ebook img

Nuclear Energy Advanced Modeling and Simulation PDF

129 Pages·2011·1.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nuclear Energy Advanced Modeling and Simulation

SANDIA REPORT SAND2011-0845 Unlimited Release February 2011 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC): FY10 Development and Integration Geoff Freeze, J. Guadalupe Argüello, Julie Bouchard, Louise Criscenti, Thomas Dewers, H. Carter Edwards, David Sassani, Peter A. Schultz, and Yifeng Wang Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: (865) 576-8401 Facsimile: (865) 576-5728 E-Mail: [email protected] Online ordering: http://www.osti.gov/bridge Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd. Springfield, VA 22161 Telephone: (800) 553-6847 Facsimile: (703) 605-6900 E-Mail: [email protected] Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online ii SAND2011-0845 Unlimited Release February 2011 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC): FY10 Development and Integration Geoff Freeze, J. Guadalupe Argüello, Julie Bouchard, Louise Criscenti, Thomas Dewers, H. Carter Edwards, David Sassani, Peter A. Schultz, and Yifeng Wang Sandia National Laboratories P.O. Box 5800 Albuquerque, New Mexico 87185-MS1369 Abstract This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic- chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure. iii ACKNOWLEDGEMENTS This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Research and Development Program, Advanced Modeling and Simulation Campaign. Charles Bryan supported the THCM code capability gap analysis by compiling the list of potentially relevant codes in Appendix A. Helpful review comments were provided by Pat Brady. iv CONTENTS   1. INTRODUCTION..................................................................................................................... 1  1.1.  Waste IPSC Overview .................................................................................................... 1  2. WASTE IPSC TECHNICAL SCOPE .................................................................................... 3  3. CHARACTERIZATION OF SUB-CONTINUUM PROCESSES ....................................... 9  3.1.  Overview of Glass Waste Form Dissolution ................................................................ 10  3.1.1.  Repository Settings – Why and When Glass Waste Form Dissolution is Important ...................................................................................................................... 10  3.1.2.  Context of Glass Degradation ......................................................................... 11  3.1.3.  Current Understanding and Gap Identification ............................................... 15  3.2.  Continuum-Scale Rate Models for Glass Dissolution .................................................. 20  3.2.1.  Overview of Kinetic Dissolution Rate Expressions ........................................ 20  3.2.2.  Quantification of Rate Law Parameters .......................................................... 23  3.3.  Molecular-Level Studies of Dissolution ....................................................................... 24  3.3.1.  Determination of Reaction Mechanisms ......................................................... 24  3.3.2.  Quantum Mechanics Cluster Calculations ...................................................... 25  3.3.3.  Classical Molecular Dynamics (MD) Models ................................................ 31  3.3.4.  Kinetic Monte Carlo (MC) Models for Dissolution ....................................... 33  3.3.5.  Stochastic Monte Carlo (MC) Models for Dissolution ................................... 33  3.3.6.  Modeling Mesoscale Effects on Glass ............................................................ 42  3.3.7.  Experimental Validation of Molecular Models .............................................. 44  3.3.8.  Summary of Gaps in Upscaling Dissolution Processes .................................. 46  3.4.  Verification, Validation, and Uncertainty Quantification ............................................. 47  3.4.1.  Practices for Sub-Continuum-Scale Modeling ............................................... 47  3.4.2.  Upscaling with Propagating Uncertainties ...................................................... 48  3.4.3.  Validation Issues ............................................................................................. 48  3.4.4.  Evidence Management .................................................................................... 49  3.5.  Summary of Glass Waste Form Dissolution Modeling ................................................ 49  4. MODELING AND SIMULATION OF CONTINUUM PROCESSES ............................. 53  4.1.  Thermal-Hydrologic-Chemical Processes and Code Capabilities ................................ 53  4.1.1.  Thermal Modeling .......................................................................................... 53  4.1.2.  Hydrologic Modeling ...................................................................................... 54  4.1.3.  Multicomponent Multiphase Reactive-Transport Modeling .......................... 55  4.2.  Mechanical Processes and Code Capabilities ............................................................... 65  4.2.1.  Governing Mechanical Equations ................................................................... 65  4.2.2.  Mechanical Modeling ..................................................................................... 67  4.3.  Preliminary Gap Analysis of THCM Code Capabilities ............................................... 67  v CONTENTS (cont.) 5. FRAMEWORKS AND INFRASTRUCTURE..................................................................... 73  5.1.  Enabling Infrastructure and Foundational Services ...................................................... 73  5.1.1.  Configuration Management ............................................................................ 74  5.1.2.  Requirements Management ............................................................................ 74  5.1.3.  Project Management ....................................................................................... 75  5.2.  Analysis Workflow Framework .................................................................................... 75  5.2.1.  Plan for Gap Analysis, Acquisition, and Development .................................. 75  5.2.2.  Potential Collaborators .................................................................................... 76  5.2.3.  Framework Components Needs and Goals ..................................................... 77  5.2.4.  Survey of Existing Solutions .......................................................................... 84  6. SUMMARY ............................................................................................................................. 87  7. REFERENCES ........................................................................................................................ 89  APPENDIX A: REACTIVE TRANSPORT CODES ............................................................... 1  vi FIGURES Figure 2-1. Components of a generic disposal system. ................................................................. 4  Figure 3-1. Schematic of Initial Attack Stage. ............................................................................. 13  Figure 3-2. Schematic of Evolution Stage. .................................................................................. 13  Figure 3-3. Schematic of Maturation Stage. ................................................................................ 14  Figure 3-4. Time dependent alteration rate and extent for glass degradation. ............................. 15  Figure 3-5. Schematic showing the compositional profiles through the layers on the glass surface. .......................................................................................................................................... 16  Figure 3-6. Schematic diagram of the processes occurring within the passivating reactive interphase (PRI). ........................................................................................................................... 17  Figure 3-7. Time and length scales of geochemical modeling. ................................................... 20  Figure 3-8. Energy profile (kJ/mol) of the Si-O-Si hydrolysis reaction along the reaction coordinates for the protonated, neutral, and deprotonated species. .............................................. 28  Figure 3-9. Schematic of the Al-O -Si surface site in (a) protonated, (b) neutral, and br (c) deprotonated states. ................................................................................................................. 29  Figure 3-10. Flowchart for steps involved in the stepwise dissolution algorithm. ...................... 35  Figure 3-11. Simplified model of a dissolving feldspar surface. ................................................. 39  Figure 5-1. Flow of modeling and simulation capabilities from Development ........................... 73  vii TABLES Table 2-1. Groupings of Potential Waste Form Types .................................................................. 3  Table 2-2. Groupings of Potential Disposal Concepts and Geologic Settings .............................. 4  Table 5-1. Enabling Infrastructure – Tool Identification and Gap Analysis ............................... 74  viii ACRONYMS AFM atomic force microscopy ASC Advanced Simulation and Computing ASCEM Advanced Simulation Capability for Environmental Management CP-MAS cross-polarization magic-angle spinning CT Capability Transfer DOE U.S. Department of Energy EBS Engineered Barrier System ECT Enabling Computational Technologies FEP feature, event, and process FY fiscal year FMM Fundamental Methods and Models GTCC greater than class C waste HLW high-level waste HPC high performance computing HTGR high-temperature gas-cooled reactor IPSC Integrated Safety and Performance Codes LHS Latin hypercube sampling LTHLW lower than high-level waste MC Monte Carlo MD molecular dynamics MDCF multi-mechanism deformation coupled fracture MO-TST molecular orbital-transition state theory MPP massively parallel processing NE Nuclear Energy NEAMS Nuclear Energy Advanced Modeling and Simulation NMR nuclear magnetic resonance ODE ordinary differential equation PA performance assessment PDE partial differential equation PRI passivating reactive interphase RI reactive interface SEM scanning electron microscopy SIA Sequential iterative approach SIMS secondary ion mass spectrometry SNIA Sequential non-iterative approach SNL Sandia National Laboratories THC thermal-hydrologic-chemical THCM thermal-hydrologic-chemical-mechanical THCMBR thermal-hydrologic-chemical-mechanical-biological-radiological TST transition state theory UFD Used Fuel Disposition UNF used nuclear fuel UQ uncertainty quantification ix ACRONYMS (cont.) V&V verification and validation VSI vertical scanning interferometry VU Verification and Validation and Uncertainty Quantification WIPP Waste Isolation Pilot Plant XPS X-ray photoelectron spectroscopy YMP Yucca Mountain Project x

Description:
will not anoint codes at the sub-continuum scale, but operation of the Waste IPSC can and will 405–430. ANSYS, 2010. ANSYS, Inc. website – http://www.ansys.com (last accessed September 20,. 2010). Appelo, C.A.J., and D. Postma 1999. A consistent model for surface complexation on birnessite.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.