ebook img

Nucleon generalized form factors from lattice QCD with nearly physical quark masses PDF

0.37 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nucleon generalized form factors from lattice QCD with nearly physical quark masses

Nucleon generalized form factors from lattice QCD with nearly physical quark masses 6 1 0 2 n a Gunnar Bali,a Sara Collins,a Meinulf Göckeler,a Rudolf Rödl∗,a Andreas Schäfer,a J Andre Sternbeckb 9 aInstitutfürTheoretischePhysik,UniversitätRegensburg,93040Regensburg,Germany 1 bTheoretisch-PhysikalischesInstitut,Friedrich-Schiller-UniversitätJena,07743Jena,Germany ] E-mail: [email protected] t a l - p WedeterminegeneralizedformfactorsofthenucleonfromlatticesimulationswithN =2mass- f e h degeneratenon-perturbativelyimprovedWilson-Sheikholeslami-Wohlertfermionsdowntoapion [ mass of 150 MeV. We also present the resulting isovector quark angular momentum. Possible 1 excited-statecontaminationsareinvestigatedwithcorrelatedsimultaneousfits. v 8 1 8 4 0 . 1 0 6 1 : v i X r a The33rdInternationalSymposiumonLatticeFieldTheory 14-18July2015 KobeInternationalConferenceCenter,Kobe,Japan* ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Nucleongeneralizedformfactors RudolfRödl 1. Introduction GeneralizedPartonDistributions(GPDs)wereintroducedinthe’90s[1,2]. Theydescribethe innerstructureofthenucleon. Thestartingpointistheparametrizationoftheoff-diagonalmatrix elementsofthelightconeoperator[3,4,5,6] 1 (cid:20) iσµνn ∆ (cid:21) (cid:104)N(P(cid:48))|O (x)|N(P)(cid:105)tw=ist2 u(P(cid:48)) H (x,ξ,t)/n+E (x,ξ,t) µ ν u(P), (1.1) q q q 2 2m N   1 (cid:90)+∞dλ (cid:18) λ (cid:19) (cid:90)+λ2 (cid:18) λ (cid:19) O (x)= eiλxψ − n /nPexp−ig dα Aβ(αn)n ψ + n . (1.2) q 2 2π q 2  β q 2 −∞ −λ 2 The path ordering operator P in eq. (1.2) ensures gauge invariance. Further, it depends on the momentumfractionxandthequarkflavorq. Thespinorsψ(·)andψ(·)areparametrizedalongthe lightcone(n2=0)bytheparameterλ. Key ingredients of the parameterization of the matrix element in eq. (1.1) are the constraint givenbytheLorentzstructureandthedefinitionsofH (·)andE (·),whichdependonthemomen- q q tumfractionxandthekinematicvariablesξ =−nµ∆ /2andt =∆2 with∆µ =P(cid:48)µ−Pµ. µ The directcalculation ofGPDs by virtueof latticeQCD is notpossible sinceO (x)is alight q coneoperator. However,onecanexpandeq.(1.2)intowersoflocaltwisttwooperators (cid:104)N(P(cid:48))|ψ γ{µ i↔Dµ1 ···i↔Dµn}ψ |N(P)(cid:105)= q q (cid:110) n =u(P(cid:48)) ∑δ γ{µ∆µ1···∆µiPµi+1···Pµn} Aq (t) i,even n+1,i i=0 −i n + ∑δ ∆ σα{µ∆µ1···∆µiPµi+1···Pµn} Bq (t) 2m i,even α n+1,i i=0 1 (cid:111) + δ ∆µ···∆µnCq (t) u(P). (1.3) m n,odd n+1 q q q The coefficient functions A (t), B (t) andC (t) are so called (vector) Generalized Form n+1,i n+1,i n+1 Factors(GFFs)whicharerelatedto(vector)GPDsby (cid:90) +1 n dxxnHq(x,ξ,t)= ∑δ (−2ξ)iAq (t)+δ (−2ξ)n+1Cq (t), (1.4) i,even n+1,i n,odd n+1 −1 i=0 (cid:90) +1 n dxxnEq(x,ξ,t)= ∑δ (−2ξ)iBq (t)−δ (−2ξ)n+1Cq (t). (1.5) i,even n+1,i n,odd n+1 −1 i=0 The knowledge of Au−d(t), Bu−d(t) is of particular interest since they encode the total angular 2,0 2,0 momentum 1(cid:16) (cid:17) Ju−d = Au−d(t =0)+Bu−d(t =0) . (1.6) 2 2,0 2,0 Moreover,wedetermineA˜u−d(t)andB˜u−d(t)whicharetheGFFscorrespondingtotheaxialGPDs. 2,0 2,0 2 Nucleongeneralizedformfactors RudolfRödl 2. Latticeset-up WeuseN =2mass-degeneratenon-perturbativelyimprovedWilson-Sheikholeslami-Wohlert f fermionswithWilsonglue. ThenecessarygaugeconfigurationswereproducedbytheQCDSFcol- laboration and RQCD (Regensburg QCD). The lattice spacing was set as described in [7]. To en- sureground-statedominanceweuseoptimizedWuppertalsmearingasdescribedin[8]. Allresults arecomputedatarenormalizationscale µ =2GeVusingnon-perturbativelyimprovedconversion factors. Intable1wegiveanensembleoverview. Ensemble β a[fm] κ V m [GeV] Lm N t /a π π conf f I 5.20 0.081 0.13596 323×64 0.2795(18) 3.69 1986(4) 13 II 5.29 0.071 0.13620 243×48 0.4264(20) 3.71 1999(2) 15 III 0.13620 323×64 0.4222(13) 4.90 1998(2) 15,17 IV 0.13632 323×64 0.2946(14) 3.42 2023(2) 7(1),9(1),11(1) 13,15,17 V 403×64 0.2888(11) 4.19 2025(2) 15 VI 643×64 0.2895(07) 6.71 1232(2) 15 VII 0.13640 483×64 0.1597(15) 2.78 3442(2) 15 VIII 643×64 0.1497(13) 3.47 1593(3) 9(1),12(2),15 IX 5.40 0.060 0.13640 323×64 0.4897(17) 4.81 1123(2) 17 X 0.13647 323×64 0.4262(20) 4.18 1999(2) 17 XI 0.13660 483×64 0.2595(09) 3.82 2177(2) 17 Table1: N =2latticeset-up. Numberofsourcesperconfigurationinbrackets. f 3. ExtractingGeneralizedFormFactors GFFsareobtainedbysolvingan(ingeneral)overdeterminedsystemofequations. Inthecase ofthevectorGFFstheequationsystemreads    T     A (t) A (t) 2,0 2,0 ε(t,τ )=MB (t)−(cid:126)c(t,τ ) cov−1((cid:126)c(t,τ ))MB (t)−(cid:126)c(t,τ ). (3.1) sink   2,0  sink  sink   2,0  sink  C (t) C (t) 2 2 We extract the GFFs of interest by minimizing eq. (3.1). The coefficient matrix M in eq. (3.1) is fullydeterminedbyeq.(1.3). Thematrixelements(cid:126)c(t,τ )areextractedfromlatticethree-point sink functions. The dependency on the source-sink separation τ 1 is examined in the next section, sink whereinthelimitτ →∞thegroundstateGFFsareobtained. sink Agoodsignalisaprerequisiteforexcited-statefitssincewehavetofixmanyfitparameters. It turnsoutthatexcited-statefitsarenotpossiblefort<0ifwenaivelyimplementeq.(3.1). However, wecandramaticallyimprovethesignalifweaveragethree-pointfunctionswhichleadtothesame rowsinM. 1Wesetτsource=0. 3 Nucleongeneralizedformfactors RudolfRödl 4. ExtractionofmatrixelementsfromlatticeQCDandexcitedstates. As mentioned in section 2 we use optimized Wuppertal smearing on our quark field interpo- lators. Possibleremainingexcitedstatescontributionsaretreatedwithsimultaneouscombinedfits totwo-andthree-pointfunctions. Wethereforeparametrizethetwoandthree-pointfunctions (cid:113) C ((cid:126)p,τ,τ )=c(τ ) z(cid:126)0 z(cid:126)pi e−mN(τsink−τ)e−E((cid:126)pi,mN)τ 3 i sink sink N N + x1 e−mN(τsink−τ)e−E(cid:48)((cid:126)pi)τ+ x2 e−m(cid:48)N(τsink−τ)e−E((cid:126)pi,mN)τ+ x3 e−m(cid:48)N(τsink−τ)e−E(cid:48)((cid:126)pi)τ, E((cid:126)p, m )+m C1e(p,τ)=z(cid:126)p N N e−E((cid:126)p,mN)τ, 2 N E((cid:126)p, m ) N E((cid:126)p, m )+m E(cid:48)((cid:126)p)+m C2e(p,τ)=z(cid:126)p N N e−E((cid:126)p,mN)τ+z(cid:126)p N(cid:48) e−E(cid:48)((cid:126)p)τ. (4.1) 2 N E((cid:126)p, m ) N(cid:48) E(cid:48)((cid:126)p) N Above we denote the nucleon mass as m and its energy as E((cid:126)p,m ). Further, we assume the N N continuum dispersion relation for the ground state E((cid:126)p,m )=m2 +(cid:126)p2 . All expressions corre- N N sponding to the first excited-state are indicated by a prime. The energy of the first excited-state E(cid:48)((cid:126)p) is left as a fit parameter since this could be a mulit-hadronic state. Our kinematic set-up is chosen such that the final momentum is always zero (cid:126)p =(cid:126)0. To accomplish the ground state f extraction(parameterc(τ ))wefixz(cid:126)0 andz(cid:126)pi byvirtueofthetwo-pointfunctions. sink N N 5. Assessmentoftheexcited-statefit WesimultaneouslyfitallparametersaccordingtothecoefficientmatrixM. Thisisnottrivial buthastheadvantagethatrowswithapoorsignalarestabilizedbyothers. Thefitparameterx in 3 eq. (4.1) is only resolvable if multiple τ per ensemble are available. Therefore, we perform in sink general a 3-exponent fit where we set x =0. To check whether this is justified or not we utilize 3 ensembleVIIIwhichhasthreedifferentsourcesinkseparationsτ /a=9,12,15,seefig.1. sink 0.030 Combined 0.028 Ratio Ratio Ratio 4 exp 3 exp 3 exp 3 exp 0.026 0.024 0.022 0.020 0.018 0.016 0.014 6 4 2 0 2 4 6 8 9 10 11 12 13 14 15 16 (τ τ /2)/a τ /a − sink sink Figure1: Extractionmethodanalysis: Datapointsintheleftpanelareratiosofthree-pointandtwo-point functionsfordifferentsourcesinkseparationsofensembleVIIIforacertainrowr inthecoefficientmatrix 1 Matt=−0.211GeV2. Thecorrespondingsolidlinesareratioscreatedwiththefitfunctionsusingeq.(4.1) andsettingx =0. Rightpanelshowsmatrixelementsc(τ )obtainedwithdifferentextractionmethods. 3 sink 4 Nucleongeneralizedformfactors RudolfRödl In the right panel of fig. 1 we compare different values for the matrix element as a function of τ and as a function of different extraction methods. More specifically, we compare the ratio sink method and the 3 exponent excited-state fit to the full excited-state fit with 4 exponents which is shownasagrayband. Weconcludefromtherightpanelthatatgivenstatisticsadistinctionbetweenthedifferentfit methods is not possible if the source sink separation is τ /a=15 which is about 1fm. This is sink consistentwithwhatwehavefoundin[8]. Inthisworkweusethe3-exponentfit. 6. ExtractionofAu−d,Bu−d andJu−d 2,0 2,0 WeutilizeBaryonChiralPerturbationTheorytoextractJu−d atphysicalpionmass. Ouraim istoquoteanupperandlowerboundofAu−d,Bu−d andJu−d includingthestatisticalerrorandthe 2,0 2,0 systematical error from the fit range choice. To that end we perform global combined fits to our latticeensembleswithfitfunctionsAu−d(t,m2,(cid:126)Θ )andBu−d(t,m2,(cid:126)Θ )knownfrom(BChPT)[9]. 2,0 π A 2,0 π B Morespecifically,  (1+3g2)m2 log(m2π) Au2−,0d(t,mπ) = 1− 1A6f2ππ2 µ2 L+m2πM2A +m3πM3A +t(T0A+m2πT1A) (6.1) π g2m2 log(m2π)  (1+2g2)m2log(m2π) Bu2−,0d(t,mπ) = A 16π f2π2µ2 L+1− 1A6f2ππ2 µ2 LB +m2πM2B+t(T0B+m2πT1B). π π (6.2) withfitparameters(cid:126)Θ =(L,MA,MA,TA,TA)and(cid:126)Θ =(L,LB,MB,TB,TB). ThefitparametersTA A 2 3 0 1 B 2 0 1 1 andTB areintroducedbyhandbuttheynaturallyappearinnextorderofBChPT.Wedothissince 1 weconsiderrelativelylargevirtualitieswith|t |=0.6GeV(cid:29)m . max π In order to get an upper and lower bound for Au−d and Bu−d we randomly sample fit range 2,0 2,0 choices(toestimatethesystematicalerror). Foreachsamplewefitthebootstrapensemble(toesti- matethestatisticalerror). Thenwegeneratethedistributionsofthefitparameters(cid:126)Θ and(cid:126)Θ which A B containthecombinederror. Inthelaststepwedrawfitparametersfromthedistributions(cid:126)Θ and(cid:126)Θ A B andevaluateeq.(6.1)andeq.(6.2)witht=0GeVandfixedpionmassm . Thisyieldsdistributions π forAu−d(t =0,m ),Bu−d(t =0,m )andJu−d(m )=(Au−d(t =0,m )+Bu−d(t =0,m ))/2. 2,0 π 2,0 π π 2,0 π 2,0 π Wedefinetheloweranduppererroras0.16and0.84quantilesrespectively. Byrepeatingthis process for many pion masses m we are able to draw error bands as shown in the left panel of π fig.2whiletherightpanelshowstheoutcomeform =mphy. π π 7. LatticeresultsfortheAxial-GFFsA˜u−d andB˜u−d 2,0 2,0 We carefully study fit range dependencies (induced by the combined fit to two- and three- pointfunctions). Theerrorbarsinfig.3showthe(statisticandsystematic)one-sigmaerror. Each singleerrorbarisconstructedfromahistogramwithsample-sizes=(#offitrangecombinations) · (#number of bootstrap ensembles). Here we have used s=75·300=22500. A more detailed analysiswillbepublishedinthenearfuture. 5 Nucleongeneralizedformfactors RudolfRödl 0.30 =0) 0.25 Drop E: VII & VIII & IX Drop E: IX 2Q 0.20 ( udA−2,00.15 0.10 0.00 0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.20 0.22 0.24 mπ2 in [GeV]2 A2u,−0d(Q2 =0,mπphy) 0.35 0) Drop E: VII & VIII & IX Drop E: IX = 2Q 0.30 ( udB−2,00.25 0.00 0.02 0.04 0.06 0.08 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 mπ2 in [GeV]2 B2u,−0d(Q2 =0,mπphy) 0.30 0) Drop E: VII & VIII & IX Drop E: IX = 2Q0.25 ( d− u J0.20 0.00 0.02 0.04 0.06 0.08 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 mπ2 in [GeV]2 Ju−d(Q2 =0,mπphy) Figure2: ResultsforAu−d andBu−d andJu−d. Thedashedblacklineindicatesthephysicalpionmass. We 2,0 2,0 alwaysexcludetheheaviestensembleIXduetotheapplicabilityofBChPT(blue). Toprobethestabilityof ourAnsatz,wealsoshowresultswhereweadditionallydropthetwolightestensemblesVII&VIII(green). 0.28 0.26 0.24 ) 0.22 2 Q 0.20 ( 0 2,0.18 ˜A 0.16 0.14 0.12 1.4 1.2 1.0 ) 2 0.8 Q ( 00.6 2, ˜B 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Q2 in [ GeV ]2 Figure 3: Lattice results for A˜u−d and B˜u−d. For both GFFs we do not see a strong volume or pion mass 2,0 2,0 dependence. MostnotablyarethesmallerrorsofensembleVIwitha643×64volumeandLm =6.71. π 6 Nucleongeneralizedformfactors RudolfRödl 8. Conclusion WedetermineAu−d,Bu−d andJu−d byvirtueoflatticeQCD.Further,utilizingBaryonChiral 2,0 2,0 PerturbationTheory,wecalculatetheobservablesatthephysicalpionmass,where,wefocusedon theconstructionofreliableerrors. Thisisachievedbythehistogrammethodwhichpropagatesthe staticalerrorandthesystematicerrorofthefitrangechoice. Thefinalvaluesareshownintable2. Observable MS µ =2GeV Au−d(Q2=0, mphy) 0.200(-7/+9) 2,0 π Bu−d(Q2=0, mphy) 0.275(-11/+8) 2,0 π Ju−d(mphy) 0.238(-8/+5) π Table 2: Table of results: The numbers correspond to the blue distributions shown in fig. 2. They have a systematicerrorfromtheapplicationofBaryonChiralPerturbationTheorytoourlatticeensembles. Further, we determine A˜u−d and B˜u−d which are the GFFs corresponding to the Axial-GPD, 2,0 2,0 however,moreworkhastobedoneespeciallytoextrapolateB˜u−d toQ2=0. 2,0 Acknowledgements This work is funded by Deutsche Forschungsgemeinschaft (DFG) within the transregional col- laborativeresearchcentre55(SFB-TRR55). WeacknowledgecomputertimeonSuperMUCatthe LeibnizRechenzentruminGarching. References [1] D.Müller,D.Robaschik,B.Geyer,F.M.Dittes,andJ.Hoˇrejši,“Wavefunctions,evolutionequations andevolutionkernelsfromlightrayoperatorsofQCD,”Fortsch.Phys.,vol.42,pp.101–141,1994. [2] X.-D.Ji,“Gauge-InvariantDecompositionofNucleonSpin,”Phys.Rev.Lett.,vol.78,pp.610–613, 1997. [3] X.-D.Ji,“Offforwardpartondistributions,”J.Phys.,vol.G24,pp.1181–1205,1998. [4] X.-D.Ji,“DeeplyvirtualComptonscattering,”Phys.Rev.,vol.D55,pp.7114–7125,1997. [5] LHPC,P.Hagler,J.W.Negele,D.B.Renner,W.Schroers,T.Lippert,andK.Schilling,“Transverse structureofnucleonpartondistributionsfromlatticeQCD,”Phys.Rev.Lett.,vol.93,p.112001,2004. [6] M.Diehl,“Generalizedpartondistributions,”Phys.Rept.,vol.388,pp.41–277,2003. [7] G.S.Balietal.,“NucleonmassandsigmatermfromlatticeQCDwithtwolightfermionflavors,” Nucl.Phys.,vol.B866,pp.1–25,2013. [8] G.S.Bali,S.Collins,B.Glässle,M.Göckeler,J.Najjar,R.H.Rödl,A.Schäfer,R.W.Schiel, W.Söldner,andA.Sternbeck,“NucleonisovectorcouplingsfromN =2latticeQCD,”Phys.Rev., f vol.D91,no.5,p.054501,2015. [9] P.Wein,P.C.Bruns,andA.Schäfer,“Firstmomentsofnucleongeneralizedpartondistributionsin chiralperturbationtheoryatfullone-looporder,”Phys.Rev.,vol.D89,no.11,p.116002,2014. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.