non-stepwise ways. Stepwise analysis was performed using all defaultoptions [minimisation ofWilks lambda, auto F-to-enterand F-to-remove in SPSS 6.1 (cf. Norusis & SPSS Inc., 1993)]. Thefollowingcharacterswere measuredformorphometryphenetic analysis (Table 4). In virtually allcases thecharacterswere measuredon frombetweenoneandfour leavesandflowersfromeachoffourseparatespecimens ofthetaxon (alistofmostof the specimens measuredis given inChantaranothai, 1989).The valuesobtainedper specimen were firstaveraged andthenthe averagevaluesper taxonwerecalculated: theselattervalueswerethenusedinPCAandDSC.Allleafmeasurements weremade on driedmaterialand allflowermeasurements on flowers whichhadbeen soakedin water overnightorboiledfor10-15minutes.Itprovedimpossible toobtainacomplete datamatrixwhich covered all Thai Syzygium species andbecause I do not like to interpolate dataI decidedtoeliminatethe taxa for whichIhadincomplete datafrom the analysis. Theproblems raisedby this procedure for phylogenetic analysis have beendiscussedearlier.Theremaining taxa are listedinAppendix Table1. AppendixTable 1. Taxaincluded inthis analysis.A.acumenatissima,C.khaoaienensis,C.nigrans,C.operculatus, C. operculatus subsp.paniala, C.phengklaii, E. bracteata, E. xanthocarpa, S. abortivum, S.aksornii, S. albiflorum,S.anacardiifolium,S. angkai,S.angkaesubsp.spissum, S.aqueum, S.aromaticum,S. attenuatum, S.attenuatumsubsp.montanum,S.attenuatumsubsp.circumcis- sum,S.balsameum,S.boiseanum subsp.longifolium,S.borneense subsp.myrtillus, S.borneense subsp.myrtillus, S. cacuminis,S.cacuminissubsp.inthanonense,S.cerasiforme,S. chavaran, S.cinereum,S.claviflorum, S. craibii,S. cuminii,S. diospyrifolium,S. duthieanum,S. dyerianum, S.fastigiatum, S. filiforme, S. formosum, S. foxworthianum,S. fruticosum, S. fuscescens, S. glaucum, S. globiflorum, S. grande, S. grandesubsp.parviflorum, S. gratum, S. gratum subsp.confertum,S. helferi,S.hemsleyanum,S.hemsleyanumsubsp.paucinervum,S.hulletia- num, S. ixoroides,S.jambos, S.jasminifolium, S. kerrii,S.kurzii, S.laetumsubsp.jugorum, S. laetum subsp. sublaetum, S. lakshanakarae, S. leptostemon, S. lineatum, S. maingayi, S. malaccense, S. megacarpum, S. mekongense, S. muelleri,S. nitrasarirakii,S. oblatum, S.oblatumsubsp.laevicaule,S. pachyphyllum, S.pachysarcum, S.papillosum,S. pergmanta- ceum,S.polyanthum, S.praecox, S.praineanumsubsp. minor,S.pseudoformosum,S.puttii, S.pycnanthum,S.pyrifolium, S. refertum,S. ridleyi, S. rigens,S. ripicola, S. samarangense, S.samarangense subsp.parviflorum, S. scortechinii,S.siamense, S.skiophilum, S. subrufum, S. subrufum subsp. smalianum, S. syzygiodes, S. tetragonum,S. thumra, S. thumra subsp. punctifolium, S. toddalioides,S. urophyllum, S. winitii,S. zeylanicum, S. zimmermannii. 358 BLUMEA Vol. 44, No. 2, 1999 Table4.Morphologicalcharactersmeasured forphenetic,morphometricanalysis. Character number Character Comments 1 Petiole length The lengthofthe petiole fromthe base of thepetioletothe baseofthe lamina 2 Lamina width Measured atright-angles totheaxis at the pointofmaximum width 3 Lamina length The lengthasmeasured alongthe midrib 4 Basal angle The angleformedatthebaseoftheleaves 5 Apicalangle The angleformedattheapexoftheleaves 6 Midrib width Measured atthepointmidwaybetween the apex and base oftheleaf 7 Number ofsecondary veins Counted upwards fromthe secondpairof veins atthe base ofthe lamina 8 Distancebetween the secondary Measured atthepointmidwaybetween the veins midribandthemarginina lineparallelto the midrib 9 Number ofintramarginalveins Counted atthebase ofthe lamina 10 Distance between the intramar- Measured atrightanglestothe marginata ginalveins and the margin point midway between the leafbaseand leaf apex. Ifthe leaf had 2 or 3 intra- marginalveinsthenthe innermost distance wasmeasured. Ifthe species hadnointra- marginal veins thenthe distancebetween the secondary veins and the margin was measured instead 11 Calyx-tube length Measured fromthe base ofthe calyx-lobes tothebase ofthecalyx-tube 12 Number ofcalyx-lobes 13 Lengthofcalyx-lobes Measuredalongthe mid-axis ofthecalyx- lobe 14 Number ofpetals 15 Petal length Measuredalongthelongaxisofthepetalat its longestpoint 16 Outer stamenlength Measured from the junction of the calyx- tube tothe tipofthe anther 17 Number of glands ontheback ofthe anther 18 Style length Measured fromitsjunctionwith the calyx- tube tothetipofthe stigma 19 Numberoflocules 20 Number ofovulesper locule 21 Numberofgland-dotsperpetal Initialanalysis showedthatcharacters 17and 19(Table 4)wereinsufficiently variable toallowforinclusioninaPCA orDCA;they were thereforenot directlyincludedin theseanalyses. Initialanalysisalso showedthatcharacters4, 8,10, 13, 15, 16,18,20 and21 were not normally distributedon anindividualbasis. (These variables were eithermarkedly skewed, hadabnormalkurtosis or didnot fallalong astraight lineon a normalprobability plot.) Transformationofthe above characters was undertaken J.Parnell: Numerical analysis ofThai Eugenia-Syzygium 359 following Manly (1986) andMarriott(1974). Bytrialanderror themostappropriate transformationforallthesecharacters,exceptforcharacter8,was foundtobeLogt0: character 8required areciprocal squareroot transformation.Thesetransformations contractedtherangeofthetransformedvariables,bunching themclosertogetherthan intheiruntransformedstate.(Initialanalysis showedthatPCAandDSC analyses run on an untransformeddatasetproduced analmost identical pattern ofresults as that run withthe abovetransformationsincluded, though thegapbetweenGroup 1 and2 appeared muchlarger). PCA(andDSC) require datawhichareapproximately multivariatenormalandare thereforeinappropriate forcategorical data(Manly, 1986).Suitableordinationmethods are detailedin Causton (1988) and their advantages and disadvantages outlinedin Kent & Coker(1992) who indicatethatDetrendedCorrespondence Analysis (DCA) is probably themost widely usedtechnique. Its derivation,application andpossible flawsarefurtherdetailedinTerBraak(1988),Hill(1973,1979),Hill& Smith(1976), Minchin(1987), Oksanen & Minchin(1997) andParnell& Waldren (1996). Parnell & Waldren(1996) show that DCA has wide application to taxonomicbistate data providingsimple, clearplots ofeasyinterpretabilitywherebothobjectsandcharacters are plotted to the same scale andare overlayable. FurthermoreDCA can be used where the groupunderconsideration does not form a complete phylogenetic unit. DCA wasperformedusing theDCAoption ofCANOCO(TerBraak, 1988).Although DCA canutilisemixeddatasets, wheresomedataare recordedononescaleandother dataarerecordedon another, itis clearthatthispractice results in ordinationswhich are very difficultto interpret. Itis muchpreferable toutilise datamatriceswherethe dataareallscored tothesamescale.AlsoDCA isderivedfromCA: thelattertechnique preserves theX2 distancesbetweenobjects, andhence ignores comparisons between valueswithdouble0ranks (Legendre &Legendre, 1983).Soif0was offrequent oc- currenceplots couldresultwiththeintertaxonor intercharacterdifferencesincorrectly scaled, i.e. characters should not beara 0 code ifit is avoidable.Characterswere codedas possessing oneoftwoalternativestates(1) or(39), thelattercorresponding totherangeofthenumberofcharactersinput (Parnell &Waldren, 1996).Table5 lists thecharactersandtheircoding forthisanalysis.Thesametaxa were surveyed forthis analysis as forPCA (Appendix Table 1). Very few morphometric characters were used in DCA. Those thatwere includedwere decomposed into naturally occurring groups: forexample itwasclearfromexaminationofhistograms oftheraw datathat a naturally occurring break interms ofstamen length is that betweenthose flowers withouter stamens less than 15mm andthose withouter stamens 15 mmor morein length: this break thenallowedthesetwo states tobe coded forDCA. Itis obviously impossible toexpress characters wheremorethan asingle natural break occurs in asingle pair ofdichotomousvalues.There is no perfect solutionto this problem, though there are three potential approaches. Firstly, to introducesub- divisions withinthe codedrange foreach character(i.e., for afour statecharacter, codes wouldbe 1, 11, 22 and 34). Unfortunately, this procedure is inadvisableas implementations ofDCAappearnot tobeabsolutely scale independent. Secondly, to treateachpotentially multistatecharacteras anumberofindependent dichotomous characters-thereforeafourstatecharacteris codedasfourseparatebistatecharacters. 360 BLUMEA Vol. 44, No. 2, 1999 Table5.Charactersrecorded forweightedDetrendedCorrespondenceAnalysis(DCA).Charac- ters were scored as oneoftwo states, and coded as(1) or (39) and are given in that order below;the slash (/)is used todivide the differentcharacter states. Character number Character states 1 Trees /Shrubs 2 Plant without hairs/planthairy 3 Midvein impressedorsunken/midveinnotimpressedorsunken 4 Midvein notraised with achannel inthemiddle ofthe vein/midvein raisedwith achannel inthemiddleofthevein 5 Midrib notkeeled /midribkeeled 6 Intramarginalveins 0/intramarginalveins not0 7 Intramarginalveins 1/intramarginalveins not 1 8 Intramarginalveins 2/intramarginalveinsnot 2 9 Intramarginalveins 3/intramarginalveinsnot 3 10 Midvein less than 1mmwide/midveinmorethan 1mm wide 11 Number ofsecondaryveins5-10/numberofsecondaryveinsnot5-10 12 Number ofsecondaryveins 11-15/numberofsecondaryveins not 11-15 13 Number ofsecondaryveins 16-20 /number ofsecondaryveinsnot 16-20 14 Number ofsecondaryveins21-25 /number ofsecondaryveins not21-25 15 Number ofsecondaryveins26-30/numberofsecondaryveinsnot 26-30 16 Calyx-tubenarrowlyfunnel-shapedandcontracted intoadistinctpseudostipe/ calyx-tube notnarrowlyfunnel-shapedand contractedintoadistinctpseudostipe 17 Calyx-tubebroadlyfunnel-shapedandnarrowedintoapseudostipe/calyx-tubenotbroadly funnel-shapedand narrowed into apseudostipe 18 Calyx-tubeclavateornarrowlyfunnel-shapedandnarrowed intoalongpseudostipe/calyx- tubenotclavateornarrowlyfunnel-shapedand narrowed into alongpseudostipe 19 Calyx-tube cylindrical/calyx-tubenot cylindrical 20 Calyx-tubebroadlyfunnel-shapedandmorethan10mmlong/calyx-tubenotbroadlyfunnel- shapedand morethan10mmlong 21 Calyx-tubefunnel-shapedand less than 10mm long/ calyx-tubenotfunnel-shapedand lessthan 10mm long 22 Calyx-tubefunnel-shapedwithoutadefinitepseudostipeorwith apseudostipeless than 1mmlong/calyx-tubenotfunnel-shapedwithoutadefinitepseudostipeorwith apseudo- stipelessthan 1mm long 23 Pseudostipeabsent/pseudostipepresent 24 Number ofgland-dotsonapetal0-50 /numberofgland-dotsonapetalnot0-50 25 Number ofgland-dotsonapetal51-100/number ofgland-dotsonapetalnot 51-100 26 Number ofgland-dotsonapetal 101-150/number ofgland-dotsonapetalnot 101-150 27 Number ofgland-dotsonapetal 151-200 /number ofgland-dotsonapetalnot 151-200 28 Numberofgland-dotsonapetal>200/number ofgland-dotsonapetalnot> 200 29 Number ofcalyx-lobes0 or4/number ofcalyx-lobes5ormore 30 Numberofpetal-lobes4/number ofpetal-lobes5ormore 31 Petalcolournotpolymorphic(always yellow)/petal colour polymorphismpresent (not alwaysyellow) 32 Stamenlength0-14.9 mm /stamenlength15mmormore 33 Stylelengthapproximatelyequaltoouterstamenlength/style lengthlessthan outerstamen length 34 Bracts absent ornarrow,oblongorspathulateorlinear orsheathing/bracts triangularor OV3tC 35 Twolocules perovary/sometimesmorethantwolocules per ovary 36 Numberofovulesper locule 5-10/numberofovulesperlocule not5-10 37 Numberofovules perlocule 11—15/number ofovules perloculenot 11-15 38 Numberofovulesper locule 16-20/numberofovulesper locule not16-20 39 Numberofovulesperlocule > 20/number ofovulesper loculenot>20

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.