IET POWER AND ENERGYSERIES 78 Numerical Analysis of Power System Transients and Dynamics Othervolumesinthisseries: Volume1 PowercircuitbreakertheoryanddesignC.H.Flurscheim(Editor) Volume4 IndustrialmicrowaveheatingA.C.MetaxasandR.J.Meredith Volume7 InsulatorsforhighvoltagesJ.S.T.Looms Volume8 VariablefrequencyacmotordrivesystemsD.Finney Volume10 SF switchgearH.M.RyanandG.R.Jones 6 Volume11 ConductionandinductionheatingE.J.Davies Volume13 StatisticaltechniquesforhighvoltageengineeringW.HauschildandW.Mosch Volume14 UninterruptiblepowersuppliesJ.PlattsandJ.D.StAubyn(Editors) Volume15 DigitalprotectionforpowersystemsA.T.JohnsandS.K.Salman Volume16 ElectricityeconomicsandplanningT.W.Berrie Volume18 VacuumswitchgearA.Greenwood Volume19 Electricalsafety:aguidetocausesandpreventionofhazardsJ.MaxwellAdams Volume21 Electricitydistributionnetworkdesign,2ndeditionE.LakerviandE.J.Holmes Volume22 ArtificialintelligencetechniquesinpowersystemsK.Warwick,A.O.Ekwueand R.Aggarwal(Editors) Volume24 PowersystemcommissioningandmaintenancepracticeK.Harker Volume25 Engineers’handbookofindustrialmicrowaveheatingR.J.Meredith Volume26 SmallelectricmotorsH.Moczalaetal. Volume27 Ac-dcpowersystemanalysisJ.ArrillagaandB.C.Smith Volume29 Highvoltagedirectcurrenttransmission,2ndeditionJ.Arrillaga Volume30 Flexibleactransmissionsystems(FACTS)Y-H.Song(Editor) Volume31 EmbeddedgenerationN.Jenkinsetal. Volume32 Highvoltageengineeringandtesting,2ndeditionH.M.Ryan(Editor) Volume33 Overvoltageprotectionoflow-voltagesystems,revisededitionP.Hasse Volume36 VoltagequalityinelectricalpowersystemsJ.Schlabbachetal. Volume37 ElectricalsteelsforrotatingmachinesP.Beckley Volume38 Theelectriccar:developmentandfutureofbattery,hybridandfuel-cellcars M.Westbrook Volume39 PowersystemselectromagnetictransientssimulationJ.ArrillagaandN.Watson Volume40 AdvancesinhighvoltageengineeringM.HaddadandD.Warne Volume41 ElectricaloperationofelectrostaticprecipitatorsK.Parker Volume43 ThermalpowerplantsimulationandcontrolD.Flynn Volume44 EconomicevaluationofprojectsintheelectricitysupplyindustryH.Khatib Volume45 PropulsionsystemsforhybridvehiclesJ.Miller Volume46 DistributionswitchgearS.Stewart Volume47 Protectionofelectricitydistributionnetworks,2ndeditionJ.GersandE.Holmes Volume48 WoodpoleoverheadlinesB.Wareing Volume49 Electricfuses,3rdeditionA.WrightandG.Newbery Volume50 Windpowerintegration:connectionandsystemoperationalaspectsB.Foxetal. Volume51 ShortcircuitcurrentsJ.Schlabbach Volume52 NuclearpowerJ.Wood Volume53 Conditionassessmentofhighvoltageinsulationinpowersystemequipment R.E.JamesandQ.Su Volume55 Localenergy:distributedgenerationofheatandpowerJ.Wood Volume56 ConditionmonitoringofrotatingelectricalmachinesP.Tavner,L.Ran,J.Penman andH.Sedding Volume57 Thecontroltechniquesdrivesandcontrolshandbook,2ndeditionB.Drury Volume58 LightningprotectionV.Cooray(Editor) Volume59 UltracapacitorapplicationsJ.M.Miller Volume62 LightningelectromagneticsV.Cooray Volume63 Energystorageforpowersystems,2ndeditionA.Ter-Gazarian Volume65 Protectionofelectricitydistributionnetworks,3rdeditionJ.Gers Volume66 Highvoltageengineeringtesting,3rdeditionH.Ryan(Editor) Volume67 MulticoresimulationofpowersystemtransientsF.M.Uriate Volume68 DistributionsystemanalysisandautomationJ.Gers Volume69 Thelighteningflash,2ndeditionV.Cooray(Editor) Volume70 Economicevaluationofprojectsintheelectricitysupplyindustry,3rdedition H.Khatib Volume905 Powersystemprotection,4volumes Numerical Analysis of Power System Transients and Dynamics Edited by Akihiro Ametani The Institution ofEngineeringand Technology PublishedbyTheInstitutionofEngineeringandTechnology,London,UnitedKingdom TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland& Wales(no.211014)andScotland(no.SC038698). †TheInstitutionofEngineeringandTechnology2015 Firstpublished2015 ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublisherattheundermentionedaddress: TheInstitutionofEngineeringandTechnology MichaelFaradayHouse SixHillsWay,Stevenage Herts,SG12AY,UnitedKingdom www.theiet.org Whiletheauthorsandpublisherbelievethattheinformationandguidancegiveninthis workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliabilityis disclaimed. Themoralrightsoftheauthorstobeidentifiedasauthorofthisworkhavebeen assertedbyhiminaccordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisproductisavailablefromtheBritishLibrary ISBN978-1-84919-849-3(hardback) ISBN978-1-84919-850-9(PDF) TypesetinIndiabyMPSLimited PrintedintheUKbyCPIGroup(UK)Ltd,Croydon Contents Preface xiii 1 Introductionof circuit theory-basedapproach andnumerical electromagnetic analysis 1 A. Ametani 1.1 Circuit theory-based approach: EMTP 1 1.1.1 Summary of the original EMTP 1 1.1.2 Nodal analysis 2 1.1.3 Equivalent resistive circuit 4 1.1.4 Sparse matrix 7 1.1.5 Frequency-dependent line model 8 1.1.6 Transformer 9 1.1.7 Three-phase synchronousmachine 10 1.1.8 Universal machine 11 1.1.9 Switches 13 1.1.10 Surge arrester and protective gap (archorn) 16 1.1.11 Inclusion of nonlinear elements 18 1.1.12 TACS 20 1.1.13 MODELS (implemented in the ATP-EMTP) 22 1.1.14 Power systemelementsprepared in EMTP 24 1.1.15 Basic input data 24 1.2 Numerical electromagnetic analysis 36 1.2.1 Introduction 36 1.2.2 Maxwell’s equations 37 1.2.3 NEAmethod 38 1.2.4 Method of Moments in the time and frequency domains 38 1.2.5 Finite-difference time-domain method 41 1.3 Conclusions 42 References 42 2 EMTP-ATP 47 M. Kizilcay andH.K.Hoidalen 2.1 Introduction 47 2.2 Capabilities 48 2.2.1 Overview 48 2.2.2 Built-in electrical components 48 vi Numerical analysis of powersystemtransients and dynamics 2.2.3 Embeddedsimulation modules TACSand MODELS 49 2.2.4 Supporting modules 50 2.2.5 Frequency-domain analysis 52 2.2.6 Power flowoption –FIXSOURCE 52 2.2.7 Typical power system studies 53 2.3 Solution methods 53 2.3.1 Switches 53 2.3.2 Non-linearities 58 2.3.3 Transmission lines 58 2.3.4 Electrical machines 62 2.4 Control systems 63 2.4.1 TACS 63 2.4.2 MODELS 65 2.4.3 User-definable component (type 94) 65 2.5 Graphical preprocessor ATPDraw 66 2.5.1 Main functionality 67 2.5.2 Input dialogues 68 2.5.3 Line and cable modelling –LCCmodule 68 2.5.4 Transformer modelling –XFMRmodule 70 2.5.5 Machine modelling –Windsyn module 72 2.5.6 MODELSmodule 73 2.6 Other post- and pre-processors 73 2.6.1 PlotXYprogram to view and create scientific plots 74 2.6.2 ATPDesigner –designand simulation of electrical power networks 74 2.6.3 ATPAnalyzer 77 2.7 Examples 78 2.7.1 Lightning study– line modelling, flashover and current variations 78 2.7.2 Neutral coiltuning – optimization 82 2.7.3 Arc modelling 84 2.7.4 Transformer inrush current calculations 88 2.7.5 Power system toolbox: relaying 93 References 99 3 Simulationof electromagnetic transientswithEMTP-RV 103 J.Mahseredjian,UlasKaraagac,Se´bastienDennetie`reandHaniSaad 3.1 Introduction 103 3.2 The main modules of EMTP 103 3.3 Graphical user interface 104 3.4 Formulation of EMTPnetwork equationsfor steady-state and time-domain solutions 106 3.4.1 Modified-augmented-nodal-analysis usedin EMTP 106 3.4.2 State-space analysis 112 Contents vii 3.5 Control systems 114 3.6 Multiphase load-flow solution and initialization 116 3.6.1 Load-flow constraints 118 3.6.2 Initialization of load-flowequations 119 3.6.3 Initialization from a steady-state solution 119 3.7 Implementation 120 3.8 EMTP models 120 3.9 External programming interface 121 3.10 Application examples 122 3.10.1 Switching transient studies 122 3.10.2 IEEE-39 benchmark busexample 124 3.10.3 Wind generation 126 3.10.4 Geomagnetic disturbances 128 3.10.5 HVDCtransmission 130 3.10.6 Very large-scale systems 132 3.11 Conclusions 132 References 132 4 PSCAD/EMTDC 135 D.Woodford, G.Irwinand U.S.Gudmundsdottir 4.1 Introduction 135 4.2 Capabilities of EMTDC 138 4.3 Interpolation between time steps 139 4.4 User-built modelling 141 4.5 Interfacing to other programs 142 4.5.1 Interfacing to MATLAB/Simulink 142 4.5.2 Interfacing with the E-TRANtranslator 143 4.6 Operations in PSCAD 145 4.6.1 Basic operation in PSCAD 145 4.6.2 Hybrid simulation 146 4.6.3 Exact modelling of power system equipment 148 4.6.4 Large and complexpower system models 148 4.7 Specialty studies with PSCAD 149 4.7.1 Global gain margin 150 4.7.2 Multiple controlfunction optimizations 150 4.7.3 Sub-synchronousresonance 150 4.7.4 Sub-synchronouscontrol interaction 151 4.7.5 Harmonic frequency scan 152 4.8 Further development of PSCAD 152 4.8.1 Parallel processing 152 4.8.2 Communications,security and management of large system studies 153 4.9 Application of PSCADto cable transients 154 4.9.1 Simulation set-up 155 viii Numerical analysisof power system transients and dynamics 4.9.2 Parameters for cable constantcalculations 158 4.9.3 Cable model improvements 161 4.9.4 Summaryfor application of PSCADto cable transients 165 4.10 Conclusions 166 References 166 5 XTAP 169 T.Noda 5.1 Overview 169 5.2 Numerical integrationby the 2S-DIRKmethod 169 5.2.1 The 2S-DIRKintegration algorithm 170 5.2.2 Formulas forlinear inductors and capacitors 172 5.2.3 Analytical accuracy comparisonswith other integrationmethods 174 5.2.4 Analytical stability and stiff-decay comparisonswith other integrationmethods 176 5.2.5 Numerical comparisons with other integration methods 177 5.3 Solution by a robust and efficient iterative scheme 184 5.3.1 Problem description 187 5.3.2 Iterative methods 188 5.3.3 Iterative scheme usedin XTAP 194 5.3.4 Numerical examples 195 5.4 Steady-state initialization method 205 5.5 Object-oriented design of the simulation code 207 References 208 6 Numerical electromagnetic analysisusingtheFDTDmethod 213 Y.Baba 6.1 Introduction 213 6.2 FDTDmethod 214 6.2.1 Fundamentals 214 6.2.2 Advantages and disadvantages 217 6.3 Representationsof lightning return-stroke channels and excitations 217 6.3.1 Lightning return-stroke channels 217 6.3.2 Excitations 220 6.4 Applications 221 6.4.1 Lightning electromagnetic fields at close and far distances 221 6.4.2 Lightning surgeson overhead power transmission lines and towers 227 6.4.3 Lightning surgeson overhead power distribution lines 233 6.4.4 Lightning electromagnetic environment in power substation 236 Contents ix 6.4.5 Lightning electromagnetic environment in airborne vehicles 236 6.4.6 Lightning surgesand electromagnetic environment in buildings 238 6.4.7 Surgesongrounding electrodes 238 6.5 Summary 239 References 239 7 Numerical electromagnetic analysiswiththePEECmethod 247 Peerawut Yutthagowith 7.1 Mixed potential integral equations 250 7.2 Formulation of the generalized PEEC models 252 7.2.1 Derivation of the generalized PEEC method 252 7.2.2 Circuit interpretation of the PEEC method 257 7.2.3 Discretizationof PEEC elements 258 7.2.4 PEEC models for a plane half space 259 7.3 Some approximate aspects of PEEC models 260 7.3.1 Center-to-center retardationapproximation 260 7.3.2 Quasi-static PEEC models 262 7.3.3 Partial element calculation 262 7.4 Matrix formulation and solution 266 7.4.1 Frequency domain circuit equations and the solution 267 7.4.2 Time-domaincircuit equations and the solution 269 7.5 Stability of PEEC models 272 7.5.1 þPEEC formulation 273 7.5.2 Parallel dampingresistors 273 7.6 Electromagnetic field calculation by the PEEC model 274 7.7 Application examples 277 7.7.1 Surge characteristics of transmission towers 277 7.7.2 Surge characteristics of grounding systems 284 References 286 8 Lightningsurgesinrenewable energy system components 291 K. Yamamoto 8.1 Lightning surgesin a wind turbine 291 8.1.1 Overvoltage caused by lightning surge propagation ona wind turbine 291 8.1.2 Earthing characteristics of a wind turbine 300 8.1.3 Example of lightning accidents and its investigations 308 8.2 Solar power generation system 318 8.2.1 Lightning surgesin a MW-class solar power generation system 319 8.2.2 Overvoltage caused by a lightning strike to a solar power generation system 339 References 354
Description: