Cover page Page: i Halftitle page Page: i Series page Page: ii Title page Page: xi Copyright page Page: xii Contents Page: xiii List of illustrations Page: xv Chapter 1 What is number theory? Page: xvi Integers Page: 4 Squares and cubes Page: 6 Perfect numbers Page: 9 Prime numbers Page: 10 Chapter 2 Multiplying and dividing Page: 13 Multiples and divisors Page: 14 Least common multiple and greatest common divisor Page: 17 Euclid’s algorithm Page: 22 Squares Page: 26 Divisor tests Page: 30 Chapter 3 Prime-time mathematics Page: 37 The sieve of Eratosthenes Page: 38 Primes go on for ever Page: 41 Factorizing into primes Page: 42 Searching for primes Page: 45 Chapter 4 Congruences, clocks, and calendars Page: 57 Clock arithmetic Page: 58 Congruences and the calendar Page: 63 Solving linear congruences Page: 66 Chapter 5 More triangles and squares Page: 78 Linear Diophantine equations Page: 79 Right-angled triangles Page: 82 Sums of squares Page: 85 Higher powers Page: 90 Chapter 6 From cards to cryptography Page: 96 Fermat’s little theorem Page: 97 Generalizing Fermat’s little theorem Page: 102 Factorizing large numbers Page: 108 Chapter 7 Conjectures and theorems Page: 111 Two famous conjectures Page: 112 The distribution of primes Page: 116 Primes in arithmetic progressions Page: 122 Unique factorization Page: 126 Chapter 8 How to win a million dollars Page: 129 Infinite series Page: 132 The zeta function Page: 134 The Riemann hypothesis Page: 137 Consequences Page: 140 Chapter 9 Aftermath Page: 141 The first ten questions Page: 142 Integers Page: 144 Squares and cubes Page: 145 Perfect numbers Page: 147 Prime numbers Page: 147 Further reading Page: 151 Index Page: 153 Economics Page: 157 Information Page: 158 Innovation Page: 159 Nothing Page: 160
Description: