ebook img

Nuclear Architecture explored by live-cell fluorescence microscopy using laser and ion microbeam ... PDF

248 Pages·2011·21.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nuclear Architecture explored by live-cell fluorescence microscopy using laser and ion microbeam ...

Department Biologie II Anthropologie und Humangenetik Ludwig-Maximilians-Universität München Nuclear architecture explored by live-cell fuorescence microscopy using laser and ion microbeam irradiation Hilmar Strickfaden Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Eingereicht am 1. Juli 2010 Nuclear architecture explored by live-cell fuorescence microscopy using laser and ion microbeam irradiation Dissertation der Fakultät für Biologie Der Ludwig Maximilians Universität München (LMU) vorgelegt von: Dipl. Biol. Hilmar Strickfaden aus Freiburg im Breisgau Gutachter: Prof. Dr. Thomas Cremer Prof. Dr. Peter Becker Tag der mündlichen Prüfung: 20.12.2010 II Das Leben kommt auf alle Fälle aus einer Zelle. Doch manchmal endet’s auch bei Strolchen in einer solchen. Heinz Erhardt (1909–1979) (German Comedian) III IV Table of Contents 1 Summary 1 2 Introduction 5 2.1 The Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Mitosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Prophase .......................................................................................... 9 2.2.2 Prometaphase ................................................................................ 10 2.2.3 Metaphase ...................................................................................... 10 2.2.4 Anaphase .........................................................................................11 2.2.5 Telophase ........................................................................................11 2.2.6 Cytokinesis ......................................................................................11 2.3 Theodor Boveri’s Hypotheses . . . . . . . . . . . . . . . 12 2.4 DNA Repair . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 MDC1 .............................................................................................. 19 2.4.2 53BP1 ............................................................................................. 20 2.4.3 Rad51 .............................................................................................. 20 2.4.4 Rad52 .............................................................................................. 20 2.5 Microscopy – past, present and future . . . . . . . . . . 21 2.5.1 4Pi Microscopy ............................................................................... 23 2.5.2 PALM (Photoactivation Localization Microscopy) ........................ 23 2.5.3 Vertico SMI ..................................................................................... 23 2.5.4 SIM (Structured Illumination) ......................................................... 23 2.5.5 STED (Stimulated Emission Depletion) ......................................... 23 2.6 Live-cell fuorescence microscopy . . . . . . . . . . . . 24 2.6.1 Advantages and disadvantages of live-cell microscopy .............. 24 2.6.2 Live-cell fuorophores .................................................................... 27 2.6.2.1 GFP (Green Fluorescent Protein) and other fuorescent proteins ............................................................................ 28 2.6.2.2 Photoactivatable GFP and photoswitchable FPs ............... 30 2.6.2.3 Chromobodies .................................................................. 30 V 3 Materials and Methods 33 3.1 Amplifcation, preparation, and storage of expression plasmids . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.1 Transformation of bacteria with plasmids ..................................... 33 3.1.2 Glycerol stocks ............................................................................... 34 3.1.3 Preparation of plasmid DNA .......................................................... 34 3.2 Cell cultivation . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Thawing cells .................................................................................. 36 3.2.2 Sub-culturing .................................................................................. 37 3.2.3 Seeding cells on coverslips ........................................................... 38 3.2.4 Deep-freezing cells ........................................................................ 38 3.3 Manipulation of living cells . . . . . . . . . . . . . . . . . 39 3.3.1 Transfection of cells by lipofection ................................................ 39 3.3.2 Generation of stable transgenic cell lines ..................................... 40 3.3.3 How to determine the right selection conditions? ........................ 41 3.3.4 Fluorescence labeling of replication foci and / or chromosomes in living cells .......................................................... 41 3.3.5 Electrolabeling ................................................................................ 43 3.3.6 Microinjection ................................................................................. 44 3.3.7 Sensitizing DNA with BrdU ............................................................ 46 3.3.8 DNA Damage induction via NCS ................................................... 46 3.3.9 Induction of reversibly hypercondensed chromatin (HCC) .......... 46 3.4 Immunofuorescence protocol . . . . . . . . . . . . . . . 47 3.4.1 Fixation and permeabilization ....................................................... 47 3.4.2 Immuno-cytochemistry and DNA counterstaining ....................... 48 3.5 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5.1 Confocal microscopy of fxed samples ......................................... 49 3.5.2 Live-cell microscopy ...................................................................... 50 3.5.2.1 Fluorescence-Recovery-after-Photobleaching (FRAP): ...... 51 3.5.2.2 Photoactivation of H4-PA-GFP .......................................... 51 3.5.2.3 Laser microirradiation with light from a 405 nm continuous diode laser ...................................................... 52 3.6 Rotatable 3D reconstructions . . . . . . . . . . . . . . . 52 3.7 Cell lines and constructs . . . . . . . . . . . . . . . . . . 52 3.7.1 Used cell lines ................................................................................ 52 3.7.2 Used expression plasmids: ........................................................... 53 3.7.3 Stable cell lines created in the course of this thesis: ................... 53 VI 3.8 Consumables and technical equipment . . . . . . . . . . 54 3.8.1 Chemicals and Reagents ............................................................... 54 3.8.2 Media and Solutions ...................................................................... 56 3.8.3 Equipment and other Hardware .................................................... 58 3.8.4 Used Microscopes ......................................................................... 62 3.8.5 Image Processing Software .......................................................... 64 4 Results 67 4.1 Revisiting Theodor Boveri‘s Hypotesis . . . . . . . . . . 67 4.1.1 Generation and characterization of the RPE1 H4-PA-GFP H2B-mRFP cell line .................................................... 67 4.1.1.1 Generation of a stable cell line expressing two types of fuorescent histones .......................................................... 67 4.1.1.2 Description of the phenotype ............................................ 67 4.1.1.3 Analysis of the karyotype .................................................. 69 4.1.1.4 Growth and cell cycle length ............................................. 69 4.1.1.5 Photoactivation of H4-PA-GFP .......................................... 70 4.1.1.6 Checking photoactivated chromatin for DNA damages ..... 71 4.1.1.7 To which extent is photoactivatable GFP activated by normal image acquisition in long-term observations? ........ 72 4.1.1.8 Hypercondensed Chromatin Condensation (HCC) in interphase nuclei doesn’t change nuclear architecture ...... 73 4.1.2 Testing Boveri’s hypotheses and exploring the mechanics of mitosis .........................................................................................74 4.1.2.1 Chromosomes occupy distinct territories within the interphase cell nucleus ...................................................... 74 4.1.2.2 Arrangements of chromosome territories are stably maintained during interphase in most of the observed cells .................................................................................. 75 4.1.2.2.1 During S-phase large scale movements of chromosomes are not mandatory ...................... 75 4.1.2.2.2 During interphase CT arrangements persist in the vast majority of nuclei .................................. 75 4.1.2.3 Quantifcation of confned chromatin diffusion using photoactivatable chromatin ............................................... 77 4.1.2.4 In a few cells 4D observation led to the discovery of nuclear rotations around an axis parallel to the plane of the substratum while mostly keeping their fat cell shape ... 81 4.1.2.5 Nuclear rotation can occur directly before the transition into mitosis but stops immediately at the onset of chromatin condensation ................................................... 83 4.1.2.6 Chromosomal neighborhoods are not transmitted from one cell cycle to the next in RPE1, HeLa and Rat NRK cells .................................................................................. 85 VII 4.1.2.7 Chromosome proximity pattern change especially in prometaphase when chromosomes attach to the spindle and move towards the metaphase plate ........................... 86 4.1.2.8 Unmasking the phenomenon “transmission of global chromosome positions through mitosis” ........................... 89 4.1.2.9 Neighborhood arrangements established in the metaphase plate are conserved throughout anaphase and telophase resulting in rather symmetrical daughter nuclei ................................................................................ 94 4.1.2.10 Photoactivation around the nuclear rim generates daughter nuclei with a croissant-like distribution of photoactivated chromatin ................................................. 96 4.1.2.11 The different faces of mitosis are caused by different orientations of the mitotic spindle with respect to the nucleus at the onset of prometaphase .............................. 97 4.1.2.12 Mitosis seems to be a robust, fexible and autonomous process that takes over control once it is initiated ............. 98 4.2 Experiments at the ion microbeam facility SNAKE . . . . 101 4.2.1 The experimental set-up of SNAKE ............................................. 101 4.2.1.1 A tandem accelerator serves as ion source for SNAKE ... 101 4.2.1.2 The ion microbeam SNAKE ............................................ 102 4.2.2 First experiments at the SNAKE using live-cell microscopy ...... 106 4.2.2.1 Targeted cell irradiation ................................................... 106 4.2.2.2 After ion microbeam irradiation patterns of damage foci remain stable over several hours in U2OS cells ............... 106 4.2.2.3 MDC1-GFP binds to damaged chromatin ca. 20 seconds after DNA damage induction by ion beam irradiation ........................................................................ 107 4.2.2.4 Sequential irradiation using transgenic cells expressing fuorescent repair proteins don’t show the competition effect .............................................................................. 108 4.2.2.5 High doses of irradiation lead to saltatory phosphorylation of chromatin .......................................... 108 4.2.2.6 Rad 51-GFP generates flaments inside the nucleus at DNA damage foci ....................................................... 109 4.3 Exploring the dynamics of DNA damage response after microirradiation using a continuous laser beam . . . . . 111 4.3.1 Microinjection does not induce visible DNA damage response with respect to single and double strand breaks ........111 4.3.2 Kinetics of the repair-proteins MDC1-GFP, 53-BP1-GFP, Rad51-GFP, Rad52-GFP in the undamaged nuclei and after damage induction by a laser microirradiation .............................113 4.3.2.1 MDC1-GFP ..................................................................... 113 4.3.2.2 53BP1-GFP .................................................................... 115 4.3.3 Rad51-GFP polymerizes into complex flamentous networks ....118 4.3.4 Rad52-GFP dissociates from DNA damage foci after highly dynamic processes in the nucleus ...............................................118 VIII 4.3.5 Increased chromatin mobility after DNA damage isn’t a general feature in cells ..................................................................121 4.3.6 Fluorescence signals of damaged chromatin and kinetochores are mutually exclusive ........................................... 123 5 Discussion 127 5.1 Working with cultured cells . . . . . . . . . . . . . . . . . 127 5.2 Evidence for Boveri’s hypotheses (1909) . . . . . . . . . 130 5.3 Probabilistic CT proximity patterns and non-random radial arrangements . . . . . . . . . . . . . . . . . . . . 133 5.4 The case for long-range chromatin movements . . . . . 135 5.5 Chromatin diffusion . . . . . . . . . . . . . . . . . . . . . 136 5.6 Comments on Chromatin Conformation capturing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.7 Implications of probabilistic CT proximity patterns for large-scale, non-random DNA-DNA interactions . . . . 137 5.8 Dynamics of DNA repair . . . . . . . . . . . . . . . . . . 143 5.9 Concluding remarks: mapping and understanding the dynamic nuclear architecture requires a systems biological approach . . . . . . . . . . . . . . . . . . . . . 145 6 References 149 Curriculum Vitae 167 IX Appendix A 173 Abbreviations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Appendix B 175 Spectral profles, Filters, Lasers and Fluorophores used in this Thesis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Appendix C 179 Shift Measurements at the Spinning Disc Microscope: . . . . . . . 179 Measuring the chromatic shift . . . . . . . . . . . . . . . . . . . . 180 Appendix D 183 Fluorophores used in this Thesis: . . . . . . . . . . . . . . . . . . . 183 Appendix E 187 Used cell lines: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Appendix F 193 Maps of the used expression plasmids: . . . . . . . . . . . . . . . 193 Appendix G 197 Box plots of mitotic events and whole cell cycles based on live-cell observations: . . . . . . . . . . . . . . . . . . . . . . . . . 197 Appendix H Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. . . . . . . . . . . . . . . 199 Appendix I 227 Overview on fuorescent proteins: . . . . . . . . . . . . . . . . . . 227 Properties of selected Optical Highlighters . . . . . . . . . . . . . 229 Ehrenwörtliche Versicherung 231 Acknowledgements 233 X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.