Nucleation and Short Fatigue Crack Growth Behaviour in the 2024-T3 Aluminum Alloy By Jonathan P. Tsang B.A.Sc. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Applied Science Department of Mechanical and Aerospace Engineering Ottawa-Carleton Institute for Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario May 2005 © Copyright 2005 J. Tsang Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1*1 Library and Bibliotheque et Archives Canada Archives Canada 0-494-06803-5 Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Volte reference ISBN: Our file Notre reterence ISBN: NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Nnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriete du droit d’auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author’s permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The undersigned recommends to the Faculty of Graduate Studies and Research, acceptance of the thesis: Nucleation and Short Fatigue Crack Growth Behaviour in the 2024-T3 Aluminum Alloy Submitted by Jonathan P. Tsang In partial fulfillment of the requirements for the Degree of Master of Applied Science. Thesis Supervisor Chairman Department of Mechanical and Aerospace Engineering Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT In this thesis, different crack detection and monitoring techniques are studied including surface replication, marker bands, and electrical potential drop (EPD). The EPD method is the most successful short crack detection technique detecting cracks as small as 42 pm in radius in the 2024 aluminum alloy. From post-fracture analysis, it is concluded that almost all the fatigue failures originate at constituent particles, ranging from approximately 50 pm2 to 550 pm2 in size, with many cracks nucleating along the notch wall. This leads to the hypothesis that cracks nucleate early during fatigue testing but then become arrested. This process repeats until one crack breaks through the arresting barrier and propagates to failure. The time required for the crack to break through barrier is the reason why the majority of the fatigue life is spent in the nucleation and short crack regimes. A chemical analysis of the constituent particles reveals a compositional difference between the large particles at the nucleation sites and the smaller particles that have no role in fatigue crack nucleation. The larger particles contain significant iron and manganese and increased copper compared to the smaller particles. Therefore, to improve the fatigue life of 2024, the iron content must be lowered. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS First and foremost, I would like to thank my mother, Ivy Wong, for all of her encouragement, guidance and love. She was always there for me when I needed help or advice and her strength and compassion inspires me to do my best. Without her, none of this would have been possible. I’d also like to thank Dr. Jonathan Beddoes and Dr. Ali Merati for their helpful supervision. They have always been there to help with any technical problems and were also able to give me enough space and responsibility so that I may exercise my own judgment. Both of them have always had my best interest in mind and a graduate student could not ask for better supervisors. Dr. Rick Kearsey and Scott Yandt have provided a lot of help and consultation for my thesis work, especially in regards to the EPD testing. It has been a tremendous benefit to have them work so closely with me. Thanks also go to Dr. Stephen Smith at NASA for his help with the EPD testing. Lastly, I’d like to thank the Department of National Defence for partial funding of this thesis work. iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ABSTRACT........................................................................................................................................iii ACKNOWLEDGEMENTS.............................................................................................................iv TABLE OF CONTENTS...................................................................................................................v LIST OF FIGURES........................................................................................................................viii LIST OF TABLES..........................................................................................................................xiii LIST OF TABLES..........................................................................................................................xiii 1.0 INTRODUCTION........................................................................................................................1 2.0 OBJECTIVES AND APPROACH...........................................................................................5 3.0 REVIEW OF LITERATURE....................................................................................................7 3.1 Importance of Short Cracks...................................................................................................7 3.2 Difference Between Short and Long Cracks.....................................................................8 3.3 Fatigue Crack Initiation and Short Crack Growth Behaviour.....................................12 3.3.1 Results of Kitagawa.......................................................................................................15 3.3.2 Results of Hunter and Fricke......................................................................................16 3.3.3 Results of Grosskreutz and Shaw................................................................ 16 \ V 3.3.4 Results of Kung and Fine.............................................................................................17 3.3.5 Results of the Australian Defence Science and Technology Organization (DSTO)......................................................................................................................................17 3.4 Characterization of Crack Nucleation Sites.....................................................................19 3.4.1 Equivalent Initial Flaw Size (EIFS)...........................................................................19 3.4.2 Equivalent Pre-crack Size (EPS)...............................................................................21 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.4.3 Initial Discontinuity State (IDS)................................................................................23 3.5 Crack Front Findings...........................................................................................................26 3.6 Murakami’s Methodology..................................................................................................28 3.7 Transition from Short to Long Cracks..............................................................................29 3.8 Energy Dispersive X-ray (EDX) Analysis.......................................................................32 3.9 Electrical Potential Drop (EPD) Technique.....................................................................36 3.9.1 Use of Electrical Potential Difference (EPD) for Measuring Crack Size 38 3.9.2 Significance and Use of EPD Results.......................................................................43 3.9.3 Calibration Notes..........................................................................................................45 4.0 EXPERIMENTAL PROCEDURES AND MATERIALS...............................................48 4.1 Material...................................................................................................................................48 4.2 Procedures..............................................................................................................................52 4.2.1 Metallography and Image Analysis..........................................................................52 4.2.2 Microsoft Excel Analysis Procedure........................................................................55 4.2.3 Fatigue Testing Procedure..........................................................................................56 4.2.4 Surface Replication......................................................................................................57 4.2.5 Marker Bands.................................................................................................................58 4.2.6 Electrical Potential Drop (EPD).................................................................................60 5.0 MICROSTRUCTURAL ANALYSIS..................................................................................70 5.1 Metallographic Thickness Analysis..............................................................................71 5.2 Weibull Distribution.......................................................................................................71 5.3 Microstructural Analysis.................................................................................................72 6.0 RESULTS AND DISCUSSION............................................................................................88 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6.1 Fatigue Testing.......................................................................................................................88 6.2 Surface Replication Technique...........................................................................................93 6.3 Marker Bands..........................................................................................................................95 6.4 Electrical Potential Drop (EPD).........................................................................................98 6.5 Post-Fracture Analysis........................................................................................................112 6.6 Energy Dispersive X-ray (EDX) Analysis.....................................................................126 7.0 CONCLUSION.........................................................................................................................131 8.0 FUTURE WORK......................................................................................................................136 9.0 REFERENCES.........................................................................................................................138 APPENDIX A - Image Pro Procedure......................................................................................144 APPENDIX B - Microsoft Excel Analysis Procedure...........................................................159 APPENDIX C - Specimen Preparation and Loading Procedure..........................................173 APPENDIX D - EPD Testing Procedure..................................................................................198 vii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF FIGURES Figure 1. da/dN vs. a curve showing the transition between short and long cracks [11] 31 Figure 2. Cross-section of the Si - Li detector [33].................................................................33 Figure 3. The x-ray detection and photoelectron creation process [33].............................34 Figure 4. Schematic of the EDS system [33]............................................................................34 Figure 5. EDX sorting of characteristic x-ray photon data. Each column would represent a certain element with those certain x-ray energy characteristics. In this example, the EDX resolution is 100 eV................................................................................................35 Figure 6. Influence of different potential lead locations on measured potential differences [35]..............................................................................................................................................46 Figure 7. Influence of different current lead locations on measured potential drops [35]47 Figure 8. A typical example of the image analysis performed on the SEM micrographs using the ImagePro Software.................................................................................................55 Figure 9. Schematic showing the location of pictures taken during metallography. For the LS and ST planes, the locations were chosen such that a through-thickness microstructural analysis was performed. Ten rows of ten pictures were taken in each plane for a total examination area of over 2 mm2............................................................55 Figure 10. Single-edge notched (SEN) fatigue sample...........................................................56 Figure 11. Marker band procedure................................................................................................59 Figure 12. Wiring diagram for EPD crack measurements......................................................61 Figure 13. Voltage drop reading stability test at 10A of current..........................................64 Figure 14. Voltage drop reading stability test at 12A of current..........................................65 Vlll Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 15. Voltage drop reading stability test at 14A of current...........................................65 Figure 16. Voltage variation test with an amplification of the voltage signal by 5000x. 67 Figure 17. Voltage variation test with an amplification of the voltage signal by 10 OOOx 68 Figure 18. Three dimensional microstructure of the new, bare 2024-T3 aluminum alloy, using a) optical microscopy and b) scanning electron microscopy (backscattered electrons)....................................................................................................................................75 Figure 19. Typical backscattered SEM micrographs of the 2024-T3 aluminum alloy showing the a) LT plane, b) LS plane and c) ST plane..................................................76 Figure 20. Comparison of the average physical characteristics of the constituent particles throughout the thickness in the LS Plane............................................................................77 Figure 21. Comparison of the average physical characteristics of the constituent particles throughout the thickness in the ST Plane............................................................................77 Figure 22. Coordinates of all particles in the LS plane over a) 0.5 pm', b) 25 pm', c) 75 pm2, and d) 100 pm2................................................................................................................78 Figure 23. Coordinates of all particles in the ST plane over a) 0.5 pm2, b) 25 pm2, c) 75 pm2, and d) 100 pm2................................................................................................................79 Figure 24. Linearity plot for the Weibull Distribution of the area of the particles in the LT plane of 2024-T3................................................................................................................80 Figure 25. Linearity plot for the Weibull Distribution of the area of the particles in the LS plane of 2024-T3................................................................................................................81 Figure 26. Linearity plot for the Weibull Distribution of the area of the particles in the ST plane of 2024-T3.................................................................................................................82 ix Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Description: