ebook img

Nucleon tomography. What can we do better today than Rutherford 100 years ago? PDF

32 Pages·2017·1.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nucleon tomography. What can we do better today than Rutherford 100 years ago?

EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum Round table: Nucleon tomography. What can we do better today than Rutherford 100 years ago? N. G. Stefanis1,a (chair), Constantia Alexandrou2,3,b, Tanja Horn4,5,c, Hervé Moutarde6,d, and IgnazioScimemi7,e 1InstitutfürTheoretischePhysikII,Ruhr-UniversitätBochum,D-44780Bochum,Germany 2DepartmentofPhysics,UniversityofCyprus,P.O.Box20537,1678Nicosia,Cyprus 3Computation-basedScienceandTechnologyResearchCenter,TheCyprusInstitute,20KavafiStr.,Nicosia 2121,Cyprus 4TheCatholicUniversityofAmerica,Washington,DC20064,USA 5JeffersonLaboratory,NewportNews,VA23606,USA 6IRFU,CEA,UniversitéParis-Saclay,F-91191Gif-sur-Yvette,France 7Departamento de Física Teórica II, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid,Spain Abstract.Asurveyispresentedonthecurrentstatusof3Dnucleontomography.Several researchfrontiersareaddressedthatdominatemodernphysicsfromtheorytocurrentand future experiments. We have now a much more detailed spatial image of the nucleon thankstovarioustheoreticalconceptsandmethodstodescribeitschargedistributionand spindecompositionwhicharehighlightedhere. Theprogressoflatticecomputationsof thesequantitiesisreportedandtheprospectsofwhatwecancometoexpectinthenear futurearediscussed. Multi-dimensionalmapsofthenucleon’spartonicstructureappear nowwithinreachofforthcomingexperiments. 1 Introductory remarks Thestrivetounderstandmatterintermsofelementaryconstituents(“atoms”)andbringorderintothe natural world lasts over thousands of years. While the ancient Greeks invented philosophical ideas abouttheatoms,theirphysicaldiscoverybecamepossibleonlyaftertheinventionoftheRutherford atomicmodelin1911. Thismodelisbasedontheassumptionthattheatomconsistsofacentrallarge masswithpositivechargesurroundedbyrotatinglow-masselectrons. Thenextdecisivestepwasthe observationaround1920thattheHydrogennucleuscanberegardedasthefundamentalblockofall heaviernuclei,thusgivingrisetothenotionofproton.Inordertocompensatefortherepulsiveeffects ofthepositivechargesoftheprotons,Rutherfordpostulatedtheexistenceofneutronswhichhaveno ae-mail:[email protected] be-mail:[email protected] ce-mail:[email protected] de-mail:[email protected] ee-mail:ignazios@fis.ucm.es © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Common s Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum electric charge but contribute to the nuclear force. They were discovered later in experiment by his associateJamesChadwick. Buteventheprotonandtheneutronarecompositeparticlesandhaveaninternalstructurethem- selves,asitwasshownbyHofstadterin1950bymeansofhigh-energyelectron-scatteringfromnuclei [1]. Thedifferentialcrosssectionofthehardprocessep −→ e(cid:4)p(cid:4) —illustratedinFig.1(left)—re- vealsthattheprotonisnotapoint-likeobjectbutbearsaninternalstructurewhichcanbedescribed in terms of the charge and current form factors F (t = Q2) and F (t = Q2), respectively, where Q2 1 2 isthemomentumtransfer(i.e., thevirtualityoftheexchangedhighlyoff-shellphoton−q2 = Q2)in thespacelikeregion). Theseformfactorsaredefinedintermsofthehadronicmatrixelementofthe electromagneticcurrentV intheDiracparametrization μ (cid:2) (cid:3) q (cid:5)N(p(cid:4),s(cid:4))|V (x)|N(p,s)(cid:6)=u¯(p(cid:4),s(cid:4)) γ F (Q2)−σ ν F (Q2) u(p,s), (1) μ μ 1 μν 2 2m N wherep,s,p(cid:4),ands(cid:4)are,respectively,themomentaandspinsoftheincomingandoutgoingnucleons, u(cid:4)s their spinors, and m is the nucleon mass. These form factors are related to the magnetic (G ) N M andelectric(G )Sachsformfactorsenteringtheelectron-protonscatteringcrosssectionbymeansof E theRosenbluthformula: G (Q2) = F (Q2)+F (Q2) (2) M 1 2 Q2 G = F (Q2)+ F (Q2). (3) E 1 (2m )2 2 N The above form factors can be measured in experiments (see Sec. 6) and are also calculable on the lattice(seeSec.5). Moredetailedtheoreticalanalysisofthenucleonformfactorscomputedinterms of nonperturbative nucleon distribution amplitudes in convolution with hard partonic subprocesses amenabletoQCDperturbationtheorycanbefoundin[2–4]. Anextensivereviewwhichcoversthe comparisonwiththemostrecentexperimentaldataisgivenin[5]. Inthisreport,thefocusisonmore recenttheoreticalformulations,whichgobeyondthelongitudinaldescriptionofthenucleon,andtheir verificationbymeasurementsatcurrentandplannedexperiments. 2 Benchmarks of nucleon tomography Thissectionaddressesthemaintheoreticalframeworktodescribetheinternalstructureofthenucleon withinQCD.Moredetailedaccountsaregiveninthesubsequentsections. Thenucleonformfactorsineitherrepresentation—DiracorSachs—parameterizeinsomesense ourignoranceabouttheinternalbindingeffectsofthenucleonwhichgiverisetoa“diffuse”structure (representedbyashadedovalintheleftpanelofFig.1)andcausetheelasticscatteringcrosssectionto decreasewithincreasingQ2,henceindicatingthatthenucleoncannotbepointlike[6]. Indeed,highly inelasticelectron-protonscattering[7,8]hasrevealedthattheprotoncontainspointlikeconstituents —partons—whichcoupletotheprobinghighlyvirtualphoton(rightpanelinFig.1). This naive parton model was later extended to the theory of Quantum Chromodynamics (QCD) which provides a justification of the parton picture altering its predictions by including corrections ensuing from the quark-gluon interactions. This interaction is invariant to color SU(3) local gauge transformations.ThesuccessofQCDinthedescriptionofhadronicprocessesisrootedintheproperty ofasymptoticfreedom[9,10]whichenablesthesystematiccalculationofshort-distanceprocessesas aseriesexpansionintermsoftheeffectivecouplingα (Q2)whichvanishesforQ2 −→ ∞whilepre- s servingrenormalization.Then,onecanseparateoutallbindingeffects,attributabletononperturbative physics, and absorb them into universal parton distribution functions (PDF)s, parton fragmentation 2 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum γ* γ* X p p' p Figure1.Leftpanel:illustrationofelastic-electron-nucleonscatteringbymeansoftheinteractionwiththevirtual photonγ∗(Q2).Rightpanel:inelasticelectron-protonscatteringep−→e(cid:4)Xinnaivepartonmodelapproximation, wherethevirtualphotoncouplestoasingleparton(quark).Theproducedfinal-statehadronsaredenotedbyX. functions(PFF)s,lightconedistributionamplitudes(DA)sforhadrons,transverse-momentumdepen- dent (TMD) PDFs (Sec. 3), generalized parton distributions (GPD)s, (Sec. 4), etc. Their extraction fromlatticecomputationswillbeconsideredinSec.5,whiletheparticularchannelsandexperiments toaccessthembymeasurementswillbeaddressedinSec.6andinSec.7whichwillpresentastate oftheartonthree-dimensional(3D)nucleontomographyanditsfutureprospects. Let us now introduce the theoretical tools to probe the interior structure of the nucleon in more detail. Tothisend, consider, forinstance, thelongitudinaldistributionofpartonsinsidethenucleon N,enteringadeep-inelasticscattering(DIS)processlN −→ l(cid:4)X. Thisprocess,shownfortheproton intheleftpanelofFig.2,canbeexpressedintermsofthematrixelement1 (cid:4) f (x,μ)= 1 dy−e−ixp+y−(cid:5)p|ψ¯(0+,y−,0 )γ+W(0−,y−)ψ(0+,0−,0 )|p(cid:6) (4) q/N 4π T T where f (x,μ)isthePDFdescribingaquarkqinanucleonNcarryingafractionxofitsmomentum q/N pattheresolution(factorization)scaleμ.Gaugeinvarianceofthecorrelatorisensuredbytheinsertion oftheWilsonline(orgaugelink)operator ⎡ (cid:4) ⎤ W(0−,y−)= Pexp⎢⎢⎢⎢⎣ig y−dz−A+(0+,z−,0 )t ⎥⎥⎥⎥⎦ (5) a T a 0− evaluatedinthefundamentalrepresentationofSU(3)andtakenalong√alightlikecontourfrom0− to y−. Notethathereweareusingthelightconenotationy± =(v0±y3)/ 2foranyvectorvμ. CollinearPDFs,like f ,wherepartonaisaquark,antiquark,oragluon,inahadronA,represent a/A the universal part of the factorized cross section of a collinear process, like DIS, and are related to leading-twistlightconecorrelatorsofelectroweakcurrentsinthehadronictensor (cid:4) (cid:11) 1 Wμν = d4yeiq·y (cid:5)N|jμ(y)|X(cid:6)(cid:5)X|jν(0)|N(cid:6) (6) 4π X fortheprocesslN−→l(cid:4)X. ForQ2 largeand xfixed,Wμν canbecastinfactorizedform(see[11]and referencescitedtherein)toread (cid:4) (cid:11) 1 dξ Wμν(qμ,pμ)= f (ξ,μ)Hμν(qμ,ξpμ,μ,α (μ))+remainder, (7) ξ a/N a s a x μν wherethecontributionofallshort-distancesubprocessesonthepartonaisdenotedbyH . Byvirtue a of universality, the PDFs for the Drell-Yan (DY) process, shown on the right of Fig. 2, should be 1BoldfacedsymbolsdenoteEuclideantwovectorsinthetransverseplane. 3 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum X l l' γ* h1 γ* l h l' X X p h 2 Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally measuredsemi-inclusivedeepinelasticlepton(l)scatteringl+p−→l(cid:4)+h+X,wherepistheincomingproton andhrepresentsthedetectedhadroninthefinalstate(leftpanel). Therightpanelshowstheanalogoussituation fortheDrell-Yanprocessh +h −→γ∗+X−→l+l(cid:4)+X,whereh representincominghadrons.Thethicklines 1 2 1(2) inbothpanelsdenote“eikonalized”,i.e.,Wilson-lineextendedquarkstoaccountforinitial(DY)orfinal(SIDIS) stateinteractions. Examplesofsinglegluonexchangesemanatingfromtheselinesarealsoshown. Additional hard-gluonexchangeshavebeenomitted. InbothpanelsthesymbolXrepresentsaninclusivesumoverallfinal states. thesameasinDIS—leftpanelofthesamefigure. Moreover, themomentum-scaledependenceof thesePDFsisgovernedbytheDokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP)[12–14]evolu- tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD to any desired reference momentum to confront theoretical predictions with the experimental data usingtheappropriateanomalousdimensions(i.e.,splittingfunctions). AlargesetofPDFshasbeen extracted from global analysis of the existing data, from the low-momentum to the Large Hadron Collider(LHC)regime,butthisproceduredependsontheaccuracyoftheprocess-dependentpertur- μν bativelycalculatedshort-distancepartH ,see[5]forarecentreview. a Thus,thefactorizationformalism[15]oftheμdependencecontainsastrongpredictivepowerfor scattering off a nucleon (hadron). However, its validity on the partonic level, beyond the collinear approximation,faceschallengeswhicharerelatedtotheappearanceofso-calledrapiditydivergences ensuingfromWilsonlinesandtheirrenormalization(seeSec.3).Theoretically,theseeffectsoriginate from the Wilson-line-extended structure of the operator definitionof quark (gluon) correlators, as it becomesobviousfromthefollowingTMDfieldcorrelator[16–18] (cid:4) d(y·P)d2y (cid:12) (cid:13) Φq[C](x,k ;n)= Teik·y p|ψ¯ (y)W(0,y|C)ψ(0)|p . (8) ij T (2π)3 j i y·n=0 OnenoticesthepathdependenceofthisexpressionencodedinthecontourC intheexponentialline integral. It can be resolved by adopting that particular contour which ensures the continuous color flowintheconsideredpartonicprocess. Asaresult,theDYprocess,shownintherightpanelofFig. 2,containsasignreversalrelativetotheSIDISsituation(leftpanelinFig.2),whichoriginatesfrom thechangeofafuture-pointingWilsonlinetoonewiththeoppositeorientationasaconsequenceof CPinvarianceandCPTconservationinQCD.Thisentailsthebreakdownofuniversality,becausethe factoredoutnonp(cid:14)ertur(cid:15)bativepa(cid:14)rtof(cid:15)theSIDISsetupcannotbeusedwithoutreadjustment(signflip)in theDYprocess: f⊥ = − f⊥ [19]. Thisintriguingbehaviorconstitutesinfactthelitmus 1Tq DY 1Tq SIDIS testoftheTMDapproachtosinglespinasymmetries[20]whichrequirethattherescatteringofthe struckquarkinthefieldoftheremnanthadrongeneratesaninteractionphase. Thisphasewouldbe forced to vanish by the time-reversal invariance in the absence of the directional dependence of the Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist levelwhenincludesintotheWilsonlinesthePaulitensortermtoaccountforacorrecttreatmentof thespindegreesoffreedom[21,22]. 4 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum Theformalproofoffactorizationemploysadetailedanalysisofsingularitiesthatoriginatefrom differentsources: (i)ultraviolet(UV)poles,inducedbylargeloopmomenta,thatcanberegularized dimensionally, (ii) rapidity divergences that originate from the Wilson lines, and (iii) overlapping UVandrapiditydivergences. Thelatteremergefromgluonsmovingwithaninfiniterapidityinthe oppositedirectionwithrespecttotheirparenthadronandcannotberegularizedbyinfraredgluonmass regulators. Whileinthecollinearcaserapiditydivergencescancelinthesumofgraphs,intheTMD caseoneneedsadditionalregularizationparameters. Wewillhavetosaymoreabouttheseproblems inSec.3below. InthesamesectionwewillconsiderthecalculationofTMDcorrelatorsbeyondthe leadingorderinα (μ)anddiscusstheconceptsoftheirevolution. Firstattemptsto“measure”TMD s PDFsonthelatticehavebeengivenin[23],whilecurrentinvestigationswillbepresentedinSec.5. AcompilationofthevariousTMDPDFs(“TMDs”forshort)isgiveninTable1. Notethatasimilar structureholdsalsoforgluonTMDs. Table1.Twist-twoTMDsasfunctionsof(x,k )describingcorrelationsbetweenintrinsicspinandtransverse T momentumusingthefollowingabbreviations:U(unpolarized),L(longitudinallypolarized),T(transversely polarized).Theboldfacedelementssurvivethek integration.ThetwotermsinbracketsareT-odd,whereasall T elementsinthelastcolumnarechirallyodd. Nucleon\QuarkPolarization U L (cid:14) T (cid:15) U fq hq⊥ 1 1 unpolarized Boer-Mulders L gq hq⊥ 1L 1L (cid:14) (cid:15) helicity worm-gearL T fq⊥ gq⊥ hq |hq⊥ 1T 1T 1T 1T Sivers worm-gearT transversity|pretzelosity 3 Parton distributions with transverse degrees of freedom — TMDs 2The longitudinal PDFs are based on collinear factorization and provide no information about the transversestructureofhadrons. Toachievea3Dpictureof thehadronicstructure, onehas toretain the transverse momenta k of the partons unintegrated, as expressed in Eq. (8). This gives rise to T eight k dependent PDFs of leading twist two (see Table 1), which enter various processes as the T SIDIS and the DY process, both illustrated in Fig. 2. In SIDIS, one has the convolution of a TMD withafragmentationfunction,whereasinDYonefacestheconvolutionoftwoTMDs.Inthissection, wewilldiscussthepropertiesofTMDsfromthetheoreticalpointofviewandaddresstheminmore detail. Onfocusistheuseof k factorizationtheorems,therenormalizationofrapiditysingularities, T andtheTMDevolutionbehaviorinthefactorizeddynamicalregimes(see[24]foracomprehensive review). ThecoreoftheTMDfactorizationtheoreminitscurrentform[15,26–28],isbasedontheunder- standingofthestructureofrapiditydivergencesintheDYand/orSIDIScrosssection. As shown in Fig. 3, the cross section for SIDIS can be split, by virtue of power counting ar- guments, intothreepieces: atransverse-momentumdependentinitialstate(called“F”),afinalstate (termed “D”), and a soft-interaction part (denoted by “S”) which connects the previous two. The power counting procedure, which defines these states, appears naturally in an effective field-theory 2BasedonthecontributionbyI.Scimemi. 5 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum μ(RGE) p l γ∗ B (Q²) D S ζ(CSSE) X F p A Figure3.GenericstructureofaSIDIS-likeprocessinvolvingvariousTMDPDFs.Thefactorizationofdynamical regimesisindicatedbydashedlines.Thelargeμ2evolutioniscontrolledbytherenormalization-groupequation (RGE),whiletheevolutionwithrespecttoζfollowstheCollins-Soper-Sterman(CSS)equation[25](seetext). framework, like the Soft Collinear Effective Theory (SCET) [29–31]. However, one can obtain this dissectionofthecrosssection,byemployingmorestandardQCDargumentsinconnectionwithfac- torization theorems. Actually, the states so naively identified as above, are not per se well defined. This can be checked, for instance, by a one-loop calculation, to show that the rapidity divergences induceamixingofallofthesestatessothatitisimpossibletoarriveatarigorousdefinitionofastate whoseperturbativecalculationallowstheproperseparationofultravioletandinfrared(IR)scales. In ordertoachievethisgoal,wehavetoproceedinadifferentwaywhichisexposedbelow. To this end, we define the bare (unrenormalized and singular in rapidity) quark, anti-quark and gluonunpolarizedTMDPDFoperatorsasfollows: Obare(x,b )= 1(cid:11)(cid:4) dξ−e−ixp+ξ−(cid:16)T(cid:14)q¯ W˜T(cid:15) (cid:17)ξ(cid:18) |X(cid:6)γ+(cid:5)X|T¯(cid:14)W˜T†q (cid:15) (cid:17)−ξ(cid:18)(cid:19), q T 2 2π i n a 2 ij n j a 2 Obare(x,b )= 1(cid:11)X (cid:4) dξ−e−ixp+ξ−(cid:16)T(cid:14)W˜T†q (cid:15) (cid:17)ξ(cid:18) |X(cid:6)γ+(cid:5)X|T¯(cid:14)q¯W˜T(cid:15) (cid:17)−ξ(cid:18)(cid:19), q¯ T 2 2π n j a 2 ij i n a 2 Obgare(x,bT)= x1p+X(cid:11)(cid:4) d2ξπ−e−ixp+ξ−(cid:16)T(cid:14)F+μW˜nT(cid:15)a(cid:17)2ξ(cid:18)|X(cid:6)(cid:5)X|T¯(cid:14)W˜nT†F+μ(cid:15)a(cid:17)−2ξ(cid:18)(cid:19), (9) X whereξ ={0+,ξ−,b }andn,n¯arelightconevectors(n2 =n¯2 =0, n·n¯ =2).Foragenericvectorv,we T havev+ =n¯·vandv− =n·v. Repeatedcolorindicesa(a=1,...,N forquarksanda=1,...,N2−1 c c forgluons)aresummedup. TherepresentationsofthecolorSU(3)generatorsinsidetheWilsonlines arethesameastherepresentationsofthecorrespondingpartons(i.e.,fundamentalrepresentationfor quarks and adjoint representation for gluons). The Wilson lines W˜T(x) emerge at the coordinate x n and continue to lightcone infinity along the vector n, where they connect to a transverse gauge link (indicatedbythesuperscriptT)extendingtotransverseinfinity. 6 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum Thehadronicmatrixelementsoftheoperators,definedinEq.(9),providetheunsubtractedTMDs inaccordancewiththeTMDfactorizationtheorems[15,26,27]: Φq←N(x,bT) = 21(cid:11)(cid:4) d2ξπ−e−ixp+ξ−(cid:5)N|(cid:16)T(cid:14)q¯iW˜nT(cid:15)a(cid:17)2ξ(cid:18)|X(cid:6)γi+j(cid:5)X|T¯(cid:14)W˜nT†qj(cid:15)a(cid:17)−2ξ(cid:18)(cid:19)|N(cid:6), Φq¯←N(x,bT) = 21(cid:11)X (cid:4) d2ξπ−e−ixp+ξ−(cid:5)N|(cid:16)T(cid:14)W˜nT†qj(cid:15)a(cid:17)2ξ(cid:18)|X(cid:6)γi+j(cid:5)X|T¯(cid:14)q¯iW˜nT(cid:15)a(cid:17)−2ξ(cid:18)(cid:19)|N(cid:6), X (cid:4) Φg←N(x,bT) = x1p+ (cid:11) d2ξπ−e−ixp+ξ− (cid:16)X (cid:14) (cid:15) (cid:17) (cid:18) (cid:14) (cid:15) (cid:17) (cid:18)(cid:19) ξ ξ ×(cid:5)N| T F+μW˜nT a 2 |X(cid:6)(cid:5)X|T¯ W˜nT†F+μ a −2 |N(cid:6), (10) whereN isanucleon/hadron. Here, the variable x represents the momentum fraction carried by a parton originating from the nucleon (this refers to the TMD labeling rule f ← N). One notices that at the operator level the TMDs resemble the integrated parton densities, the only difference being that the parton fields are additionally separated by the spacelike distance b . In order to renormalize correctly the operators T andtherespectivematrixelements,onehastoperformtheregularizationoftheUV,IRandrapidity divergences. The UV divergences in the TMDs are removed by the usual renormalization factors. In order to cancel rapidity divergences, one has to consider both the so-called zero-bin subtractions andthesoftfunction. AccordingtotheSCETterminology,the“zero-bin”representsthesoft-overlap contributionthathastoberemovedfromthecollinearmatrixelementinordertoavoiddoublecount- ingofsoftsingularities[32]. Thecombinationofthezero-binsubtractionwiththesoftfunctionhas a very particular form, which is dictated by the factorization theorem and should be included in the definitionoftheTMDoperatorsintheformofasingle“rapidityrenormalizationfactor”Rinorderto completethedefinitionoftherenormalizedTMDoperator. Then,onehas O (x,b ,μ,ζ)=Z (ζ,μ)R (ζ,μ)Obare(x,b ), q,q¯ T q q q,q¯ T O (x,b ,μ,ζ)=Z (ζ,μ)R (ζ,μ)Obare(x,b ), (11) g T g g g T whereZ (quark)andZ (gluon)aretheUVrenormalizationconstantsfortheTMDoperatorsandthe q g scaleζ emergesasaresultofsplittingthesoftfunctionbetweenthetwoTMDsF andD. The scales μ and ζ are related to the UV and rapidity subtractions, respectively. While the UV renormalization factors depend on the UV regularization method and the regularization scale μ, the “rapidity renormalization factors” depend in addition on the rapidity regularization method and the rapidityscaleζ aswell. Remarkably,becausethesoftfunctionisprocessindependent,the“rapidity renormalizationfactors”turnouttobeprocessindependentaswell(see[15, 26–28, 33]forgeneral argumentsand[34]foranexplicitcalculationatthenext-to-next-to-leadingorder(NNLO)).However, the particular form of the zero-bin subtractions, contained in the factor R, is regulator dependent. Therefore, one has to fix the order of how to deal with these singular factors exactly. Following [35],onecanfirstremoveallrapiditydivergencesandcarryoutthezero-binsubtraction,performing subsequently the multiplication with the Z factors. In that case, one finds that the factor R contains not only rapidity divergences, but also explicit UV poles which, however, have already been taken into account by means of the factor Z. Thus, different subtraction procedures can produce different intermediateexpressions,whilethefinal(UVfiniteandrapidity-divergences-free)expressionswillbe thesame. 7 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum ThefinaldefinitionsfortheTMDsenteringtheSIDISprocessinFig.3read Ff←N(x,bT;μ,ζ) = (cid:5)N|Of(x,bT;μ,ζ)|N(cid:6), Df→N(z,bT;μ,ζ) = (cid:5)N|†Of(z,bT;μ,ζ)|N(cid:6)†. (12) This definition in conjunction with the TMD factorization theorem implies the following relation betweenbareandrenormalizedTMDs Ff←N(x,bT;μ,ζ) = Zf(μ,ζ)Rf(μ,ζ)Φf←N(x,bT), Df→N(z,bT;μ,ζ) = Zf(μ,ζ)Rf(μ,ζ)Δf→N(x,bT). (13) TheTMDfactorizationtheoremdictatestheexplicitformofR aswell. Itisgivenbytheexpression f √ S(b ) R (ζ,μ)= T , (14) f Zb whichinvolvesthesoftfunctionS(b )andthezero-bincontributionZb,i.e.,thesoftoverlapofthe T collinearandthesoftsectorsenteringthefactorizationtheorem[15,26–28,32]. ThesoftfunctionisdefinedasthevacuumexpectationvalueofacertainconfigurationofWilson linespertainingtotheprocessunderinvestigation. Consider,forinstance,theSIDISprocess. Then, onehas (cid:14) (cid:15) (cid:14) (cid:15) S(b )= Trc (cid:5)0| T ST†S˜T (0+,0−,b )T¯ S˜T†ST (0)|0(cid:6) . (15) T N n n¯ T n¯ n c TheWilsonlinesaregivenbythefollowingorderedexponentials ST = T S , S˜T =T˜ S˜ , (16) n n n (cid:2) (cid:4) n¯ n n¯ (cid:3) 0 S (x) = Pexp ig dsn·A(x+sn) , n −∞ (cid:2) (cid:4) (cid:3) 0 Tn¯(x) = Pexp ig dτ(cid:11)l⊥·A(cid:11)⊥(0+,∞−,(cid:11)x⊥+(cid:11)l⊥τ) , (cid:2) (cid:4)−∞ (cid:3) ∞ S˜ (x) = Pexp −ig dsn¯ ·A(x+n¯s) , n¯ (cid:2) (cid:4)0 (cid:3) ∞ T˜n(x) = Pexp −ig dτ(cid:11)l⊥·A(cid:11)⊥(∞+,0−,(cid:11)x⊥+(cid:11)l⊥τ) . 0 The transverse Wilson lines T are indispensable in singular gauges, e.g., the lightcone gauge n · n A = 0 (or n¯ ·A = 0) (see [17, 36–40]), while in covariant gauges the T ’s appear only formally in n ordertopreservegaugeinvariance, butdonotcontribute. Payattentiontothefactthatthecollinear Wilson lines WT(x), used in the TMD operators given by Eq. (9), are defined in the same way as n the soft Wilson lines ST(x). However, we keep them apart because they behave differently under n regularization. Afewtechnicalremarksarehereinorder. Thezero-bin(oroverlap)subtractionisasubtleissue anddemandsparticularcaution. (i)Thesubtractionproceduredependsontheregularizationmethod usedtoremovetherapiditydivergences(see,e.g.,[27]foramorecompletediscussion).(ii)Itmightbe impossibletodefinethezero-bin(overlap)regionintermsofapropermatrixelementforaparticular regularization scheme, even if it is calculable. Choosing a convenient rapidity regularization, the zero-bin subtractions can be related to a particular combination of soft factors. Using, for instance, themodifiedδ-regularizationscheme,thezero-binsubtractionbecomesequaltothesoftfactor: Zb= 8 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum S(b ). In fact, the modified δ-regularization scheme has been employed with the aim to preserve T just this relation, see [34, 35]. A crucial consequence of this relation is that the collinear Wilson linesW (x)andthesoftWilsonlinesS (x)assumedifferentregularizedforms. Finally,usingthe n(n¯) n(n¯) modifiedδ-regularization,theexpressionfortherapidityrenormalizationfactorbecomes (cid:20) (cid:20) (cid:20) 1 Rf(ζ,μ)(cid:20)(cid:20) = (cid:21) , (17) δ-reg. S(bT;ζ) which was first explicitly verified at NNLO in [34, 41], and was confirmed for various kinematics in[35]. Byvirtueoftheprocessindependenceofthesoftfunction[15, 26–28, 33], thefactorR is f process independent as well. We complete this discussion by a comment on the TMD formulation usedinRef.[15]. There,therapiditydivergencesareregularizedbytiltingtheWilsonlinesoff-the- light-cone. Thisway,thecontributionsoriginatingfromtheoverlappingregionsandthesoftfactors canberecombinedintheindividualTMDsbyproperlycombiningdifferentsoftfactorswithapartially removedregulator. ThiscombinationentailsinournotationthefactorRf,i.e., (cid:22) (cid:20) (cid:20)(cid:20) S˜(y ,y ) Rf(ζ,μ)(cid:20)(cid:20) = n c . (18) JCC S˜(yc,yn¯)S˜(yn,yn¯) Thefurtherstepsremainthesameaswiththeδ-regulatortechnique. The use of the modified δ-regulator brings within reach a perturbative calculation at NNLO. In- deed,thematrixelementsforthesoftfactorhavebeenevaluatedatthetwo-looporderin[34]. This hasmadeitpossibletocalculateallunpolarizedTMDsandTMDfragmentationfunctions(FF)satthe sameorder[35,41].Inaddition,alsothecalculationofthesoftmatrixelementfordouble-partonscat- tering[42]hasbeencarriedoutatNNLO.TheresultsobtainedfortheTMDsconfirmedtheprevious QCDcalculationsperformedin[43–47]. Employingsymmetryargumentsforthesoftfactor,theevo- lutionofallunpolarizedTMDshasbeenperformedatthethree-looporderin[48]findingagreement with a recent result reported in [49]. These calculations use the operator product expansion of the TMDs in the lowest order of the power expansion which works sufficiently well for asymptotically high transverse momenta. However, a complete treatment of the TMDs must also include analysis beyondthislowestorder,asubjectweexpecttobecomeanactivefieldofresearchinthenearfuture. Forthetimebeing,thenonperturbativestructureoftheunpolarizedTMDshasbeenmodeledwithina renormalonanalysisinthelimitofhightransversemomentum,see[50]. Remarkably,itshowsanon- trivialentanglementbetweenthetransversemomentumandtheBjorkenvariablesbeyondthelowest orderinthepowerexpansion. Attheendofthisexposition,weturnourattentiontotheevolutionofTMDs. RecallingEq.(12), wewrite d 1 d 1 μ2 O (x,b )= γf(μ,ζ)O (x,b ), μ2 O (z,b )= γf(μ,ζ)O (z,b ). (19) dμ2 f T 2 f T dμ2 f T 2 f T TheTMDPDFoperatorandalsotheTMDFFoperatorhavethesameanomalousdimensionγ ,which f comessolelyfromtherenormalizationfactorZ andisuniversalonaccountoftheuniversalityofthe f hardinteractions[15,26,27]. ApplyingstandardRGEtechniques,weobtain (cid:24) (cid:25) (cid:24) (cid:25) γq(μ,ζ)=2A(cid:23)D Z −Z , γg(μ,ζ)=2A(cid:23)D Z −Z , (20) 2 q 3 g (cid:23) whereADrepresentstheoperatorwhichextractstheanomalousdimensionfromthecounterterm(i.e., gives the coefficient in front of the leading pole in 1/(cid:13) with a n! prefactor, n being the order of the 9 EPJ W eb of C onferences 137, 01003 (2017) DOI: 10 .1051/epjconf/201713701003 XIIthQ uark Confinement & the Hadron Spectrum perturbativeexpansion).Thefirsttermoftheperturbativeexpansionisthecuspanomalousdimension Γf [51],givenby cusp γf =Γf l −γf , (21) cusp ζ V wherewehaveusedthenotation ⎛ ⎞ ! ! L ≡ln⎜⎜⎜⎜⎝ X2b2T ⎟⎟⎟⎟⎠, l ≡ln μ2 , λλλ ≡ln δ+ . (22) X 4e−2γE X X δ p+ Attheleveloftherenormalizationfactors,thelogarithmicpartofthefactorR canbeunambiguously f fixedbymeansoftherelation d2lnRf (cid:20)(cid:20)(cid:20)(cid:20)(cid:20) = A(cid:23)D⎡⎢⎢⎢⎢⎣Z dlnRf! ⎤⎥⎥⎥⎥⎦=−Γcfusp. (23) dlnμ2dlnζ(cid:20) f dlnζ 2 f.p s.p Asimilarrelationwasobtainedin[52,53]. Mostpartoftheworkreportedabove,hascoveredunpolarizedTMDs. However,foracomplete understanding of the confinement process, the study of polarization effects and twist expansion of TMDsareoffundamentalimportanceaswell. Progresshasbeenachievedwithrespecttotheunder- standing of rapidity divergences and their treatment via soft factor functions by virtue of the TMD factorizationtheorem. ThenonperturbativestructureofTMDsshouldalsobeexploredfromatheo- reticalandanexperimentalpointofview. Amongsomerecentdevelopments,weliketomentionthe effortstocombinetheTMDformalismwiththejetanalysisdiscussedin[54–56]. 4 3D imaging of the nucleon’s partonic content in terms of GPDs 3In continuation of the previous discussion of the spatial distribution of quarks and gluons, we will describe in this section distributions which can provide tomographic 3D images of the nucleon [57, 58], termed generalized parton distributions, or (GPD)s for short. These quantities were initially introducedinconnectionwiththepartonicdescriptionofdeeplyvirtualComptonscattering(DVCS) by Müller [59], and independently by Ji [60], and Radyushkin [61]. More recently, they have also beenemployedinthedescriptionofdeeplyvirtualmesonproduction(DVMP)[62,63]andintimelike Comptonscattering(TCS)[64]. ArecentreviewoftheuseofGPDscanbefoundin[65]andbroader comprehensivereviewsin[66–70],whileglobalanalysisofavailabledataisperformedin[71]. The effortstoextractGPDsfromexperimentwillbeaddressedinSec.6andSec.7. UnlikePDFsandTMDs,GPDsaredefinedintermsofnon-forwardhadronicmatrixelementsof quarkandgluoncorrelators,i.e., p(cid:4) (cid:2) p,asoneseesfromthegeneralizedformfactorforquarks(see, e.g.,[65]) (cid:4) F (x,ξ,t) = dy−e−ixp+y−(cid:5)p(cid:4)|ψ¯(y−)γ+ψ(−y−)|p(cid:6) (24) q 2π 2 2 2 (cid:2) (cid:3) ≡ H (x,ξ,t)(cid:14)U(p(cid:4))γμU(p)(cid:15) nμ +E (x,ξ,t) U(p(cid:4))iσμν(p(cid:4)−p)νU(p) nμ , q p·n q 2M p·n wherewehavesuppressedtheWilsonlinesneededtoensuregaugeinvariance. Here, thequantities H (x,ξ,t) and E (x,ξ,t) are the quark GPDs which generalize the nucleon form factors F and F q q 1 2 in Eq. (1). They depend on the squared hadron momentum transfer t = (p(cid:4) − p)2 and the skewness 3BasedonthecontributionbyH.Moutarde. 10

Description:
A survey is presented on the current status of 3D nucleon tomography. Several research frontiers are addressed that dominate modern physics from
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.