Annals ofBotany92:153–164,2003 doi:10.1093/aob/mcg104, available onlineatwww.aob.oupjournals.org Nuclear DNA Amounts in Macaronesian Angiosperms JAN SUDA1,2,*, TOMA´Sˇ KYNCL2 and RADKA FREIOVA´2 1Department of Botany, Charles University, Bena´tska´ 2, Prague 2, 128 01, Czech Republic, and 2Institute of Botany, Academy of Sciences, Pru˚honice 1, Prague, 252 43, Czech Republic Received:25October2002 Returnedforrevision:30January2003 Accepted:4March2003 NuclearDNAcontentsfor104Macaronesianangiosperms,withparticularattentiononCanaryIslandsendemics, were analysed using propidium iodide flow cytometry. Prime estimates for more than one-sixth of the whole Canarian endemic flora (including representatives of 11 endemic genera) were obtained. The resulting 1C DNA values ranged from 0·19 to 7·21 pg for Descurainia bourgeauana and Argyranthemum frutescens, respectively (about 38-fold difference). The majority of species, however, possessed (very) small genomes, with C-values <1·6 pg. The tendency towards small nuclear DNA contents and genome sizes was confirmed by comparing average values for Macaronesian andnon-Macaronesian representatives of individual families, genera and major phylogeneticlineages.OurdatasupportthehypothesisthattheinsularselectionpressuresinMacaronesiafavour small C-values and genome sizes. Both positive and negative correlations between infrageneric nuclear DNA amountvariationandenvironmentalconditionsonTenerifewerealsofoundinseveralgenera.ª2003Annalsof BotanyCompany Keywords:C-value,CanaryIslands,endemic,flowcytometry,genomesize,nuclearDNAcontent,Macaronesia. INTRODUCTION Oceanic islands typically show a high degree of endemicity. Macaronesia harbours at least 30 endemic Oceanicislandsplayanimportantroleinmaintainingglobal genera(Bramwell,1976;Kunkel,1993)andtheproportion biodiversity. It has been estimated that they harbour ofMacaronesianendemicspeciesforindividualislandshas approximately one-sixth of vascular plant species, a large beenestimatedatbetween4%(GraciosaintheAzores)and proportion of which is endangered (World Conservation 27 % (La Palma in the Canary Islands) (Hobohm, 2000). Monitoring Centre, 1992). The Macaronesian phytogeo- The main archipelago, the Canary Islands, is by far the graphic region encompasses five assemblages of volcanic richestarea,withabout570endemicspecies(about40%of archipelagos in the eastern Atlantic Ocean (the Azores, native plants) (Francisco-Ortega et al., 2000). Such a high Madeira, the Salvage Islands, the Canary Islands and the number of endemics could be attributed to the great Cape Verde Islands), situated between 15 and 40(cid:176)N. The diversity of habitats on the Canaries where six major flora of this region is diverse and complex. The strongest ecological zones have developed (Fernandopulle´, 1976). A phytogeographicconnectionshavebeenproposedtobewith broadrangeofgeologicalages(between0·8and21million theMediterraneanbasinandnorth-westernAfrica;apparent years) (Carracedo, 1994), a varying degree of substrate linkswithsouth-easternAfricaandneotropicalregionscan erosionandtheproximityoftheAfricancontinentmayalso also be traced (Bramwell, 1986; Panero et al., 1999). A contribute to the species richness. Adaptive radiation distinct feature of indigenous plant species is a high (divergent evolution in response to different ecological proportion of woody life-forms in otherwise herbaceous pressures) and vicariance (divergence due to geographic groups, Echium and Sonchus being two prominent exam- isolation) seem to be the main processes favouring the ples. Analysis of growth-form composition also reveals a diversification of ancestral plant types into several related high percentage of succulents and a low abundance of taxa (Crawfordet al.,1987). geophytes and annuals (Shmida and Werger, 1992). The The flora of Macaronesia, and of the Canary Islands in Macaronesian flora has traditionally been suggested to particular, has been subjected to numerous karyological represent the relictual fragment of a subtropical Tertiary studies (e.g. Larsen, 1963; Borgen 1969; Bramwell et al., plantbiotaoncewidespread inEurope and northern Africa 1976;Dalgaard,1991).Averylowincidenceofpolyploidy (Bramwell,1976).However,modernphylogeneticanalyses wasrepeatedlyconfirmed.Onthebasisof453species(304 of several Macaronesian plant groups (Aeonium, Macaronesian endemics and 149 non-endemics) described Argyranthemum, Bencomia, Echium) have not provided cytologically,Borgen(1974)concludedthatonly26·6%of support for a relict origin, and indicated relatively recent endemicsand27·8%ofthetotalfloraarepolyploids.These insulardiversificationfromcontinentalancestors(Emerson, percentages may alter to a certain extent as some species 2002). traditionally regarded as diploids (e.g. Canarina, Convolvulus, Crambe, Micromeria) might actually be *Forcorrespondence.Fax+420221951645,[email protected] polyploid in their origin. Nevertheless, the frequency of Annals of Botany 92/1, ªAnnals of Botany Company 2003; all rights reserved 154 Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms TABLE1. List of localities of Macaronesian endemics used in the present study No. Locality Coordinates Altitude(m) 1 Tenerife:Can˜adasdelTeide,rockcrevicesinValledeChin˜oque,northofElSanatorio 28(cid:176)14¢20¢¢N16(cid:176)36¢10¢¢W 2180 2 Tenerife:Can˜adasdelTeide,rockcrevicesandvolcanicsandseast-south-eastofParadorNacional 28(cid:176)13¢20¢¢N16(cid:176)37¢10¢¢W 2180 delasCan˜adashotel 3 Tenerife:Can˜adasdelTeide,rockcrevicesalonghikingtrailwestofColmenarhill 28(cid:176)15¢50¢¢N16(cid:176)33¢10¢¢W 2060 4 Tenerife:Can˜adasdelTeide,ElPortillo,volcanicsandsalonghikingtrailnearMontan˜adelas 28(cid:176)17¢40¢¢N16(cid:176)33¢40¢¢W 2000 ArenasNegrashill 5 Tenerife:Can˜adasdelTeide,RiscosdelaFortalesa,rockcrevicesatthetopofthemountain 28(cid:176)18¢50¢¢N16(cid:176)35¢50¢¢W ~2150 6 Tenerife:Pinuscanariensisforestalongtheroadapprox.1kmsouthofMiradoresdelaCumbre, 28(cid:176)21¢50¢¢N16(cid:176)28¢00¢¢W 1970 nearMontan˜aAvosahill 7 Tenerife:MargaritadePiedra,rockcrevicesinBarrancodelaZarza 28(cid:176)20¢30¢¢N16(cid:176)31¢30¢¢W 1420 8 Tenerife:Aquamansa,Fayal-brezalcommunityalongtheroadapprox.1kmsouth-westofthevillage 28(cid:176)21¢30¢¢N16(cid:176)30¢30¢¢W 1160 9 Tenerife:LosPinos,wallnexttoroadinthevillage 28(cid:176)22¢50¢¢N16(cid:176)30¢50¢¢W 520 10 Tenerife:Anaga,CasaCarlos,rockcrevicesinlaurelforestalongtheroadnearPicodelIngleshill 28(cid:176)31¢50¢¢N16(cid:176)15¢30¢¢W 940 11 Tenerife:Anaga,LomodeLasBodegasvillage,laurelforestnearChinobrehill 28(cid:176)33¢20¢¢N16(cid:176)10¢50¢¢W 770 12 Tenerife:Anaga,Chamorgavillage,rockcrevicesinBarrancodeRoqueBermejoandlaurelforest 28(cid:176)34¢N16(cid:176)09¢W 0–600 fragmentsnorth-eastofthevillage,nearMontan˜aTafadahill 13 Tenerife:Anaga,Tagananavillage,rockcrevicesinRoquedeEnmedio 28(cid:176)34¢00¢¢N16(cid:176)12¢40¢¢W 330 14 Tenerife:ValledeGu¨´ımar,succulentcommunity(cardonal)northofPuertodeGu¨´ımar 28(cid:176)18¢00¢¢N16(cid:176)22¢20¢¢W 30 15 Tenerife:Gu¨´ımar,Pa´jaravillage,rockcrevicesinLaderadeGu¨´ımar 28(cid:176)17¢30¢¢N16(cid:176)25¢30¢¢W 840 16 Tenerife:Teno,Mascavillage,rockcrevicesinBarrancodeMasca 28(cid:176)17¢30¢¢N16(cid:176)51¢W 0–600 17 Tenerife:Teno,LasPortelasvillage,rockcrevicesalongtheroadnearLaTabaiba 28(cid:176)19¢30¢¢N16(cid:176)51¢10¢¢W ~650 18 Tenerife:Teno,rockcrevicesinRoqueElFraile 28(cid:176)21¢40¢¢N16(cid:176)53¢40¢¢W 220 19 Tenerife:Teno,succulentcommunity(cardonal)nearPuntadeTeno 28(cid:176)20¢40¢¢N16(cid:176)55¢00¢¢W 40 20 Tenerife:Vilaflor,Pinuscanariensisforestalongtheroadapprox.5kmnorthofthetown 28(cid:176)10¢40¢¢N16(cid:176)38¢40¢¢W 1880 21 Tenerife:Fronto´ndeSanMiguel,succulentcommunity(tabaibal)invalleynearthevillage 28(cid:176)06¢40¢¢N16(cid:176)36¢50¢¢W 730 22 Tenerife:Adeje,rockcrevicesinBarrancodelInfierno 28(cid:176)08¢10¢¢N16(cid:176)42¢30¢¢W 490 23 LaPalma:CalderadeTaburiente,rockcrevicesnearMiradordelosAndenes 28(cid:176)45¢40¢¢N17(cid:176)52¢00¢¢W 2330 24 LaPalma:forestalongtheroadapprox.1kmnorth-westofTagojahill(north-westofSantaCruz 28(cid:176)43¢20¢¢N17(cid:176)47¢10¢¢W 1110 delaPalmacity) 25 LaPalma:CalderadeTaburiente,sandyareasapprox.1·5kmnorth-north-westoftheCentro 28(cid:176)40¢00¢¢N17(cid:176)51¢20¢¢W 950 deVisitantes 26 LaPalma:CalderadeTaburiente,sandyareasalongtheroadapprox.0·5kmsouth-eastoftheMirador 28(cid:176)41¢40¢¢N17(cid:176)51¢10¢¢W 1210 delaCumbrecita 27 LaPalma:Jedeyvillage,sandyareasalongtheroadSSEofthevillage 28(cid:176)34¢50¢¢N17(cid:176)52¢40¢¢W 700 28 LaPalma:CalderadeTaburiente,leg.Hanneken(Bot.GardenBerlin) – – 29 GranCanaria:Ayacata,basalt,leg.Royl(Bot.GardenBerlin) – 1330 30 GranCanaria:Moya,BarrancodelLaurel,leg.Royl(Bot.GardenBerlin) – 600 31 GranCanaria:MontanadeArucas,north-coast,leg.Royl(Bot.GardenBerlin) – 400 32 GranCanaria:Maspalomas,silicate,leg.Royl(Bot.GardenBerlin) – – 33 Fuerteventura(Bot.GardenBerlin,orig.seedsfromBot.GardenErlangen) – – 34 Lanzarote:Famara,basalt,leg.Royl(Bot.GardenBerlin) – 300 polyploid species, at least amongst the endemic elements, phylogeneticmarkersinevolutionarystudies(Leitchetal., would remainstrikingly low. 1998).CorrelationsbetweennuclearDNAamountandplant The extensive karyological literature contrasts with the phenology (Grime and Mowforth, 1982), life history almost complete lack of information about nuclear DNA (Bennett, 1972) or sensitivity to frost (MacGillivray and amounts of Macaronesian plants. Hitherto, only 12 esti- Grime, 1995) indicate the utilization of C-values as mates of C-value (the DNA amount in the unreplicated ecological indicators. Although such information was haploidnucleusirrespectiveoftheploidylevelofthetaxon) based on 3500+ estimates of angiosperm C-values, further ranging from 0·54 pg in Aeonium haworthii to 8·63 pg in targeted work is essential for better representation of Ranunculus cortusifolius have been completed (Cerbah taxonomic groups, geographic regions and plant life forms etal.,1999;BennettandLeitch,2001;Hansonetal.,2001; (Bennett et al., 2000). The principal goal of current work Ellul et al., 2002). Nuclear DNA amount is undoubtedly a was to improve our knowledge of nuclear DNA amount keycharacter,withmanyusesinvariousbiologicalfields.It from a geographic point of view. Macaronesia was chosen has been employed as an effective tool for distinguishing as an appropriate region because of the high level of taxa in several groups of vascular plants, e.g. in Petunia endemismthatenabledthecomparativestudyofpatternsof (Mishiba et al., 2000) and Helleborus (Zonneveld, 2001). nuclear DNA amount variation in a phytogeographically Moreover,ananalysisofgenomesizecanevenrevealnew distinct area. Moreover, a conspicuous concentration of taxathathavesofarbeenneglected(GreilhuberandSpeta, plantbiotaatriskistobefoundthere;ithasbeenestimated 1985). There is increasing demand for C-values as a that 41 % of Canarian endemic flora is endangered Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms 155 (I.U.C.N., 1983). Therefore, there is an urgent need for =1·11pg),LycopersicumesculentumMill.‘Stupnicke´poln´ı various biological data applicable to conservation biology tycˇkove´ rane´’ (2C = 1·96 pg), Glycine max (L.) Merrill (Bennett et al.,2000). ‘Polanka’(2C=2·5pg),ZeamaysL.‘CE-777’(2C=5·43pg) andPisumsativumL.‘Ctirad’(2C=9·09pg)(Dolez˘eletal., 1992, 1994; Lysa´k and Dolez˘el, 1998). Selection of a MATERIALS AND METHODS suitable standard followed these criteria: (1) the smallest ratio between the 2C-values of an analysed plant and the Plant material internal standard to minimize the potential non-linearity of SeedsofmostspecieswerecollectedontheCanaryIslands flow-cytometer measurements; (2) at least 12 % difference during 2000–2001 (Table 1). The Botanical Garden in in2C-valuesoftheinternalstandardandsampletoexclude Berlinprovidedseedsofanadditionaleightspecies,mostof bias due to very close or overlapping peaks; and (3) the whichwerealsooriginallysampledinthefield.Seedswere sameinternalstandardwasusedforallspeciesbelongingto germinated on wet filter papers in Petri dishes, and plants onegenus.Thecrudesuspensionwasfilteredthrougha42- werecultivatedunderthesameconditionsinaglasshouseat mm nylon filter and centrifuged at 150 g for 5 min. The the Experimental Garden of the Institute of Botany in pellet was resuspended in 100 ml fresh Otto I buffer and Pru˚honice,Prague(50(cid:176)00¢N,14(cid:176)30¢E).Vouchersarekeptin samples were incubated for 30 min at room temperature. theprivateherbariumofthefirstauthor.Thegreatmajority Subsequently, 1 ml of staining solution Otto II (0·4 M ofspeciesiscurrentlybeinggrownattheBotanicalGarden Na HPO .12H O)supplementedwithpropidiumiodideand 2 4 2 of the Charles University,Prague. RNAse(bothat50mgml–1)wasaddedand,afterincubation In total, 104 Macaronesian angiosperms with various for 30–45 min at room temperature, fluorescence intensity distribution patterns were analysed; seven of these were of isolated nuclei was measured using a Partec PA II flow endemictoMacaronesia,56endemictotheCanaryIslands, cytometer (Partec GmbH, Germany) equipped with an 32 endemic to Tenerife, six endemic to La Palma, and the argon ion laser (488 nm). The flow rate did not exceed 50 endemics of Lanzarote, Fuerteventura and Gran Canaria fluorescenteventspersecondinahugemajorityofspecies, were represented by one species. Seven genera (Allago- andthefluorescenceofatleast5000particleswasrecorded. pappus, Dicheranthus, Gesnouinia, Lugoa, Plocama, Two histograms for each sample were recorded and only Tinguarra and Todaroa) were endemic to the Canary when both peaks were symmetrical and of approximately Islands, and Argyranthemum, Isoplexis, Pericallis and equal height were analyses taken into account when Schizogyne are the Macaronesian genera-endemics. The calculating the C-value of an analysed plant. When plants were classified into 20 families and 14 orders converting picogram values to base pairs, 980 megabase according to current phylogenetic views (Stevens, 2002), pairs(Mbp)wereassumedtobeequivalentto1picogramof and all but three (Asparagus umbellatus, Dactylis smithii, DNA (Bennett et al., 2000). Dracunculus canariensis) belong to the Eudicots. The vast majority of species was perennial; Senecio teneriffae and Chromosome counts Volutaria canariensis being the only two exceptions. Chamaephytes clearly prevailed from a life-form point Observations were made on root tip cells of germinated ofview [theterminologyoflife-formsfollowsthecategor- seedlings. Samples were pre-treated with a saturated ies adopted in the World Checklist and Bibliography solution of p-dichlorbenzene or 1-monobromnaphtalene Series database at Royal Botanic Gardens, Kew, UK for 3 h at room temperature, fixed in 3 : 1 ethanol : acetic (www.rbgkew.org.uk/wcb/index.html)]. Considering the acidovernightat4(cid:176)Candkeptin70%ethanolatthesame ecologicalprofileofthepresentspeciesset,representatives temperature. After maceration in 1 : 1 hydrochloric of five major zones covering an altitudinal range of more acid : ethanol for 60 s, the root tip cuttings were squashed than 2300m were included. in lacto-propionic orceine. As a rule, at least three mitoses per plant andtwo individuals per species were counted. Flow cytometry Statistical analyses To reveal potential intrapopulation variability in nuclear DNA amount, three to six plants from each species were DNA amount data were analysed with the SAS 8.1 measured simultaneously in the first step. As one narrow statistical package using ANOVA, CORR, GLM and peak with unimodal distribution was always obtained, one UNIVARIATE procedures (SAS Institute, Cary, NC, individual per species was randomly selected and analysed USA).DifferencesinDNAcontentbetweenspecieswithin further. Each plant was measured at least three times on a genus were tested by ANOVA, and Tukey’s procedure differentdaysbythesameoperator,andadifferentleafwas was applied to compare mean values. Differences in C- used for each analysis. valuesbetweenmajorangiospermlineagesofMacaronesian Nuclearsampleswerepreparedfromayoungfreshintact plants were analysed using the GLM procedure because of leaf. Approximately 50mm2ofleaftissuewasco-chopped anunbalanceddesign.DifferencesinC-valuesandgenome with an appropriate volume of internal standard in 1 ml of sizes between Macaronesian vs. non-Macaronesian repre- ice-cold Otto I Buffer (0·1 M citric acid, 0·5 % Tween 20) sentatives were tested using the signed rank test on paired usinganewrazorblade(Otto,1990).Thefollowinginternal datatoavoidproblemsofdatanon-linearity.TheSpearman- standards were employed: Raphanus sativus L. ‘Saxa’ (2C rank correlation coefficient was employed in testing 156 Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms (2n),sand ocality 147 20 10 17 12 21262121612 11212 14 3 19161516188121 2336121622124 rn L hromosomenumbedistributionpatter CVofsampleDistribution(%)pattern§ 3·71–4·88C2·28–2·67T 1·89–3·02T 2·26–3·18T 1·84–2·60T 1·84–2·82C 1·86–2·39T1·54–2·64P1·82–2·39T2·02–3·29C2·54–3·67C2·50–2·97C 1·79–2·83C2·05–3·10T4·06–4·53C 3·49–4·74C 1·88–3·08C 3·94–4·41C2·23–2·96C4·11–4·49T3·57–3·85T2·76–3·73T2·88–4·53C2·08–3·37C5·72–8·57T 5·64–7·67P5·43–7·68T4·99–6·56T6·07–7·79C3·60–4·18C2·89–3·65C2·10–3·27C3·49–4·44T Mbp),cspecies CVofinternalstandard(%) 2·60–3·572·21–2·66 1·67–2·92 1·99–2·81 1·54–2·48 1·83–2·65 1·74–2·541·27–2·231·65–2·252·01–2·762·52–3·561·84–2·24 1·92–2·861·61–2·942·79–3·56 3·38–4·08 2·01–2·99 2·82–3·382·38–3·212·90–3·432·55–3·702·49–3·392·70–3·761·95–2·522·56–3·52 2·41–3·323·23–4·342·63–2·992·68–3·452·84–3·652·85–3·281·84–2·853·27–4·12 1pg=980thesample, LifeInternalorm**standard‡ CGCP CP CP CP CP CPCPH/CPCPClNPLCL ClGPCZSHR SHR CL NPGClNPGCGCGCGCGHZCR CRCRCRCRCLCGGPHG asepairs(andardandmilies Genomesize(2CDNAamount/ploidylevel)(pg)f† 0·886·84 6·89 7·07 7·14 7·21 7·096·696·975·711·280·40 1·433·560·44 0·43 <0·71 0·350·350·310·320·310·332·180·19 0·220·230·220·220·751·121·981·55 ndmegabnternalstom20fa ylevel(x)† 22 2 2 2 2 222224 422 2 >2 66666622 22222242 air d msofesf Ploi NAcontentinpicogracoefficientsofvariance04Macaronesianspeci 1CDNA1CDNAamountamount(Mbp)2n(pg)¶ 10·888622036·84A670318* 56·89A675218* 67·07B692918 57·14B699718 47·21C706618 67·09B69481886·69D655618*56·97E683118*65·7155961831·2812542040·7977432 22·8527933463·56348920*10·44A43122 10·43B42122 20·71696~30* 11·06A10393011·06A103930!*10·93A9113010·95B931~30!*10·92A902~30*20·99C9703022·1821361410·19A18614* 10·22BC21614!*10·23B22514!*10·22BC2161410·22C21614*030·757351611·1210981493·9538712811·55151918* nuclearDdardused,calityfor1 2CDNAamount6s.e.(pg) 1·7560·013·6960·0 13·7760·0 14·1460·0 14·2860·0 14·4160·0 14·1860·013·3960·013·9460·011·4360·02·5660·01·5860·00 5·7160·07·1160·00·8960·0 0·8660·0 1·4360·0 2·1260·02·1360·01·8660·01·9060·01·8560·01·9860·04·3560·00·3860·0 0·4560·00·4660·00·4560·00·4460·01·4960·02·2460·07·9060·03·1060·0 T2.2CnuclearDNAcontentwithstandarderror,1CABLEploidylevel,unreplicatedgenomesize,life-form,internalstanoriginallo TaxonFamily Allagopappusdichotomus(L.fil.)Cass.AsteraceaeArgyranthemumadauctum(Link)AsteraceaeHumphr.ssp.adauctumArgyranthemumadauctum(Link)AsteraceaeHumphr.ssp.dugourii(Bolle)Humphr.Argyranthemumbroussonetii(Pers.)AsteraceaeHumphr.ssp.broussonetiiArgyranthemumfoeniculaceum(Willd.)AsteraceaeWebbexSch.Bip.Argyranthemumfrutescens(L.)Sch.Bip.Asteraceaessp.frutescensArgyranthemumgracileSch.Bip.AsteraceaeArgyranthemumhaouarytheumHumphr.&Bramw.AsteraceaeArgyranthemumteneriffaeHumphr.AsteraceaeArtemisiathusculaCav.AsteraceaeAsparagusumbellatusLinkAsparagaceaeBupleurumsalicifoliumR.Br.inBuchApiaceaessp.aciphyllum(WebbexParl.)Sund.&Kunk.Canarinacanariensis(L.)VatkeCampanulaceaeCarlinaxeranthemoidesL.fil.AsteraceaeCeropegiadichotomaHaw.Apocynaceae(incl.Asclepiadaceae)CeropegiafuscaBolleApocynaceae(incl.Asclepiadaceae)Cheirolophusteydis(Chr.Sm.inBuch)Asteraceae´G.LopezConvolvulusfloridusL.fil.ConvolvulaceaeConvolvulusperraudieriCoss.ConvolvulaceaeCrambearboreaWebbexChristvar.indivisaSvent.BrassicaceaeCrambelaevigataDC.exChristBrassicaceaeCrambescaberrimaWebbexBramw.Brassicaceae´CrambestrigosaL.¢Her.BrassicaceaeDactylissmithiiLinkssp.smithiiPoaceaeDescurainiabourgeauana(Fourn.)BrassicaceaeO.E.SchulzDescurainiagilvaSvent.BrassicaceaeDescurainiagonzalesiiSvent.BrassicaceaeDescurainialemsiiBramw.BrassicaceaeDescurainiamillefolia(Jacq.)Webb&Berth.BrassicaceaeDicheranthusplocamoidesWebbCaryophyllaceaeDorycniumeriophtalmumWebb&Berth.FabaceaeDracunculuscanariensisKunthAraceaeErigeroncalderaeHans.Asteraceae Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms 157 y calit 29227113081811231231 1212 26 126101213258 51233112117916243114 14310 3423198 o L n Distributiopattern§ MCCCMMTCPTM TC C TTMTTPC TCFCCCCTTPGC CCC LCCC 79718455162 62 6 4207157 404713425617 916 4096 CVofsample(%) 3·55–4·83·41–4·93·81–4·85·54–6·93·24–4·03·85–4·82·99–3·53·85–4·03·23–4·03·81–6·75·08–5·4 1·78–2·52·01–3·0 2·78–4·1 3·60–4·22·21–3·42·09–2·92·12–2·85·18–6·15·11–6·34·32–5·7 4·48–5·84·43–5·92·98–3·53·67–4·82·27–2·94·89–7·14·12–4·93·97–4·53·00–4·83·93–5·34·53–5·54·72–5·5 2·76–3·42·45–3·53·73–4·9 3·86–4·93·32–5·02·38–3·32·94–3·5 CVofinternalstandard(%) 2·11–3·012·01–3·172·56–3·032·70–3·452·62–3·382·98–3·482·31–3·162·43–3·012·29–3·202·12–3·542·28–3·08 1·97–2·871·59–2·27 2·30–3·09 2·28–2·892·25–3·022·03–2·822·12–2·953·65–4·593·29–3·993·19–4·12 3·20–4·083·20–4·212·52–3·342·65–3·492·45–2·872·82–4·412·40–3·252·24–3·252·32–2·672·46–3·002·42–3·132·51–2·94 2·49–3·281·87–3·132·18–2·85 2·29–2·992·26–2·992·53–2·912·76–3·33 nternalandard‡ LLRLRRLGGLL PP L LLLPRRR RRGRLLLLLLLL GZL LLGR Ist Lifeorm** CCCNPNPCHCHCC HH C HHHH/CCCC CCCHCCHHCHHClNP CHC CCNPH/C Genomesize(2CDNAamount/ploidylevel)f(pg)† 0·290·270·320·510·250·201·140·25(1·03)0·510·51 5·452·62 0·56 0·610·620·625·97?(<0·38)(<0·36) <0·37<0·370·860·270·670·180·230·240·190·200·190·50 1·092·300·48 0·500·560·70(0·47) x)† ( level 44224428(2)22 22 2 2242?>2)>2) >2>22246666662 222 224(2) y (( d oi Pl * * **** * * * ed 2n 282822204040656?2222 1412 22 14142818??? 303014163260606060606022 182012 121244? u Contin 1CDNAamount(Mbp) 56852931450050040211179801009500500 53412568 549 59860812155851431372353 3633638432651313539666715559588559490 10682254470 4905491362461 2BLE 1CDNAamount(pg)¶ 0·58A0·54B0·320·510·51A0·41B1·141·001·030·51A0·51A 5·45A2·62B 0·56 0·61A0·62B1·24C5·970·44A0·38B0·36C 0·37CD0·37BD0·860·271·340·55A0·68B0·73C0·57D0·60E0·57D0·50 1·092·300·48A 0·50B0·56C1·390·47A A 3 4 T 12111121111 61 1 0121111 111121120111 351 1111 DNAunt6(pg) 60·060·060·060·060·060·060·060·060·060·060·0 60·060·0 60·0 60·060·060·060·060·060·060·0 60·060·060·060·060·060·060·060·060·060·060·060·0 60·060·060·0 60·060·060·060·0 2Camos.e. 1·161·080·641·021·010·812·281·992·051·011·02 0·905·23 1·13 1·221·242·481·940·880·760·72 0·740·751·720·552·681·091·361·461·151·201·141·00 2·194·600·97 1·001·112·790·93 1 1 e) Family BrassicaceaeBrassicaceaeUrticaceaeUrticaceaeClusiaceaeClusiaceaeAsteraceaePlantaginaceaeAsteraceaeLamiaceaeLamiaceae PlumbaginaceaePlumbaginaceae Brassicaceae FabaceaeFabaceaeFabaceaeAsteraceaeLamiaceaeLamiaceaeLamiaceae LamiaceaeLamiaceaeAsteraceaeLamiaceaeCaryophyllaceaeAsteraceaeAsteraceaeAsteraceaeAsteraceaeAsteraceaeAsteraceaeApocynaceaecl.AsclepiadaceaAsteraceaeApiaceaePlantaginaceae PlantaginaceaePlantaginaceaeRubiaceaeCaryophyllaceae n (i k c Taxon Erysimumbicolor(Hornem.)DC.Erysimumscoparium(Brouss.exWilld.)Wettst.ForsskaoleaangustifoliaRetz.Gesnouiniaarborea(L.fil.)Gaud.HypericumcanarienseL.HypericumgrandifoliumChoisyHypochoerisoligocephala(Svent.&Bramw.)LaIsoplexiscanariensis(L.)Loud.LactucapalmensisBolleLavandulabuchiiWebbvar.buchiiLavandulamultifidaL.ssp.canariensis(Mill.)Pit.&Pr.Limoniummacrophyllum(Brouss.)O.KuntzeLimoniumpectinatum(Ait.)O.Kuntzevar.pectinatumLobulariacanariensis(Webb)Borgenssp.palmensis(Christ)BorgenLotusdumetorumWebbexMurr.Lotuscampylocladus(Webb&Berth.)LotusglaucusAit.Lugoarevoluta(Chr.Sm.inBuch)DC.´MicromeriaglomerataPerezMicromeriaherpyllomorphaWebb&Berth.MicromeriahyssopifoliaWebb&Berth.var.hyssopifoliaMicromerialachnophyllaWebb&Berth.MicromeriavariaBenthamssp.variaNaupliussericeus(L.fil.)Cass.NepetateydeaWebb.&Berth.Paronychiacanariensis(L.fil.)Juss.Pericallisappendiculata(L.fil.)B.Nord.´Pericalliscruenta(L.¢Her.)BollePericallisechinata(L.fil.)B.Nord.´Pericallislanata(L.¢Her.)B.Nord.Pericallispapyracea(DC.)B.Nord.Pericalliswebbii(Sch.Bip.)BollePeriplocalaevigataAit. PhagnalonumbelliformeDC.PimpinellacumbraeLinkPlantagoarborescensPoir.ssp.arborescensvar.arborescensPlantagofamaraeSvent.PlantagowebbiiBarn.PlocamapendulaAit.Polycarpaeaaristata(Ait.)DC. 158 Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms ocality 1028515121271621023712321226123 6125238912126 2725114 ‘Saxa’ L s n u CVofinternalCVofstandardsampleDistributio(%)(%)pattern§ 2·77–3·192·68–3·03C2·55–3·683·03–5·11C2·78–3·202·67–3·38C2·34–3·322·44–2·68C2·06–3·081·75–2·66C2·92–3·842·17–3·94C2·49–3·053·45–4·69M3·07–4·023·55–5·55T3·10–4·024·10–4·62C2·80–3·422·91–3·69T2·50–3·032·80–3·23C1·64–2·372·83–3·46C2·86–3·252·56–2·93C2·54–3·002·98–3·69C2·52–3·233·09–3·74M3·25–4·072·45–3·03C2·98–4·782·80–4·40T2·59–3·732·29–3·88T 1·77–2·842·04–3·44C1·75–2·372·04–3·30T1·86–2·802·11–3·40T2·15–3·122·73–3·84P2·90–3·652·59–3·14C2·80–3·092·57–3·11C2·24–3·042·33–3·06T3·32–4·264·21–4·63C2·88–3·812·54–3·89C 2·72–3·632·08–2·71C2·50–3·081·86–2·46C2·55–3·072·42–3·11T2·81–3·132·62–3·62C 9·09pg);R,Raphanussativ micryptophyte;T,therophyte. LifeInternalorm**standard‡ HRHLH/CRCGHGCPHLCRHGHGCGTPHGCGCGCGCGCG HPHPHPHPHLCLHLNPGHL HLHLHLTL ‘Ctirad’(2C= H,succulenthe Genomesize(2CDNAamount/ploidylevel)(x)† f(pg)† 0·44?0·451·781·893·120·690·430·260·260·980·881·891·021·020·891·010·91 2·552·592·582·611·431·441·310·751·22 1·441·331·370·40 P,Pisumsativum ophanerophyte;S T2ContinuedABLE 1CDNA2CDNA1CDNAamountPloidylevelamount6amount(Mbp)2nTaxonFamilys.e.(pg)(pg)¶ PolycarpaealatifoliaWilld.Caryophyllaceae0·8960·0030·44B431182PolycarpaeasmithiiLinkCaryophyllaceae1·0960·010·54C529??PolycarpaeatenuisWebbexChristCaryophyllaceae0·9160·0030·45D44118!*2Pterocephalusdumetorum(Brouss.exWilld.)Coult.Dipsacaceae3·5660·011·78174418*2Reichardialigulata(Vent.)Kunk.&Sund.Asteraceae3·7860·011·89185216*2RumexlunariaL.Polygonaceae12·4760·096·23A6105364RumexmaderensisLowePolygonaceae1·3860·010·69B676202SalviabroussonetiiBenthamLamiaceae0·8660·010·43421222ScrophulariaglabrataAit.Scrophulariaceae2·0660·011·03A1009568ScrophulariasmithiiHornem.ssp.smithiiScrophulariaceae2·0860·011·04B1019588Seneciopalmensis(Chr.Sm.inBuch)LinkAsteraceae1·9660·010·98A96020*2SenecioteneriffaeSchultzBip.Asteraceae5·2660·022·63B2577606SeseliwebbiiCoss.Apiaceae3·7960·021·891852222SchizogyneglaberrimaDC.Asteraceae2·0560·011·02A1000182Schizogynesericea(L.fil.)DC.Asteraceae2·0560·011·02A1000182SideritiscanariensisL.Lamiaceae3·5660·011·78A1744444SideritismacrostachysPoir.Lamiaceae4·0360·032·01B1970~36*4´´SideritisoroteneriffaeNegrın&PerezLamiaceae3·6560·011·82C1784444var.oroteneriffaeSileneberthelotianaWebbCaryophyllaceae5·1160·042·55A249924!*2SilenelagunensisChr.Sm.exChristCaryophyllaceae5·1960·012·59BC253824*2SilenenocteolensWebb&Berth.Caryophyllaceae5·1660·012·58C252824*2Silenepogonocalyx(Svent.)Bramw.Caryophyllaceae5·2360·012·61B255824!*2SonchusacaulisDum.-Cours.Asteraceae2·8660·031·43A1401182SonchuscongestusWilld.Asteraceae2·8760·021·44B1411182SonchusradicatusAit.Asteraceae2·6260·021·31C128418*2Telinecanariensis(L.)Webb.&Berth.Fabaceae3·0060·031·50147048!*4Tinguarramontana(WebbexChrist)Apiaceae2·4560·021·221196222A.Hans.&Kunk.TodaroaaureaParl.Apiaceae2·8760·011·441411222Tolpislaciniata(Sch.Bip.exWebb&Berth.)WebbAsteraceae2·6660·031·33A1303182TolpiswebbiiSch.Bip.exWebb&Berth.Asteraceae2·7560·011·37B134318*2VolutariacanariensisWagenitzAsteraceae1·6060·010·80784324 *Chromosomenumbersdeterminedinthepresentwork;!,newspeciesrecord.Allothercountsweretakenfromliterature.Anassumedploidylevelandgenomesizegiveninparentheses.† ´´ˇ´´G,Glycinemax‘Polanka’(2C=2·5pg);L,Lycopersicumesculentum‘Stupnickepolnıtyckoverane’(2C=1·96pg);‡ (2C=1·11pg);Z,Zeamays‘CE-777’(2C=5·43pg).C,CanaryIslands;F,Fuerteventura;G,GranCanaria;L,Lanzarote;M,Macaronesia;P,LaPalma;T,Tenerife.§ Lettersindicategroupoftaxawithinthesamegenusthatarenotsignificantlydifferentata=0·05.¶ **C,Chamaephyte;ClG,climbinggeophyte;ClNP,climbingnanophanerophyte;G,geophyte;H,hemicryptophyte;NP,nan Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms 159 s m r spe M57) 5 55 3 anangio steridsII non-(n=3 3·90·41·83·05·124·82·9 onesi Eua M=42) 2·610·550·901·43·387·210·57 r n a ( c a ndnon-M eridsI non-M(n=280) 2·210·330·91·42·8415·30·85 a st here) Eua M=24) 0·780·270·430·511·052·010·37 n d ( e at M;estim dsII non-M(n=152) 1·380·050·551·121·768·70·58 ( osi nesian) Eur Mn=12) 0·550·190·220·550·920·990·22 o1 ( r0 a0 geneticlineagesofMacmBennettandLeitch,2 EurosidsI MMnon-M07)(n=9)(n=721) 20·762·350·320·120·510·650·611·1581·122·3531·527·480·510·55 phyloM;fro udicots non-(n=2 6·10·20·72·19·679·30·4 formajor(non- Basale M(n=14) 2·090·440·581·952·616·23– s set 7) M8 5 4 5 ue n-14 0·50·12·55·83·97·40·9 C-val nocots no(n= 1 112 1 o M of 3) 783875 cs Mn= 2·41·21·72·13·03·9– sti ( riptivestati cots non-M(n=1929) 3·270·050·851·654·1579·330·7 desc Eudi 1) s. elected M(n=10 1·690·190·510·991·787·210·51 picogram S n T3.ABLE Phylogeneticlineage MeanMinimum25%quartileMedian75%quartileMaximumMode Allvaluesi 160 Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms FIG.1. 1C DNA amount distribution (pg means) of 104 Macaronesian speciesinvestigated. whether infrageneric DNA amount variation (mean values for individual species) correlated with the altitude and environmental characteristics (climatic data were taken from Fernandopulle´,1976). RESULTS Chromosome counts Table2givesachromosomecountoranestimatednumber for 35 Macaronesian angiosperms; eight of these represent newspeciesrecords.Specialattentionwaspaidtotaxafrom FIG.2.Flow-cytometrichistogramsshowingthedifferencein2Cnuclear the supracanarian zone (generally above 2000 m altitude). DNA content for species with the smallest DNA amounts, Descurainia Thechromosomecountsfor63othertaxaweretakenfrom bourgeauana and D. lemsii (A), and species with the highest DNA the literature, and the number of chromosomes for six amounts,ArgyranthemumhaouarytheumandA.frutescens(B).Nucleiof both species in the genus were isolated and stained with propidium species isapparentlyunknown. iodide simultaneously. Small G2 peaks represent the nuclei of An analysis of ploidy level revealed the following: Descurainiawithdoubled(4C)nuclearDNAcontent. diploids, 63 taxa; tetraploids, 16 taxa; hexaploids, 13 taxa; and octoploids, three taxa. The proportion of polyploid plantswastherefore33·7%.Despiteusuallybeingregarded as diploids, Crambe species were included amongst the hexaploids on the basis of comparative genome mapping results (Leitch and Bennett, 1997). Three taxa with a basic chromosomenumberhigherthan13wereexcludedfromthe comparisonasitwasuncertainwhethertheywerediploidor polyploid(Grant,1971),andtheomissionalsoappliedtosix species which lacked an exact chromosome count. Nuclear DNA amounts Table 2 shows 2C DNA content (pg) andstandard error, 1C DNA content expressed in picograms and megabase pairs, number of chromosomes and ploidy level, genome size (calculated as 2C DNA value/ploidy level), life-form, internalstandardused,coefficientsofvariance(CV)ofboth theinternalstandardandplantanalysed,speciesdistribution FIG.3. Flow-cytometric histogram obtained after simultaneous analysis of propidium iodide-stained nuclei of Lycopersicum esculentum (L.e.; pattern and original locality for 104 taxa from 20 families. internalstandard)andRumexmaderensis.Occurrenceofnucleiwith2C, Prime C-values represent 98 % of the estimates in the 4Cand8CDNAamountsindicatesendoreduplication. Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms 161 present species set; only Hypochoeris oligocephala and differed significantly. Somatic tissues of five taxa (Cero- Plocamapendulahave been analysed previously. pegia dichotoma, C. fusca, Dicheranthus plocamoides, Flow-cytometric measurements yielded histograms with Polycarpaea smithii and Rumex maderensis) underwent CV values ranging from 1·27 to4·78 %(mean 2·85%) for endoreduplication,andthreepeakscorrespondingtonuclei internal standards, and 1·54 to 8·57 % (mean 3·57 %) for with 2C, 4C and 8C DNA content were observed. Flow analysedplants,dependingonthetaxon,DNAamountand histogramsofparticularinterestareshowninFigs2and3. thequalityofsamplepreparation.ACVvaluenotexceeding the arbitrary level of 3 % was achieved in 69 and 47 % of Correlation of C-value with environmental conditions internal standard and analysed plant acquisitions, respect- ively. The standard error of the mean described the Correlations between C-value and altitude, average difference in 2C-values between individual runs of the annual temperature, humidity and rainfall were calculated samespeciescausedbycytometerinstability,non-identical in genera where at least three species from Tenerife were sample preparation, etc. Values smaller than 1 % of the available.ThenuclearDNAamountinArgyranthemumwas plant 2C DNA amount were attained in 82 % of taxa; the negativelycorrelatedwithaltitude(r=–0·806,P<0·0001, limit of 2 % was never been exceeded. Therefore, the data n = 8) and annual rainfall (r = –0·783, P < 0·0001, n = 8), on nuclear DNA content can be regarded as reliable. and positively correlated with mean annual temperature 1C nuclear DNA contents obtained in the present study (r = 0·704, P < 0·0001, n = 8). The number of species in rangedfrom0·19pginDescurainiabourgeauanato7·21pg other genera was too small to permit meaningful compari- in Argyranthemum frutescens, representing a difference of sons so the results were treated only as tendencies. The approx.38-fold(Table2;Fig.1).However,themajorityof DNA amount in Silene and Micromeria followed the same species(71%)fellintothelowerpartoftherange,withC- trends as in Argyranthemum (with the exception of a non- values between 0·2 and 1·6 pg. Genome sizes had a range significantcorrelationwithaltitude).Acompletelydifferent very similar to that of 1C DNA content, with hexaploid pattern of variation was observed in Crambe and Sonchus Pericallis appendiculata having the smallest genome where nuclear DNA content increased with higher mean (0·18 pg). The highest genome size was found in diploid altitude and rainfall, and decreased with average annual Argyranthemumfrutescens.Comparisonofmeanvaluesfor temperature.TheDNAamountinPericalliswasnegatively Macaronesian vs. non-Macaronesian (taken from Bennett correlated with relative humidity (r = –0·616, P = 0·0005, and Leitch, 2001) representatives of individual genera and n=4).However,thisrelationshipmaybebiasedtoacertain families affirmed the tendency towards small C-values and extentasthegenuscomprisedspeciesoftwogrowth-forms genomesizesinMacaronesiantaxa(datanotshown).Atthe (chamaephytes P. appendiculata and P. lanata possessed rankoffamily,bothC-valuesandgenomesizesofendemic significantly smaller genomes than hemicryptophytes plants were significantly smaller (P < 0·01, n = 20) than P. echinata and P. cruenta). thoseofnon-Macaronesiantaxa,andthecomparisonsatthe generic level brought identical results (P = 0·017, n = 22). Artemisia,ReichardiaandRumexwerethemostprominent DISCUSSION exceptions, with Macaronesian representatives having larger C-values. Although species from 56 genera were Nuclear DNA amounts for 104 Macaronesian angiosperms includedinthestudy,only22generawereemployedinthe from56generaand20familieswereestimatedinthisstudy. foregoing comparison as no previous C-value data were Speciesfromthisphytogeographicregionhavebeenunder- available for the remaining 34 genera. Small nuclear DNA represented in previous investigations of nuclear DNA amounts in Macaronesian native flora were also confirmed amount,andonly12estimateswereavailable(Cerbahetal., in data sets taking the phylogenetic position of the species 1999; Bennettand Leitch, 2001; Hanson et al., 2001; Ellul into account. Selected descriptive statistics for major et al., 2002). The present paper therefore increases know- angiosperm lineages clearly indicate that non-Maca- ledgeofnuclearDNAcontentinMacaronesianangiosperms ronesian plants possessed larger C-values that their byalmostninetimes.Thirty-fourofthe56genera(60·7%) Macaronesiancounterparts(Table3).Macaronesianspecies werepreviouslywithoutC-valuesandthepresentestimates of particular interest with very low DNA amounts include thusrepresentthefirstdataonnuclearDNAcontent.Ahuge Nepeta teydea (1C = 0·27 pg; the smallest C-value among majority (93 %) of taxa analysed was restricted to the EuasteridsIIandeventheAsteridsasawhole),Micromeria Canary Islands. A comparison with recent figures on spp.(1C=0·36–0·44pg;verysmallC-valuesinEuasterids Canarian flora (Francisco-Ortega et al., 2000) indicates II) and Pericallis appendiculata (1C = 0·55 pg; the second thatinformationonC-valueandgenomesizeformorethan smallestC-valueinEuasteridsI).Average1CnuclearDNA one-sixth (approx. 17·9 %) of Canarian endemics was amounts 6 s.d. for main phylogenetic lineages of obtained. It should, however, be emphasized that there are Macaronesian plants were as follows: Eurosids II, significantdifferencesconcerningboththetotalnumberand 0·55 6 0·33 pg; Eurosids I, 0·76 6 0·42 pg; Euasterids I, the proportion of endemic plants given by various authors. 0·7860·52pg;BasalEudicots,2·0961·85pg;Monocots, AlthoughMacaronesialacksanyendemicfamily,morethan 2·4761·36pg;EuasteridsII,2·6162·44pg.Apparently, 30 endemic genera can be found there (Bramwell, 1976; there are some differences in mean C-values (one group Kunkel, 1993). This study encompassed species from 11 with 1C <1 pg, the other with 1C >2 pg); however, only endemic genera, thus representing about one-third of Eurosids II/Euasterids II and Euasterids I/Euasterids II generic coverage. 162 Suda et al.—Nuclear DNA Amounts in Macaronesian Angiosperms Theoverall1C-valuesobtainedherevariedfrom0·19pg speciationprocesses.Chromosomalsurveysonbothoceanic inDescurainia bourgeauanato7·21pginArgyranthemum and more continental islands revealed chromosomal stasis frutescens (about 38-fold difference). Nuclear DNA even though speciation has often been accompanied by amounts for 12 Macaronesian angiosperms published pre- striking morphological divergence (Stuessy and Crawford, viously differed approx. 16-fold, from 0·54 pg in the 1998).Dataobtainedinthepresentstudysupportaworking Tenerife-endemic Aeonium haworthii to 8·63 pg in the hypothesis that small C-values are an evolutionary advan- Macaronesian Ranunculus cortusifolius. By merging both tage under insular selection pressures. However, further lists, we can conclude that C-values of Macaronesian targeted work isessential to test this theory. vascular plants currently differ at least 45-fold. This is a Although several molecular analyses of Macaronesian relatively narrow range compared with the approx. 1000- angiosperms have been published, meaningful comparison fold variation in angiosperms as a whole (Bennett et al., betweenthephylogeneticpositionandnuclearDNAcontent 2000). However, it should be noted that very few is possible only in a few cases. In the genus Sideritis, two Macaronesian monocots have been studied and there is a major clades were identified (Barber et al., 2000): one strong possibility that the inclusion of additional taxa, e.g. comprised S. macrostachys (1C = 2·01 pg) and from Liliaceae s.l., would extend the C-value range. Two S. oroteneriffae (1C = 1·82 pg); the other S. canariensis species(Hypochoerisoligocephala,Plocamapendula)from fromLaPalma(1C=1·78pg).C-valuesratherreflectedthe our collection have been analysed by previous authors sectionalclassification:S.macrostachys(sect.Creticae)had (BennettandLeitch,1995;Cerbahetal.,1999).Bothvalues a substantially larger genome than the two remaining weresimilaranddifferedbyonly3·5%intheformerandby species belonging to sect. Marrubiastrum. Nuclear DNA 4·3%inthelattertaxon,withourestimatesbeingnegligibly content variationthat parallelsthe taxonomic classification smaller. is also known in the genus Pinus, for example (Hall et al., The majority of taxa analysed here possessed small 2000). Six Pericallis species from the present study genomes, with 1C nuclear DNA amounts less than 1·6 pg. occupied four clades on the phylogenetic tree based on They fall into the lowest third of the C-value database ITS sequences (Panero et al., 1999). P. cruenta (Tenerife, comprisingabout3500recordsoffloweringplants(Bennett 1C = 0·68 pg), P. echinata (Tenerife, 1C = 0·73 pg) and and Leitch, 2001). The estimates for Descurainia (0·19– P. papyraceae (La Palma, 1C = 0·6 pg) were grouped 0·23 pg) even approached the minimum known for the together, and P. webbii (Gran Canaria, 1C = 0·57 pg), angiosperms. 1C DNA amount for Nepeta teydea repre- P. lanata (Tenerife, 1C = 0·57 pg) and P. appendiculata sented the smallest value in the Asterids, and Pericallis (Tenerife, 1C = 0·55 pg) were each situated on a different appendiculata had the second smallest C-value in branch (the position of the latter two species with woody Euasterids II (only Leontodon longirostris possessed a stems was closer). Along with higher C-values for smaller1CnuclearDNAamount).Comparisonsofaverage hemicryptophytes, the present data also indicate that there C-values and genome sizes for Macaronesian vs. non- could be an inter-island differentiation in 2C-values Macaronesian representatives of individual genera and between species of the same life form. Similar traces of families confirmed the significantly smaller estimates for inter-islanddiversificationcanalsobefoundinothergenera theformergroup.ObviousdifferencesinC-valueswerealso (e.g. Argyranthemum), and this question merits further found whenmatchingdataformajorphylogeneticlineages study. ofMacaronesianandnon-Macaronesiantaxa(e.g.meanand An increasing number of papers have investigated median for the Macaronesian Eudicots were 1·93 and 1·67 correlations between DNA content and environmental timessmaller, respectively). conditions. Altitude, average annual temperature, humidity Leitch et al. (1998) analysed angiosperm C-values in a and rainfall on Tenerife were included as environmental phylogenetic context and concluded that ancestral taxa variables inthe present study. Positivecorrelation between probably possessed small genomes with 1C <3·5 pg. A nuclear DNA amount and mean annual temperature was considerable proportion (86·5 %) of Macaronesian plants found in Argyranthemum; C-values in this genus were meet this criterion, and more than two-thirds of them had negatively correlatedwithaltitude andannual rainfall. The verysmallgenomes(definedas1C<1·4pg).Thesefindings same trends were also observed in Silene and Micromeria. would support the relictual nature of Macaronesian flora PresentedresultsareinaccordancewiththepatternofDNA (Bramwell,1976).However,recentphylogeneticinvestiga- amount variation in Berberis, where diploids with lower tions of several endemic groups (e.g. Aeonium, DNA content grew in high-elevation habitats with greater Argyranthemum, Bencomia, Echium) revealed the derived rainfall, and species with higher DNA content preferred position of Macaronesian representatives indicating their sites with higher temperatures (Bottini et al., 2000). recentorigin(Emerson,2002).Inmostcases,therehasbeen However, the nuclear DNA content divergence in Crambe only a single colonization of the archipelago (Francisco- andSonchusfollowedacompletelyoppositetrendandtheir Ortegaetal.,1997;Barberetal.,2000;Helfgottetal.,2000) C-valuesincreasedwithaltitudeandrainfallanddecreased followed by a rapid speciation. Two theories may explain with temperature. As concluded by Grime and Mowforth the smaller C-values of Macaronesian taxa in comparison (1982), large genomes in British flora have probably with their non-Macaronesian counterparts: (1) there has evolved under low temperature conditions. In the last been a loss of DNA since the archipelago was colonized; groupofgenera(Descurainia,Polycarpaea),nocorrelation (2) ancestral species possessed small genomes and only with environmental traits was found, as previously noted negligible changes have occurred during subsequent e.g.inthegenusLonchocarpus(PalominoandSousa,2000).
Description: