ebook img

Nuclear Spectroscopy on Charge Density Wave Systems PDF

333 Pages·1992·11.171 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nuclear Spectroscopy on Charge Density Wave Systems

NUCLEAR SPECTROSCOPY ON CHARGE DENSITY WAVE SYSTEMS Physics and Chemistry of Materials with Low-Dimensional Structures VOLUME 15 Editor-in-Chief F. LEVY, Institut de Physique Appliquee, EPFL, Departement de Physique, PHB-Ecublens, CH-IOI5 Lausanne, Switzerland Honorary Editor E. MOOSER, EPFL, Lausanne, Switzerland International Advisory Board J. V. ACRIVOS, San Jose State University, San Jose, Calif., U.S.A. S. BARISIC, University of Zagreb, Department of Physics, Zagreb, Yugoslavia J. G. BEDNORZ, IBM Forschungslaboratorium, Ruschlikon, Switzerland C. F. van BRUGGEN, University ofGroningen, Groningen, The Netherlands R. GIRLANDA, Universita di Messina, Messina, Italy D. HAARER, University of Bayreuth, Germany A. J. HEEGER, University of California, Santa Barbara, Catif., U.S.A. H. KAMIMURA, Dept. of Physics, University of Tokyo, Japan W. Y. LIANG, Cavendish Laboratory, Cambridge, u.K. P. MONCEAU, CNRS, Grenoble, France J. ROUXEL, CNRS, Nantes, France M. SCHLUTER, AT&T, Murray Hill, N.J., U.S.A. I. ZSCHOKKE, Universitiit Basel, Basel, Switzerland The titles published in this series are listed at the end of this volume. NUCLEAR SPECTROSCOPY ON CHARGE DENSITY WAVE SYSTEMS Edited by Tilman Butz Physics Department, Technische Universitiit Munchen, Garching, Germany KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON Library of Congress Cataloging-in-Publication Data Nuclear spectroscopy on charge dens1ty wave systems / ed1ted by T1 lman Butz. p. cm. -- (Phys1cs and chem1stry of mater1als w1th low -d1mens1onal structures; v. 15) Pap e r s fro maw 0 r k Sh op he 1d 1n B a v a r 1a 1n 1989. Includes b1bl1ographlcal references and Index. ISBN 978-90-481-4165-4 ( a 1k . pap e r ) 1. Charge densIty waves. 2. Sol1d state phYS1CS. 3. Nuclear spectroscopy. I. Butz. T 11 man. II. Ser 1e s. QC17S.8.E4N83 1992 530.~· 1--dc20 92-12827 ISBN 978-90-481-4165-4 ISBN 978-94-015-1299-2 (eBook) DOI 10.1007/978-94-015-1299-2 Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Kluwer Academic Publishers incorporates the publishing programmes of D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved © 1992 Kluwer Academic Publishers Softcover reprint of the hardcover 1st edition 1992 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Table of Contents Preface........................................................... xi Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 TILMAN BUTZ Phenomenological Theory of Charge-Density-Wave Phase Transitions in the NbTe4 - TaTe4 Series of Compounds. . . . . . . . . . . . . . . . . . . . . . . . 7 MICHAEL B. WALKER 1. Introduction .................................................... 7 2. A Prototypical Model of Charge-Density-Wave Formation ...... 8 2.1. The Order Parameter, Symmetry Considerations, and the Free Energy 8 2.2. Commensurate and Incommensurate Phases ...................... 11 2.3. The Nuclear Hyperfine Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 2.4. Dynamics of the Modulation Wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. Modulated Structures of the NbTe4 Series of Compounds. . . . . . . 21 3.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2. The Free Energy of a Charge-Density Wave on a Single Column. . . .. 24 3.3. Commensurate Phases of TaTe4 ................................. 25 3.4. Incommensurate Phases of NbTe4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 3.5. The Nuclear Hyperfine Interaction. . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. 30 4. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 Layered Transition Metal Dichalcogenides ........................ , 35 MICHIO NAITO, HIRONORI NISHIHARA, AND TILMAN BUTZ 1. Hyperfine Techniques ........................................... 35 1.1. NMR ........................................................ 36 1.2. NQR and Quadrupole Effects in NMR ........................... 40 1.2.1. The Case of Zero Applied Magnetic Field (H=O) ............. 42 1.2.2. The Case of a Weak Magnetic Field ........................ 43 1.2.3. The Case of a Strong Magnetic Field ....................... 46 vi 1.3. TDPAC ........... . . . . . . . . . . . . .. .. . . . . . .. .. . . . . . . . . .. . . . . . . .. 47 1.4. Mossbauer Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 1.4.1. The Isomer Shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 1.4.2. Line Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 2. Structure of Layered Transition Metal Dichalcogenides . . . . . . . . .. 54 3. Compounds with Octahedral Metal Coordination ........ . . . . . .. 56 3.1. 1T-TiSe2 ..................................................... 56 3.2. 1T-VSe2...................................................... 59 3.3. Tantalum Dichalcogenides ............................ . . . . . . . . .. 64 3.3.1.1T-TaSe2 ................................................ 68 3.3.2. IT- TaS2 ................................................ 75 4. Compounds with Trigonal Prismatic Metal Coordination.. . . . . .. 85 4.1. Tantalum Dichalcogenides ...................................... 85 4.1.1.2H-TaSe2 ............................................... 85 4.1.2.2H-TaS2 ................................................ 98 4.2. 2H-NbSe2 .................................................... 102 5. Compounds with Mixed Metal Coordination. . . . . . . . . . . . . . . . . . .. 106 Nuclear Spectroscopy Studies of Quasi-one-dimensional Transition Metal Chalcogenides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 JOSEPH H. Ross, JR. AND CHARLES P. SLICHTER 1. Introduction .................................................... 113 1.1. Nuclear Spectroscopy Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 1.2. Materials ..................................................... 115 1.3. CDW Conductivity Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 1.3.1. CDW Pinning ........................................... 118 1.3.2. Models for CDW Motion .................................. 119 2. NbSes ........ , .................................................. 125 2.1. NbSe3 Normal-State Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 126 2.2. Site Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 129 2.3. CDW Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130 2.4. Knight Shifts and Susceptibilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135 2.5. Spin-Lattice Relaxation ........................................ 139 2.6. NMR of the Moving CDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142 2.6.1. NMR Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142 2.6.2. Motional Narrowing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143 2.6.3. Current-induced Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 149 2.6.4. Pulsed CDW Displacements ............................. " 151 2.7. Pressure and Impurity Effects ................................... 153 3. Monoclinic TaSs ................................................ 155 3.1. Room-temperature Measurements ............................... 155 vii 3.2. CDW Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 3.3. Magnetic Field Effects ......................................... 160 4. FeNb3Selo ...................................................... 160 5. Tetrachalcogenides .............................................. 165 5.1. (NbSe4hI .................................................... 166 5.2. (NbSe4ho/3I .................................................. 168 6. Conclusions ..................................................... 169 Nuclear Spectroscopy of Charge Density Waves in Molybdenum Bronzes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 177 CLAUDE BERTHIER, ANDRAS JANOSSY+, PATRICK BUTAUD I AND PIERRE SEGRANSAN 1. Introduction .................................................... 177 2. Physical Properties of the Blue Bronzes. . . . . . . . . . . . . . . . . . . . . . . .. 178 2.1. Crystal Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 178 2.2. The Peierls Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 178 2.3. Dynamics of the CDW ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 181 2.3.1. Excitations at Finite Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . .. 181 2.3.2. The Frohlich Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 181 2.3.3. Voltage Oscillations ...................................... 184 3. NMR in the Normal State ...................................... 187 3.1. Electric Field Gradient and Magnetic Hyperflne Shift Tensors. . . . . .. 188 3.2. Quasi-1D properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 190 4. Nuclear Spectroscopy of Pinned CDW .......................... 190 4.1. Lineshape in Presence of an Incommensurate CDW ................ 191 4.1.1. Nuclear Magnetic Resonance Lineshape ..................... 191 4.1.2. Temperature Dependence of the Order Parameter ............ 192 4.1.3. Electron Paramagnetic Resonance (EPR) in Inorganic CDW Systems ........................................... 193 4.2. Commensurability of the CDW with the Lattice ................. " 195 4.3. ESR and Mossbauer Studies of the Strength of the CDW impurity pinning .............................................. 200 4.4. Defect Density Waves .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 201 4.5. Metastable States and EPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 201 5. Dynamics in the Pinned CDW .................................. 202 6. NMR in the Sliding CDW State ................................ 206 6.1. Introduction .................................................. 206 6.2. Theory of NMR under CDW Current ............................ 206 6.2.1. NMR Spectra for a Sliding CDW ........................... 206 6.2.2. Spin-echo in Presence of a Sliding CDW ..................... 210 viii 6.2.3. Stochastic Fluctuations of the Velocity; Spin-Spin Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 210 6.3. Determination of the CDW Phase Velocity. . . . . . . . . . . . . . . . . . . . . . .. 211 6.4. Inhomogeneity of the Threshold Field for Depinning ............... 217 6.5. Temporal Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 219 7. Conclusion ............................................. , ........ 222 NMR Studies of the Quasi One-dimensional Inorganic Complex Salt K2Pt(CN)4Bro.s3.2H20 (KCP) .................................... 229 DETLEF BRINKMANN AND OTMAR KANERT 1. Introduction .................................................... 229 2. Properties of KCP .................... . . . . . . . . . . . . . . . . . . . . . . . . .. 230 2.1. Lattice Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 230 2.2. Peierls Transition and CDW .................................... 233 2.3. Solitary Excitation Modes of CDW .............................. 234 3. NMR Investigations in KCP .................................... 237 3.1. Introductory Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 237 3.2. Properties of the Conducting Chains by 195pt NMR ............... 239 3.2.1. NMR Spectrum and Chemical Shift below 120 K ............. 239 3.2.2. Knight Shift and Relaxation above 120 K ................... 244 3.2.3. Relaxation beween 30 and 120 K . . . . . . . . . . . . . . . . . . . . . . . . . .. 248 3.3. Lattice Fluctuations near the 3D Ordering Transition by 14N NMR .. 256 3.4. 13C Chemical Shift and Relaxation .............................. 259 3.5. Sites and Motion of Water Molecules by 1H NMR ................. 261 3.6. Sites and Dynamics of Bromine by 81 Br and 39K NMR . . . . . . . . . . . .. 266 4. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 270 High Resolution NMR on Organic Radical Salts. . . . . . . . . . . . . . . . . .. 275 MICHAEL HELMLE AND MICHAEL MEHRING 1. Introduction .................................................... 275 2. Solid State Theory of Radical Salts ............................. 276 2.1. Simple Band Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 276 2.2. Instabilities in One-Dimensional Systems ......................... 279 3. High Resolution Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 280 3.1. The Need for High Resolution Techniques ......................... 280 3.2. Double Resonance and Magic Angle Spinning ..................... 280 3.3. Multiple Pulse Techniques .................................... " 283 4. Magnetic Electron Nuclear Interaction ................. , ........ 283 4.1. Closed Shell Interactions ....................................... 283 4.2. Open Shell Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 284 ix 4.3. Time Averaged Hyperfine Interaction ............................ 284 4.4. Hyperfine Interaction in Organic Molecules ....................... 285 4.5. Hyperfine Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 287 5. Experimental Results ........................................... 288 5.1. Local Hyperfine Interaction and Spin Density Distribution .......... 288 5.2. Magnetic Susceptibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 292 5.3. Localized States and Disorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 293 5.4. Charge and Spin Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 298 5.5. One-dimensional Transport ..................................... 298 5.6. Phase Transition in (FAhX ..................................... 300 5.7. Phase Transition in (TMTSFhRe04 ............................. 301 5.8. Phase Transition in TTF[Ni( dmit hh . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 303 5.9. Spin Peierls Transition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 303 5.10. SDW transition .............................................. 304 5.11. CDW Transition .............................................. 305 6. Summary ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 307 Index ............................................................. . 313 PREFACE This book is the first coherent presentation of investigations of charge density wave (CDW) systems by nuclear spectroscopic techniques. It belongs to the series "Physics and Chemistry of Materials with Low-Dimensional Structures" published by Kluwer Academic Publishers. It addresses the following readership: graduate students and elder scientists with an education in physics and chemistry who are interested in modern aspects of solid state physics and want to acquire a broader knowledge of nuclear spectroscopy techniques applied to CDW systems; experts in the field of CDW's who are familiar with a dozen of modern techniques but never bestowed all their affections on nuclear spectroscopy techniques; active researchers in the field of one of the nuclear spectroscopy techniques applied to CDW systems who wish to learn that even this highly specialized topic - which certainly does not deserve a separate entry in the physics and astronomy classification scheme - is full of surprises "next door". The limited space of this volume necessitated a number of restrictions: first, a selection of systems had to be made which was guided by the concept of discussing a few systems thorougly studied by nuclear spectroscopy techniques in greater de tail rather than to present an incoherent collection of data; secondly the reader is advised to make extensive use of previous books in this series because it would not have made sense to repeat the content here. Chapter 1 gives a short introduction to CDW's in general and to the question what can be learned about CDW's by nuclear spectroscopy techniques. Chapter 2 gives a Landau theory description of CDW formation in chain-like tetrachalco genides. This chapter is intended to elucidate the essential ingredients into a theo retical description of a prototypical system and should stimulate a rigorous research activity on these substances by nuclear spectroscopy techniques. For CDW theories on layered transition metal compounds, the reader is referred to the book "Struc tural Phase Transitions in Layered Transition Metal Compounds", K. Motizuki (ed.) in the same series. Chapter 3 treats experimental resuls on layered transition metal compounds. A short introduction to nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), time differential perturbed angular correla tion (TDPAC), and the Mossbauer effect (ME) is included in this chapter because all three techniques have been extensively applied to Ta-dichalcogenides which are prominent members of this family of materials. Whereas chapter 3 in mainly con cerned with static aspects of CDW's, chapter 4 and 5 treat in great detail CDW dy namics and CDW transport in chain-like transition metal chalcogenides and molyb- xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.