ebook img

NRL PLASMA FORMULARY PDF

64 Pages·1994·0.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NRL PLASMA FORMULARY

1994 REVISED NRL PLASMA FORMULARY J.D. Huba Beam Physics Branch Plasma Physics Division Naval Research Laboratory Washington, DC 20375 Supported by The O(cid:14)ce of Naval Research 1 CONTENTS Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . . 3 Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . 4 Di(cid:11)erential Operators in Curvilinear Coordinates . . . . . . . . . . . 6 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 10 International System (SI) Nomenclature . . . . . . . . . . . . . . . 13 Metric Pre(cid:12)xes . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . . 14 Physical Constants (cgs) . . . . . . . . . . . . . . . . . . . . . 16 Formula Conversion . . . . . . . . . . . . . . . . . . . . . . . 18 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 19 Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . 20 Electromagnetic Frequency/Wavelength Bands . . . . . . . . . . . . 21 AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . . 23 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fundamental Plasma Parameters . . . . . . . . . . . . . . . . . . 28 Plasma Dispersion Function . . . . . . . . . . . . . . . . . . . . 30 Collisions and Transport . . . . . . . . . . . . . . . . . . . . . 31 Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . . 40 Ionospheric Parameters . . . . . . . . . . . . . . . . . . . . . . 42 Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . . 43 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 44 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 46 Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 48 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . . 52 Atomic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2 NUMERICAL AND ALGEBRAIC Gain in decibels of P2 relative to P1 G = 10log10(P2=P1): To within two percent 1=2 2 3 10 3 (2(cid:25)) 2:5; (cid:25) 10; e 20; 2 10 : (cid:25) (cid:25) (cid:25) (cid:25) 1 Euler-Mascheroni constant (cid:13) = 0:57722 Gamma Function (cid:0)(x + 1) = x(cid:0)(x): (cid:0)(1=6) = 5.5663 (cid:0)(3=5) = 1.4892 (cid:0)(1=5) = 4.5908 (cid:0)(2=3) = 1.3541 (cid:0)(1=4) = 3.6256 (cid:0)(3=4) = 1.2254 (cid:0)(1=3) = 2.6789 (cid:0)(4=5) = 1.1642 (cid:0)(2=5) = 2.2182 (cid:0)(5=6) = 1.1288 (cid:0)(1=2) = 1:7725 = p(cid:25) (cid:0)(1) = 1.0 Binomial Theorem (good for x < 1 or (cid:11) = positive integer): j j 1 (cid:11) (cid:11) k (cid:11)((cid:11) 1) 2 (cid:11)((cid:11) 1)((cid:11) 2) 3 (1 + x) = x 1+ (cid:11)x + (cid:0) x + (cid:0) (cid:0) x + :::: k (cid:17) 2! 3! Xk=0 (cid:0) (cid:1) 2 Rothe-Hagen identity (good for all complex x, y, z except when singular): n x x + kz y y + (n k)z (cid:0) x+ kz k y + (n k)z n k Xk=0 (cid:0) (cid:1) (cid:0) (cid:0) (cid:0) (cid:1) x + y x+ y + nz = : x+ y + nz n (cid:0) (cid:1) 3 Newberger’s summation formula [good for (cid:22) nonintegral, Re((cid:11) + (cid:12)) > 1]: (cid:0) 1 n ( 1) J(cid:11)(cid:0)(cid:13)n(z)J(cid:12)+(cid:13)n(z) (cid:25) (cid:0) = J(cid:11)+(cid:13)(cid:22)(z)J(cid:12)(cid:0)(cid:13)(cid:22)(z): n + (cid:22) sin(cid:22)(cid:25) nX=(cid:0)1 3 4 VECTOR IDENTITIES T I Notation: f; g; are scalars; A, B, etc., are vectors; is a tensor; is the unit dyad. (1) A B C = A B C = B C A = B C A = C A B = C A B (cid:1) (cid:2) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2) (cid:1) (2) A (B C) = (C B) A = (A C)B (A B)C (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:0) (cid:1) (3) A (B C) + B (C A) + C (A B) = 0 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (4) (A B) (C D) = (A C)(B D) (A D)(B C) (cid:2) (cid:1) (cid:2) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (5) (A B) (C D) = (A B D)C (A B C)D (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:0) (cid:2) (cid:1) (6) (fg) = (gf) = f g + g f r r r r (7) (fA) = f A + A f r (cid:1) r (cid:1) (cid:1) r (8) (fA) = f A+ f A r (cid:2) r (cid:2) r (cid:2) (9) (A B) = B A A B r (cid:1) (cid:2) (cid:1) r (cid:2) (cid:0) (cid:1) r (cid:2) (10) (A B) = A( B) B( A) + (B )A (A )B r (cid:2) (cid:2) r (cid:1) (cid:0) r (cid:1) (cid:1) r (cid:0) (cid:1) r (11) A ( B) = ( B) A (A )B (cid:2) r (cid:2) r (cid:1) (cid:0) (cid:1) r (12) (A B) = A ( B) + B ( A) + (A )B + (B )A r (cid:1) (cid:2) r (cid:2) (cid:2) r (cid:2) (cid:1) r (cid:1) r 2 (13) f = f r r (cid:1) r 2 (14) A = ( A) A r r r (cid:1) (cid:0) r (cid:2) r (cid:2) (15) f = 0 r (cid:2)r (16) A = 0 r (cid:1) r (cid:2) T If e1, e2, e3 are orthonormal unit vectors, a second-order tensor can be written in the dyadic form T (17) = Tijeiej i;j In cartesianPcoordinates the divergence of a tensor is a vector with components T (18) ( )i = (@Tji=@xj) r(cid:1) j P [This de(cid:12)nition is required for consistency with Eq. (29)]. In general (19) (AB) = ( A)B + (A )B r (cid:1) r (cid:1) (cid:1) r T T T (20) (f ) = f +f r (cid:1) r (cid:1) r(cid:1) 4 Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to the point x;y;z. Then (21) r = 3 r (cid:1) (22) r = 0 r (cid:2) (23) r = r=r r 3 (24) (1=r) = r=r r (cid:0) 3 (25) (r=r ) = 4(cid:25)(cid:14)(r) r (cid:1) I (26) r = r If V is a volume enclosed by a surface S and dS = ndS, where n is the unit normal outward from V; (27) dV f = dSf r ZV ZS (28) dV A = dS A r(cid:1) (cid:1) ZV ZS T T (29) dV = dS r(cid:1) (cid:1) ZV ZS (30) dV A = dS A r(cid:2) (cid:2) ZV ZS 2 2 (31) dV (f g g f) = dS (f g g f) r (cid:0) r (cid:1) r (cid:0) r ZV ZS (32) dV (A B B A) (cid:1) r (cid:2) r (cid:2) (cid:0) (cid:1) r (cid:2) r (cid:2) ZV = dS (B A A B) (cid:1) (cid:2) r (cid:2) (cid:0) (cid:2) r (cid:2) ZS If S is an open surface bounded by the contour C, of which the line element is dl, (33) dS f = dlf (cid:2) r ZS IC 5 (34) dS A = dl A (cid:1) r (cid:2) (cid:1) ZS IC (35) (dS ) A = dl A (cid:2) r (cid:2) (cid:2) ZS IC (36) dS ( f g) = fdg = gdf (cid:1) r (cid:2) r (cid:0) ZS IC IC DIFFERENTIAL OPERATORS IN 5 CURVILINEAR COORDINATES Cylindrical Coordinates Divergence 1 @ 1 @A(cid:30) @Az A = (rAr) + + r (cid:1) r @r r @(cid:30) @z Gradient @f 1 @f @f ( f)r = ; ( f)(cid:30) = ; ( f)z = r @r r r @(cid:30) r @z Curl 1 @Az @A(cid:30) ( A)r = r (cid:2) r @(cid:30) (cid:0) @z @Ar @Az ( A)(cid:30) = r (cid:2) @z (cid:0) @r 1 @ 1 @Ar ( A)z = (rA(cid:30)) r (cid:2) r @r (cid:0) r @(cid:30) Laplacian 2 2 2 1 @ @f 1 @ f @ f f = r + + 2 2 2 r r @r @r r @(cid:30) @z (cid:16) (cid:17) 6 Laplacian of a vector 2 2 2 @A(cid:30) Ar ( A)r = Ar 2 2 r r (cid:0) r @(cid:30) (cid:0) r 2 2 2 @Ar A(cid:30) ( A)(cid:30) = A(cid:30) + 2 2 r r r @(cid:30) (cid:0) r 2 2 ( A)z = Az r r Components of (A )B (cid:1) r @Br A(cid:30) @Br @Br A(cid:30)B(cid:30) (A B)r = Ar + + Az (cid:1) r @r r @(cid:30) @z (cid:0) r @B(cid:30) A(cid:30) @B(cid:30) @B(cid:30) A(cid:30)Br (A B)(cid:30) = Ar + + Az + (cid:1) r @r r @(cid:30) @z r @Bz A(cid:30) @Bz @Bz (A B)z = Ar + + Az (cid:1) r @r r @(cid:30) @z Divergence of a tensor 1 @ 1 @T(cid:30)r @Tzr T(cid:30)(cid:30) T ( )r = (rTrr) + + r (cid:1) r @r r @(cid:30) @z (cid:0) r 1 @ 1 @T(cid:30)(cid:30) @Tz(cid:30) T(cid:30)r T ( )(cid:30) = (rTr(cid:30)) + + + r (cid:1) r @r r @(cid:30) @z r 1 @ 1 @T(cid:30)z @Tzz T ( )z = (rTrz) + + r (cid:1) r @r r @(cid:30) @z 7 Spherical Coordinates Divergence 1 @ 2 1 @ 1 @A(cid:30) A = (r Ar) + (sin(cid:18)A(cid:18)) + 2 r (cid:1) r @r rsin(cid:18) @(cid:18) rsin(cid:18) @(cid:30) Gradient @f 1 @f 1 @f ( f)r = ; ( f)(cid:18) = ; ( f)(cid:30) = r @r r r @(cid:18) r rsin(cid:18) @(cid:30) Curl 1 @ 1 @A(cid:18) ( A)r = (sin(cid:18)A(cid:30)) r (cid:2) rsin(cid:18) @(cid:18) (cid:0) rsin(cid:18) @(cid:30) 1 @Ar 1 @ ( A)(cid:18) = (rA(cid:30)) r (cid:2) rsin(cid:18) @(cid:30) (cid:0) r @r 1 @ 1 @Ar ( A)(cid:30) = (rA(cid:18)) r (cid:2) r @r (cid:0) r @(cid:18) Laplacian 2 2 1 @ 2@f 1 @ @f 1 @ f f = r + sin(cid:18) + 2 2 2 2 2 r r @r @r r sin(cid:18) @(cid:18) @(cid:18) r sin (cid:18) @(cid:30) (cid:16) (cid:17) (cid:16) (cid:17) Laplacian of a vector 2 2 2Ar 2 @A(cid:18) 2cot(cid:18)A(cid:18) 2 @A(cid:30) ( A)r = Ar 2 2 2 2 r r (cid:0) r (cid:0) r @(cid:18) (cid:0) r (cid:0) r sin(cid:18) @(cid:30) 2 2 2 @Ar A(cid:18) 2cos(cid:18) @A(cid:30) ( A)(cid:18) = A(cid:18) + 2 2 2 2 2 r r r @(cid:18) (cid:0) r sin (cid:18) (cid:0) r sin (cid:18) @(cid:30) 2 2 A(cid:30) 2 @Ar 2cos(cid:18) @A(cid:18) ( A)(cid:30) = A(cid:30) + + 2 2 2 2 2 r r (cid:0) r sin (cid:18) r sin(cid:18) @(cid:30) r sin (cid:18) @(cid:30) 8 Components of (A )B (cid:1) r @Br A(cid:18) @Br A(cid:30) @Br A(cid:18)B(cid:18) + A(cid:30)B(cid:30) (A B)r = Ar + + (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) (cid:0) r @B(cid:18) A(cid:18) @B(cid:18) A(cid:30) @B(cid:18) A(cid:18)Br cot(cid:18)A(cid:30)B(cid:30) (A B)(cid:18) = Ar + + + (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) r (cid:0) r @B(cid:30) A(cid:18) @B(cid:30) A(cid:30) @B(cid:30) A(cid:30)Br cot(cid:18)A(cid:30)B(cid:18) (A B)(cid:30) = Ar + + + + (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) r r Divergence of a tensor 1 @ 2 1 @ T ( )r = (r Trr) + (sin(cid:18)T(cid:18)r) 2 r (cid:1) r @r rsin(cid:18) @(cid:18) 1 @T(cid:30)r T(cid:18)(cid:18) + T(cid:30)(cid:30) + rsin(cid:18) @(cid:30) (cid:0) r 1 @ 2 1 @ T ( )(cid:18) = (r Tr(cid:18)) + (sin(cid:18)T(cid:18)(cid:18)) 2 r (cid:1) r @r rsin(cid:18) @(cid:18) 1 @T(cid:30)(cid:18) T(cid:18)r cot(cid:18)T(cid:30)(cid:30) + + rsin(cid:18) @(cid:30) r (cid:0) r 1 @ 2 1 @ T ( )(cid:30) = (r Tr(cid:30)) + (sin(cid:18)T(cid:18)(cid:30)) 2 r (cid:1) r @r rsin(cid:18) @(cid:18) 1 @T(cid:30)(cid:30) T(cid:30)r cot(cid:18)T(cid:30)(cid:18) + + + rsin(cid:18) @(cid:30) r r 9 DIMENSIONS AND UNITS To get the value of a quantity in Gaussian units, multiply the value ex- pressed in SI units by the conversion factor. Multiples of 3 in the conversion 10 factors result from approximating the speed of light c = 2:9979 10 cm/sec 10 (cid:2) 3 10 cm/sec. (cid:25) (cid:2) Dimensions Physical Sym- SI Conversion Gaussian Quantity bol SI Gaussian Units Factor Units 2 2 t q 11 Capacitance C l farad 9 10 cm 2 ml (cid:2) 1=2 3=2 m l 9 Charge q q coulomb 3 10 statcoulomb t (cid:2) 1=2 q m 3 Charge (cid:26) coulomb 3 10 statcoulomb l3 l3=2t 3 (cid:2) 3 density /m /cm 2 tq l 11 Conductance siemens 9 10 cm/sec 2 ml t (cid:2) 2 tq 1 9 (cid:0)1 Conductivity (cid:27) siemens 9 10 sec 3 ml t (cid:2) /m 1=2 3=2 q m l 9 Current I;i ampere 3 10 statampere 2 t t (cid:2) 1=2 q m 5 Current J;j ampere 3 10 statampere l2t l1=2t2 2 (cid:2) 2 density /m /cm m m 3 (cid:0)3 3 Density (cid:26) kg/m 10 g/cm 3 3 l l 1=2 q m 5 Displacement D coulomb 12(cid:25) 10 statcoulomb l2 l1=2t 2 (cid:2) 2 /m /cm 1=2 ml m 1 (cid:0)4 Electric (cid:12)eld E volt/m 10 statvolt/cm 2 1=2 t q l t 3 (cid:2) 2 1=2 1=2 ml m l 1 (cid:0)2 Electro- , volt 10 statvolt 2 E t q t 3 (cid:2) motance Emf 2 2 ml ml 7 Energy U;W joule 10 erg 2 2 t t m m 3 3 Energy w;(cid:15) joule/m 10 erg/cm 2 2 lt lt density 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.