Nucleon generalized form factors from lattice QCD with nearly physical quark masses 6 1 0 2 n a Gunnar Bali,a Sara Collins,a Meinulf Göckeler,a Rudolf Rödl∗,a Andreas Schäfer,a J Andre Sternbeckb 9 aInstitutfürTheoretischePhysik,UniversitätRegensburg,93040Regensburg,Germany 1 bTheoretisch-PhysikalischesInstitut,Friedrich-Schiller-UniversitätJena,07743Jena,Germany ] E-mail: [email protected] t a l - p WedeterminegeneralizedformfactorsofthenucleonfromlatticesimulationswithN =2mass- f e h degeneratenon-perturbativelyimprovedWilson-Sheikholeslami-Wohlertfermionsdowntoapion [ mass of 150 MeV. We also present the resulting isovector quark angular momentum. Possible 1 excited-statecontaminationsareinvestigatedwithcorrelatedsimultaneousfits. v 8 1 8 4 0 . 1 0 6 1 : v i X r a The33rdInternationalSymposiumonLatticeFieldTheory 14-18July2015 KobeInternationalConferenceCenter,Kobe,Japan* ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Nucleongeneralizedformfactors RudolfRödl 1. Introduction GeneralizedPartonDistributions(GPDs)wereintroducedinthe’90s[1,2]. Theydescribethe innerstructureofthenucleon. Thestartingpointistheparametrizationoftheoff-diagonalmatrix elementsofthelightconeoperator[3,4,5,6] 1 (cid:20) iσµνn ∆ (cid:21) (cid:104)N(P(cid:48))|O (x)|N(P)(cid:105)tw=ist2 u(P(cid:48)) H (x,ξ,t)/n+E (x,ξ,t) µ ν u(P), (1.1) q q q 2 2m N 1 (cid:90)+∞dλ (cid:18) λ (cid:19) (cid:90)+λ2 (cid:18) λ (cid:19) O (x)= eiλxψ − n /nPexp−ig dα Aβ(αn)n ψ + n . (1.2) q 2 2π q 2 β q 2 −∞ −λ 2 The path ordering operator P in eq. (1.2) ensures gauge invariance. Further, it depends on the momentumfractionxandthequarkflavorq. Thespinorsψ(·)andψ(·)areparametrizedalongthe lightcone(n2=0)bytheparameterλ. Key ingredients of the parameterization of the matrix element in eq. (1.1) are the constraint givenbytheLorentzstructureandthedefinitionsofH (·)andE (·),whichdependonthemomen- q q tumfractionxandthekinematicvariablesξ =−nµ∆ /2andt =∆2 with∆µ =P(cid:48)µ−Pµ. µ The directcalculation ofGPDs by virtueof latticeQCD is notpossible sinceO (x)is alight q coneoperator. However,onecanexpandeq.(1.2)intowersoflocaltwisttwooperators (cid:104)N(P(cid:48))|ψ γ{µ i↔Dµ1 ···i↔Dµn}ψ |N(P)(cid:105)= q q (cid:110) n =u(P(cid:48)) ∑δ γ{µ∆µ1···∆µiPµi+1···Pµn} Aq (t) i,even n+1,i i=0 −i n + ∑δ ∆ σα{µ∆µ1···∆µiPµi+1···Pµn} Bq (t) 2m i,even α n+1,i i=0 1 (cid:111) + δ ∆µ···∆µnCq (t) u(P). (1.3) m n,odd n+1 q q q The coefficient functions A (t), B (t) andC (t) are so called (vector) Generalized Form n+1,i n+1,i n+1 Factors(GFFs)whicharerelatedto(vector)GPDsby (cid:90) +1 n dxxnHq(x,ξ,t)= ∑δ (−2ξ)iAq (t)+δ (−2ξ)n+1Cq (t), (1.4) i,even n+1,i n,odd n+1 −1 i=0 (cid:90) +1 n dxxnEq(x,ξ,t)= ∑δ (−2ξ)iBq (t)−δ (−2ξ)n+1Cq (t). (1.5) i,even n+1,i n,odd n+1 −1 i=0 The knowledge of Au−d(t), Bu−d(t) is of particular interest since they encode the total angular 2,0 2,0 momentum 1(cid:16) (cid:17) Ju−d = Au−d(t =0)+Bu−d(t =0) . (1.6) 2 2,0 2,0 Moreover,wedetermineA˜u−d(t)andB˜u−d(t)whicharetheGFFscorrespondingtotheaxialGPDs. 2,0 2,0 2 Nucleongeneralizedformfactors RudolfRödl 2. Latticeset-up WeuseN =2mass-degeneratenon-perturbativelyimprovedWilson-Sheikholeslami-Wohlert f fermionswithWilsonglue. ThenecessarygaugeconfigurationswereproducedbytheQCDSFcol- laboration and RQCD (Regensburg QCD). The lattice spacing was set as described in [7]. To en- sureground-statedominanceweuseoptimizedWuppertalsmearingasdescribedin[8]. Allresults arecomputedatarenormalizationscale µ =2GeVusingnon-perturbativelyimprovedconversion factors. Intable1wegiveanensembleoverview. Ensemble β a[fm] κ V m [GeV] Lm N t /a π π conf f I 5.20 0.081 0.13596 323×64 0.2795(18) 3.69 1986(4) 13 II 5.29 0.071 0.13620 243×48 0.4264(20) 3.71 1999(2) 15 III 0.13620 323×64 0.4222(13) 4.90 1998(2) 15,17 IV 0.13632 323×64 0.2946(14) 3.42 2023(2) 7(1),9(1),11(1) 13,15,17 V 403×64 0.2888(11) 4.19 2025(2) 15 VI 643×64 0.2895(07) 6.71 1232(2) 15 VII 0.13640 483×64 0.1597(15) 2.78 3442(2) 15 VIII 643×64 0.1497(13) 3.47 1593(3) 9(1),12(2),15 IX 5.40 0.060 0.13640 323×64 0.4897(17) 4.81 1123(2) 17 X 0.13647 323×64 0.4262(20) 4.18 1999(2) 17 XI 0.13660 483×64 0.2595(09) 3.82 2177(2) 17 Table1: N =2latticeset-up. Numberofsourcesperconfigurationinbrackets. f 3. ExtractingGeneralizedFormFactors GFFsareobtainedbysolvingan(ingeneral)overdeterminedsystemofequations. Inthecase ofthevectorGFFstheequationsystemreads T A (t) A (t) 2,0 2,0 ε(t,τ )=MB (t)−(cid:126)c(t,τ ) cov−1((cid:126)c(t,τ ))MB (t)−(cid:126)c(t,τ ). (3.1) sink 2,0 sink sink 2,0 sink C (t) C (t) 2 2 We extract the GFFs of interest by minimizing eq. (3.1). The coefficient matrix M in eq. (3.1) is fullydeterminedbyeq.(1.3). Thematrixelements(cid:126)c(t,τ )areextractedfromlatticethree-point sink functions. The dependency on the source-sink separation τ 1 is examined in the next section, sink whereinthelimitτ →∞thegroundstateGFFsareobtained. sink Agoodsignalisaprerequisiteforexcited-statefitssincewehavetofixmanyfitparameters. It turnsoutthatexcited-statefitsarenotpossiblefort<0ifwenaivelyimplementeq.(3.1). However, wecandramaticallyimprovethesignalifweaveragethree-pointfunctionswhichleadtothesame rowsinM. 1Wesetτsource=0. 3 Nucleongeneralizedformfactors RudolfRödl 4. ExtractionofmatrixelementsfromlatticeQCDandexcitedstates. As mentioned in section 2 we use optimized Wuppertal smearing on our quark field interpo- lators. Possibleremainingexcitedstatescontributionsaretreatedwithsimultaneouscombinedfits totwo-andthree-pointfunctions. Wethereforeparametrizethetwoandthree-pointfunctions (cid:113) C ((cid:126)p,τ,τ )=c(τ ) z(cid:126)0 z(cid:126)pi e−mN(τsink−τ)e−E((cid:126)pi,mN)τ 3 i sink sink N N + x1 e−mN(τsink−τ)e−E(cid:48)((cid:126)pi)τ+ x2 e−m(cid:48)N(τsink−τ)e−E((cid:126)pi,mN)τ+ x3 e−m(cid:48)N(τsink−τ)e−E(cid:48)((cid:126)pi)τ, E((cid:126)p, m )+m C1e(p,τ)=z(cid:126)p N N e−E((cid:126)p,mN)τ, 2 N E((cid:126)p, m ) N E((cid:126)p, m )+m E(cid:48)((cid:126)p)+m C2e(p,τ)=z(cid:126)p N N e−E((cid:126)p,mN)τ+z(cid:126)p N(cid:48) e−E(cid:48)((cid:126)p)τ. (4.1) 2 N E((cid:126)p, m ) N(cid:48) E(cid:48)((cid:126)p) N Above we denote the nucleon mass as m and its energy as E((cid:126)p,m ). Further, we assume the N N continuum dispersion relation for the ground state E((cid:126)p,m )=m2 +(cid:126)p2 . All expressions corre- N N sponding to the first excited-state are indicated by a prime. The energy of the first excited-state E(cid:48)((cid:126)p) is left as a fit parameter since this could be a mulit-hadronic state. Our kinematic set-up is chosen such that the final momentum is always zero (cid:126)p =(cid:126)0. To accomplish the ground state f extraction(parameterc(τ ))wefixz(cid:126)0 andz(cid:126)pi byvirtueofthetwo-pointfunctions. sink N N 5. Assessmentoftheexcited-statefit WesimultaneouslyfitallparametersaccordingtothecoefficientmatrixM. Thisisnottrivial buthastheadvantagethatrowswithapoorsignalarestabilizedbyothers. Thefitparameterx in 3 eq. (4.1) is only resolvable if multiple τ per ensemble are available. Therefore, we perform in sink general a 3-exponent fit where we set x =0. To check whether this is justified or not we utilize 3 ensembleVIIIwhichhasthreedifferentsourcesinkseparationsτ /a=9,12,15,seefig.1. sink 0.030 Combined 0.028 Ratio Ratio Ratio 4 exp 3 exp 3 exp 3 exp 0.026 0.024 0.022 0.020 0.018 0.016 0.014 6 4 2 0 2 4 6 8 9 10 11 12 13 14 15 16 (τ τ /2)/a τ /a − sink sink Figure1: Extractionmethodanalysis: Datapointsintheleftpanelareratiosofthree-pointandtwo-point functionsfordifferentsourcesinkseparationsofensembleVIIIforacertainrowr inthecoefficientmatrix 1 Matt=−0.211GeV2. Thecorrespondingsolidlinesareratioscreatedwiththefitfunctionsusingeq.(4.1) andsettingx =0. Rightpanelshowsmatrixelementsc(τ )obtainedwithdifferentextractionmethods. 3 sink 4 Nucleongeneralizedformfactors RudolfRödl In the right panel of fig. 1 we compare different values for the matrix element as a function of τ and as a function of different extraction methods. More specifically, we compare the ratio sink method and the 3 exponent excited-state fit to the full excited-state fit with 4 exponents which is shownasagrayband. Weconcludefromtherightpanelthatatgivenstatisticsadistinctionbetweenthedifferentfit methods is not possible if the source sink separation is τ /a=15 which is about 1fm. This is sink consistentwithwhatwehavefoundin[8]. Inthisworkweusethe3-exponentfit. 6. ExtractionofAu−d,Bu−d andJu−d 2,0 2,0 WeutilizeBaryonChiralPerturbationTheorytoextractJu−d atphysicalpionmass. Ouraim istoquoteanupperandlowerboundofAu−d,Bu−d andJu−d includingthestatisticalerrorandthe 2,0 2,0 systematical error from the fit range choice. To that end we perform global combined fits to our latticeensembleswithfitfunctionsAu−d(t,m2,(cid:126)Θ )andBu−d(t,m2,(cid:126)Θ )knownfrom(BChPT)[9]. 2,0 π A 2,0 π B Morespecifically, (1+3g2)m2 log(m2π) Au2−,0d(t,mπ) = 1− 1A6f2ππ2 µ2 L+m2πM2A +m3πM3A +t(T0A+m2πT1A) (6.1) π g2m2 log(m2π) (1+2g2)m2log(m2π) Bu2−,0d(t,mπ) = A 16π f2π2µ2 L+1− 1A6f2ππ2 µ2 LB +m2πM2B+t(T0B+m2πT1B). π π (6.2) withfitparameters(cid:126)Θ =(L,MA,MA,TA,TA)and(cid:126)Θ =(L,LB,MB,TB,TB). ThefitparametersTA A 2 3 0 1 B 2 0 1 1 andTB areintroducedbyhandbuttheynaturallyappearinnextorderofBChPT.Wedothissince 1 weconsiderrelativelylargevirtualitieswith|t |=0.6GeV(cid:29)m . max π In order to get an upper and lower bound for Au−d and Bu−d we randomly sample fit range 2,0 2,0 choices(toestimatethesystematicalerror). Foreachsamplewefitthebootstrapensemble(toesti- matethestatisticalerror). Thenwegeneratethedistributionsofthefitparameters(cid:126)Θ and(cid:126)Θ which A B containthecombinederror. Inthelaststepwedrawfitparametersfromthedistributions(cid:126)Θ and(cid:126)Θ A B andevaluateeq.(6.1)andeq.(6.2)witht=0GeVandfixedpionmassm . Thisyieldsdistributions π forAu−d(t =0,m ),Bu−d(t =0,m )andJu−d(m )=(Au−d(t =0,m )+Bu−d(t =0,m ))/2. 2,0 π 2,0 π π 2,0 π 2,0 π Wedefinetheloweranduppererroras0.16and0.84quantilesrespectively. Byrepeatingthis process for many pion masses m we are able to draw error bands as shown in the left panel of π fig.2whiletherightpanelshowstheoutcomeform =mphy. π π 7. LatticeresultsfortheAxial-GFFsA˜u−d andB˜u−d 2,0 2,0 We carefully study fit range dependencies (induced by the combined fit to two- and three- pointfunctions). Theerrorbarsinfig.3showthe(statisticandsystematic)one-sigmaerror. Each singleerrorbarisconstructedfromahistogramwithsample-sizes=(#offitrangecombinations) · (#number of bootstrap ensembles). Here we have used s=75·300=22500. A more detailed analysiswillbepublishedinthenearfuture. 5 Nucleongeneralizedformfactors RudolfRödl 0.30 =0) 0.25 Drop E: VII & VIII & IX Drop E: IX 2Q 0.20 ( udA−2,00.15 0.10 0.00 0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.20 0.22 0.24 mπ2 in [GeV]2 A2u,−0d(Q2 =0,mπphy) 0.35 0) Drop E: VII & VIII & IX Drop E: IX = 2Q 0.30 ( udB−2,00.25 0.00 0.02 0.04 0.06 0.08 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 mπ2 in [GeV]2 B2u,−0d(Q2 =0,mπphy) 0.30 0) Drop E: VII & VIII & IX Drop E: IX = 2Q0.25 ( d− u J0.20 0.00 0.02 0.04 0.06 0.08 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 mπ2 in [GeV]2 Ju−d(Q2 =0,mπphy) Figure2: ResultsforAu−d andBu−d andJu−d. Thedashedblacklineindicatesthephysicalpionmass. We 2,0 2,0 alwaysexcludetheheaviestensembleIXduetotheapplicabilityofBChPT(blue). Toprobethestabilityof ourAnsatz,wealsoshowresultswhereweadditionallydropthetwolightestensemblesVII&VIII(green). 0.28 0.26 0.24 ) 0.22 2 Q 0.20 ( 0 2,0.18 ˜A 0.16 0.14 0.12 1.4 1.2 1.0 ) 2 0.8 Q ( 00.6 2, ˜B 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Q2 in [ GeV ]2 Figure 3: Lattice results for A˜u−d and B˜u−d. For both GFFs we do not see a strong volume or pion mass 2,0 2,0 dependence. MostnotablyarethesmallerrorsofensembleVIwitha643×64volumeandLm =6.71. π 6 Nucleongeneralizedformfactors RudolfRödl 8. Conclusion WedetermineAu−d,Bu−d andJu−d byvirtueoflatticeQCD.Further,utilizingBaryonChiral 2,0 2,0 PerturbationTheory,wecalculatetheobservablesatthephysicalpionmass,where,wefocusedon theconstructionofreliableerrors. Thisisachievedbythehistogrammethodwhichpropagatesthe staticalerrorandthesystematicerrorofthefitrangechoice. Thefinalvaluesareshownintable2. Observable MS µ =2GeV Au−d(Q2=0, mphy) 0.200(-7/+9) 2,0 π Bu−d(Q2=0, mphy) 0.275(-11/+8) 2,0 π Ju−d(mphy) 0.238(-8/+5) π Table 2: Table of results: The numbers correspond to the blue distributions shown in fig. 2. They have a systematicerrorfromtheapplicationofBaryonChiralPerturbationTheorytoourlatticeensembles. Further, we determine A˜u−d and B˜u−d which are the GFFs corresponding to the Axial-GPD, 2,0 2,0 however,moreworkhastobedoneespeciallytoextrapolateB˜u−d toQ2=0. 2,0 Acknowledgements This work is funded by Deutsche Forschungsgemeinschaft (DFG) within the transregional col- laborativeresearchcentre55(SFB-TRR55). WeacknowledgecomputertimeonSuperMUCatthe LeibnizRechenzentruminGarching. References [1] D.Müller,D.Robaschik,B.Geyer,F.M.Dittes,andJ.Hoˇrejši,“Wavefunctions,evolutionequations andevolutionkernelsfromlightrayoperatorsofQCD,”Fortsch.Phys.,vol.42,pp.101–141,1994. [2] X.-D.Ji,“Gauge-InvariantDecompositionofNucleonSpin,”Phys.Rev.Lett.,vol.78,pp.610–613, 1997. [3] X.-D.Ji,“Offforwardpartondistributions,”J.Phys.,vol.G24,pp.1181–1205,1998. [4] X.-D.Ji,“DeeplyvirtualComptonscattering,”Phys.Rev.,vol.D55,pp.7114–7125,1997. [5] LHPC,P.Hagler,J.W.Negele,D.B.Renner,W.Schroers,T.Lippert,andK.Schilling,“Transverse structureofnucleonpartondistributionsfromlatticeQCD,”Phys.Rev.Lett.,vol.93,p.112001,2004. [6] M.Diehl,“Generalizedpartondistributions,”Phys.Rept.,vol.388,pp.41–277,2003. [7] G.S.Balietal.,“NucleonmassandsigmatermfromlatticeQCDwithtwolightfermionflavors,” Nucl.Phys.,vol.B866,pp.1–25,2013. [8] G.S.Bali,S.Collins,B.Glässle,M.Göckeler,J.Najjar,R.H.Rödl,A.Schäfer,R.W.Schiel, W.Söldner,andA.Sternbeck,“NucleonisovectorcouplingsfromN =2latticeQCD,”Phys.Rev., f vol.D91,no.5,p.054501,2015. [9] P.Wein,P.C.Bruns,andA.Schäfer,“Firstmomentsofnucleongeneralizedpartondistributionsin chiralperturbationtheoryatfullone-looporder,”Phys.Rev.,vol.D89,no.11,p.116002,2014. 7