ebook img

Number Theory: An Introduction to Mathematics PDF

625 Pages·2009·5.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Number Theory: An Introduction to Mathematics

Universitext Forothertitlesinthisseries,goto www.springer.com/series/223 W.A. Coppel Number Theory An Introduction to Mathematics Second Edition W.A. Coppel 3 Jansz Crescent 2603 Griffith Australia Editorialboard: SheldonAxler,SanFranciscoStateUniversity VincenzoCapasso,UniversitàdegliStudidiMilano CarlesCasacuberta,UniversitatdeBarcelona AngusMacIntyre,QueenMary,UniversityofLondon KennethRibet,UniversityofCalifornia,Berkeley ClaudeSabbah,CNRS,ÉcolePolytechnique EndreSüli,UniversityofOxford WojborWoyczyn´ski,CaseWesternReserveUniversity ISBN 978-0-387-89485-0 e-IS BN 978-0 -387-89486-7 DOI 10 .1007/978-0-387-89486-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009931687 Mathematics Subject Classification (2000): 11-xx, 05B20, 33E05 (cid:176)©c SpringerScience(cid:0)+ BusinessMedia,LLC2009 Allrightsreserved. Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper Springer is part of Springer Science+Business Media (www.springer.com) ForJonathan,Nicholas,PhilipandStephen Contents PrefacetotheSecondEdition ....................................... xi PartA I TheExpandingUniverseofNumbers............................ 1 0 Sets,RelationsandMappings ................................. 1 1 NaturalNumbers............................................ 5 2 IntegersandRationalNumbers ................................ 10 3 RealNumbers .............................................. 17 4 MetricSpaces .............................................. 27 5 ComplexNumbers .......................................... 39 6 QuaternionsandOctonions ................................... 48 7 Groups .................................................... 55 8 RingsandFields ............................................ 60 9 VectorSpacesandAssociativeAlgebras ........................ 64 10 InnerProductSpaces ........................................ 71 11 FurtherRemarks ............................................ 75 12 SelectedReferences ......................................... 79 AdditionalReferences ............................................ 82 II Divisibility .................................................. 83 1 GreatestCommonDivisors ................................... 83 2 TheBe´zoutIdentity.......................................... 90 3 Polynomials................................................ 96 4 EuclideanDomains.......................................... 104 5 Congruences ............................................... 106 6 SumsofSquares ............................................ 119 7 FurtherRemarks ............................................ 123 8 SelectedReferences ......................................... 126 AdditionalReferences ............................................ 127 viii Contents III MoreonDivisibility .......................................... 129 1 TheLawofQuadraticReciprocity ............................. 129 2 QuadraticFields ............................................ 140 3 MultiplicativeFunctions...................................... 152 4 LinearDiophantineEquations................................. 161 5 FurtherRemarks ............................................ 174 6 SelectedReferences ......................................... 176 AdditionalReferences ............................................ 178 IV ContinuedFractionsandTheirUses ............................ 179 1 TheContinuedFractionAlgorithm............................. 179 2 DiophantineApproximation................................... 185 3 PeriodicContinuedFractions.................................. 191 4 QuadraticDiophantineEquations .............................. 195 5 TheModularGroup ......................................... 201 6 Non-EuclideanGeometry..................................... 208 7 Complements............................................... 211 8 FurtherRemarks ............................................ 217 9 SelectedReferences ......................................... 220 AdditionalReferences ............................................ 222 V Hadamard’sDeterminantProblem ............................. 223 1 WhatisaDeterminant? ...................................... 223 2 HadamardMatrices.......................................... 229 3 TheArtofWeighing......................................... 233 4 SomeMatrixTheory......................................... 237 5 ApplicationtoHadamard’sDeterminantProblem................. 243 6 Designs.................................................... 247 7 GroupsandCodes........................................... 251 8 FurtherRemarks ............................................ 256 9 SelectedReferences ......................................... 258 VI Hensel’sp-adicNumbers ...................................... 261 1 ValuedFields............................................... 261 2 Equivalence ................................................ 265 3 Completions................................................ 268 4 Non-ArchimedeanValuedFields............................... 273 5 Hensel’sLemma ............................................ 277 6 LocallyCompactValuedFields................................ 284 7 FurtherRemarks ............................................ 290 8 SelectedReferences ......................................... 290 Contents ix PartB VII TheArithmeticofQuadraticForms............................. 291 1 QuadraticSpaces............................................ 291 2 TheHilbertSymbol ......................................... 303 3 TheHasse–MinkowskiTheorem............................... 312 4 Supplements ............................................... 322 5 FurtherRemarks ............................................ 324 6 SelectedReferences ......................................... 325 VIII TheGeometryofNumbers .................................... 327 1 Minkowski’sLatticePointTheorem............................ 327 2 Lattices.................................................... 330 3 ProofoftheLatticePointTheorem;OtherResults ................ 334 4 VoronoiCells............................................... 342 5 DensestPackings............................................ 347 6 Mahler’sCompactnessTheorem............................... 352 7 FurtherRemarks ............................................ 357 8 SelectedReferences ......................................... 360 AdditionalReferences ............................................ 362 IX TheNumberofPrimeNumbers ................................ 363 1 FindingtheProblem ......................................... 363 2 Chebyshev’sFunctions....................................... 367 3 ProofofthePrimeNumberTheorem ........................... 370 4 TheRiemannHypothesis..................................... 377 5 GeneralizationsandAnalogues................................ 384 6 AlternativeFormulations ..................................... 389 7 SomeFurtherProblems ...................................... 392 8 FurtherRemarks ............................................ 394 9 SelectedReferences ......................................... 395 AdditionalReferences ............................................ 398 X ACharacterStudy ........................................... 399 1 PrimesinArithmeticProgressions ............................. 399 2 CharactersofFiniteAbelianGroups............................ 400 3 ProofofthePrimeNumberTheoremforArithmeticProgressions ... 403 4 RepresentationsofArbitraryFiniteGroups ...................... 410 5 CharactersofArbitraryFiniteGroups .......................... 414 6 InducedRepresentationsandExamples ......................... 419 7 Applications................................................ 425 8 Generalizations ............................................. 432 9 FurtherRemarks ............................................ 443 10 SelectedReferences ......................................... 444

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.