antioxidants Review Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate DeniseBurtenshaw1 ID,RoyaHakimjavadi1,EileenM.Redmond2 ID andPaulA.Cahill1,* 1 VascularBiology&Therapeutics,SchoolofBiotechnology,DublinCityUniversity,D09NR58Dublin,Ireland; [email protected](D.B.);[email protected](R.H.) 2 DepartmentofSurgery(Research),UniversityofRochesterMedicalCentre,Rochester,NY14620,USA; [email protected] * Correspondence:[email protected];Tel.:+35-317-008-466 Received:2October2017;Accepted:7November2017;Published:14November2017 Abstract: The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medialthickening(IMT)andearlyarterioscleroticdiseaseprogressionshareoxidativestress asacommonregulatorypathwaydictatingvascularcellfate. ThemajorsourceofROSgenerated withinthevascularsystemisthenicotinamideadeninedinucleotidephosphate(NADPH)oxidase familyofenzymes(Nox),ofwhichsevenmembershavebeencharacterized. TheNoxfamilyare criticaldeterminantsoftheredoxstatewithinthevesselwallthatdictate,inpartthepathophysiology ofseveralvascularphenotypes.ThisreviewhighlightstheputativeroleofROSincontrollingvascular fatebypromotingendothelialdysfunction,alteringvascularsmoothmusclephenotypeanddictating residentvascularstemcellfate,allofwhichcontributetointimalmedialthickeningandvascular diseaseprogression. Keywords:Nox;ROS;vascularsmoothmuscle;endothelial;stemcells;adventitialcells;arteriosclerotic disease;intimal-medialthickening 1. Introduction The major reactive oxygen species (ROS)-producing systems within the vascular bed include thereducedformofnicotinamideadeninedinucleotidephosphate(NADPH)oxidase[1],xanthine oxidase[2],themitochondrialelectrontransportchain[3],anduncoupledendothelialnitricoxide (NO)synthase[4]. TheNoxfamilyofNADPHoxidasesareanimportantsourceofROSandarecritical determinantsoftheredoxstateofthevesselwall. ChangesintheexpressionofNoxcandictate,inpart, thepathophysiologyofseveralvascularphenotypessinceROSproductionmayexceedtheavailable antioxidantdefencesystems,therebyfacilitatingoxidativestress[5]. ROScanbeeitherdysfunctionalorprotective. Superoxideanions(O −)reactwithNOtoform 2 peroxynitrite(ONOO−)thatcausesnitricoxidesynthase(NOS)uncouplinginendothelialcells(EC) andlimitstheamountofNOthatisprotective. Peroxynitrite(ONOO−)alsoinducesthioloxidationas wellastyrosinenitrationcausingfurtherdamagetothevasculature[6]. Moreover,thedismutation productofO −,hydrogenperoxide(H O ),directlypromotesvascularsmoothmusclecell(vSMC) 2 2 2 hypertrophy, activates metalloproteinases, and at higher concentrations, inhibits endothelial NOS (eNOS) by phosphorylation of tyrosine 657 through the redox-activated tyrosine kinase Pyk2 [7]. H O canalsoactivateproteinkinase-GIαtoinducethioloxidationandsubsequentdimerization[8]. 2 2 Insomeinstances,H O maybeprotectiveandactivateeNOStocounteractthepro-atherogeniceffects 2 2 ofvariouspathologicalstimuli[8]. Arteriosclerosisisanimportantage-dependentconditionthatincludesatherosclerosis,pulmonary hypertension,in-stentrestenosis,autologousbypassgraftingandtransplantarteriosclerosisandmay Antioxidants2017,6,90;doi:10.3390/antiox6040090 www.mdpi.com/journal/antioxidants Antioxidants2017,6,90 2of22 resultinaheartattackorstroke[9]. Ahallmarkofarteriosclerosisisapathologicvascularfibrosis duetotheaccumulationofvSMC-likeneointimalcellsresultinginintimal-medialthickening(IMT) and lesion formation that significantly narrows the vessel lumen but also provides a substrate for lipoproteinretentionleadingtoacceleratedatherosclerosis[9]. Animal studies have provided compelling evidence supporting a role for oxidative stress in contributingtoIMTandtheprogressionofearlyarterioscleroticdisease[6]. Sincevascularlesions developpreferentiallywithinregionsexposedtodisturbedbloodflowpatternsresultinginenhanced oxidativestress,theroleofROSincontrollingendothelialdysfunctionduringtheinitiationofvascular pathologies has attracted extensive interest [10]. Subsequently, the important modulatory role of ROS in controlling de-differentiation and reprogramming of vSMCs [11] in addition to myogenic differentiationofresidentvascularstemcellniche(s)andtransforminggrowthfactorβ1(TGF-β1) inducedendothelial-mesenchymalstemcelltransition(EndoMT)hasemerged[12–14]. Stem cells play an important role during developmental stages due to their unique ability to self-renewanddifferentiate. However,theirputativeroleinvasculardiseaseprogressionhasonly recently attracted considerable interest [15]. Many types of stem cells can be cultivated invitro including embryonic (ESCs), pluripotent (iPSCs), and mesenchymal (MSCs), each with the ability to differentiate into vascular cell lineages via progenitor cells [16]. In the past decade, numerous studieshavedemonstratedmyogenicdifferentiationofmesenchymal-likestemcellstovSMClineages invitro following appropriate inductive stimulation [17], and invivo, using transgenic Cre-LoxP markedcellsafteriatrogenicinjuryinmurinemodelsofIMT[12,18,19]. However,littleisknownabout themetabolicchangesoccurringduringthemyogenicdifferentiationprocess[20]. Severalstudies have demonstrated the importance of the regulation of redox states by Nox isoforms in stem cell maintenance,proliferationanddifferentiation[21]. Cardiovascularriskfactorssuchashypercholesterolemia,hypertension,diabetesmellitusand smokingallenhanceROSgenerationandexacerbatethedecreaseinendothelialNOproduction[6]. Moreover,keymoleculareventsduringvasculardiseaseprogressionsuchasoxidativemodificationof lipoproteinsandphospholipids[22],ECactivationandpermeabilitychanges[23]anddisruptionof theglycocalyx[24]andcellularinfiltration/activationarefacilitatedbyvascularoxidativestress[5]. It is commonly recognised that high levels of ROS may have destructive effects on both differentiatedvSMCandEC[25,26]. ThisreviewwilldiscusstheimportanceofNoxgenerationof ROSincontrollingEC,vSMCandmesenchymal-likestemcellfunctionandfateandtheircontribution toIMTandvasculardiseaseprogression. 2. VascularNox/DuoxIsoforms Low to moderate levels of ROS are known to contribute to important functions such as cell differentiation, migration, adhesion, senescence, growth, and apoptosis. In contrast, a variety of cardiovasculardiseasesareassociatedwithelevatedROSlevels. AsignificantsourceofcellularROSis theNoxfamilyofenzymes[27].Initially,theoverproductionofROSsuchasO −,H O ,NO,hydroxyl 2 2 2 radicals, ONOO− and other metabolites within a cell system was labelled as a random event [28]. However, in recent years, studies have confirmed that ROS is a controlled signalling system with enzymesNoxanddualoxidase(Duox)attheforefront[29,30]. In general, mammals have seven isoforms of Nox enzymes; Nox1, 2, 3, 4 and 5, Duox1 and Duox2. ThesevenclassifiedNoxproteinsarepresentnotonlyintheplasmamembrane,(Nox1to5 andDuox1/2),butalsointheendoplasmicreticulum,(Nox2,4and5),themitochondrialmembrane (Nox4)andthenuclearmembrane,(Nox4and5)[31]. Withinthevasculature,Noxisoformsarefound inECs[32],vSMCs[33],adventitialfibroblasts[34]andstemcells[35](Figure1). All Nox enzymes are heteroprotein transmembrane complexes (except Nox5) with specific regulatorymechanisms,tissuespecificityanddownstreamtargetsandfunctions. Theycontainsix transmembrane domains with conserved binding sites for flavin adenine dinucleotide (FAD) and NADPHandfourhaem-bindinghistidinesinthethirdandfifthtransmembranedomainstoproduce Antioxidants2017,6,90 3of22 ROSbytransferringanelectrontomolecularoxygen[36]. EachmemberoftheNoxfamilyretains thecatalyticdomainallowingthetransferofelectronsfromcytosolicNADPHduringthegeneration ofROSmetabolites. ThistransferleadstothereductionofoxygenbyNox/DuoxtoO − aswellas 2 tosecondaryROSby-products[37]. Duringthisprocess,twoO − moleculeshavethepotentialto 2 reactgeneratingH O ,eitherspontaneously,ordrivenbytheenzymesuperoxidedismutase(SOD) 2 2 inaprocesscalleddismutation. H O canfurtherreactwithO − inthepresenceofiron,generating 2 2 2 ahydroxylradical. Inaddition,otherROSproductscanbegeneratedincludingtheproductionof hypochlorous acid from the reaction of H O and chloride driven by the presence of the enzyme 2 2 myeloperoxidase or the production of ONOO− generated by the reaction of O − with NO [38]. 2 Theresultingbi-productsofthesechainreactions(H O ,NO)possessbeneficialfunctionsinmicrobial 2 2 killing,cellsignalling,differentiationandgeneregulation. However,otherROSproductsincluding hydroxylradicals,hypochlorousacidandONOO− aremoreoftenassociatedwithcellulardamage andmolecularpathologiesinextremeconditionsofoxidativestress[38]. TheprimaryROSproductofNox1,2,3and5isO −;however,Nox4,Duox1andDuox2produce 2 mainlyH O [39].Despitesimilaritiesincorestructures,Noxhomologueshavedifferentmechanismsof 2 2 activation.Nox2isthemostclearlydefined[40].Onactivation,p47phoxisphosphorylatedandtranslocates to the membrane by forming a complex with p67phox and p40phox. Phosphorylation of p47phox inducesaconformationalchangeinatandemSrchomology3(SH3)domainthatfacilitatesbinding toaproline-richregioninthecytosolicC-terminusofthetransmembranesubunitp22phox[41,42]. Independently,theguanosine-5(cid:48)-triphosphateGTP-bindingproteinRas-relatedC3botulinumtoxin substrate (Rac) also moves to the membrane to enable activation. Nox1 also requires association withcytosoliccomponents(p47phox,p67phoxorNoxO1andNoxA1). Incontrast,theNox4-based oxidaseappearstobeconstitutivelyactiveanddoesnotrequirep47phox,p67phox,orRac. Recent studies suggest that Poldip2, a polymerase (DNA-directed) delta interacting protein-2 is a novel Nox4/p22phoxinteractingproteinthatpositivelyregulatesNox4[43]. TheNox4/p22phox/Poldip2 complexhasprofoundeffectsonRho-dependentcytoskeletalreorganizationandcellularmigration andmaybefundamentaltothephysiologicalandpathophysiologicalroleofNox4[43]. Duox,Duox2 andNox5requireacalciumionbindingthroughthepresenceofahelix-loop-helixstructuraldomain (EF-hand) [31] and are activated by an elevation in intracellular Ca2+ [44,45]. Once bound to the required membrane proteins, the activated Nox/Duox enzyme can successfully transfer electrons acrossthemembrane[46]. In addition to being highly reactive and oxidizing proteins, DNA and lipids, ROS are now considered important signalling molecules in their own right, modulating cellular processes such asgeneexpression,proliferation,andmigration. Importantly,Noxenzymesaretheonlyenzymes whoseprimaryfunctionistogenerateROS[36]. Otherenzymes(cyclooxygenases,cytochromeP450, enzymesofthemitochondrialelectrontransportchain)canproduceROS,butonlyasaby-product of their normal function. In addition, secondary sources of ROS are generated from “uncoupled” eNOSandxanthineoxidase,whicharedysfunctionalvariantsofeNOSandxanthinedehydrogenase, respectively[36]. NumerousstimulipromotesustainedactivationofvascularNoxincludingseveralgrowthfactors (platelet-derivedgrowthfactor(PDGF)[47],epidermalgrowthfactor(EGF)[48],andTGF-β1[49]), cytokines [50], mechanical forces (cyclic stretch, laminar, and oscillatory shear stress) [51], metabolic factors (hyperglycemia, hyperinsulinemia, free fatty acids, and advanced glycation end products)[52],andGprotein–coupledreceptoragonists(serotonin,thrombin,bradykinin,endothelin, and angiotensin II [Ang II]) [53]. Signalling proteins, c-Src, p21Ras, protein kinase C (PKC), phospholipase D and phospholipase A (PLA ) all play key roles in vascular NADPH oxidase 2 2 activation[54]. MultiplepathwaysofNoxactivationhavebeendescribedinvariouscelltypesunder normalandpathologicalstatesincludingphosphorylationofcytosolicregulatorysubunitsbyprotein kinase C (PKC), protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K), mitogen-activated proteinkinases(MAPK),andnon-receptorassociatedproteinkinases(e.g.,Januskinase(JAK)andthe Antioxidants2017,6,90 4of22 non-receptortyrosinekinases,Src)[55].Transientchangesinintracellularionfluxesandprotein-protein interactionswithmembersofthethioredoxinfamilymayalsopromoteNoxactivity[55]. RedoxregulationofvascularNoxactivationprovidesimportantpositiveandnegativefeedback regulatory mechanisms [56]. Cellular redox status is maintained by intracellular redox-regulating molecules, including thioredoxin (TRX). Nuclear factor erythroid 2–related factor 2 (Nrf2), anantioxidanttranscriptionalfactorisregulatedbytheintracellularredoxstate. BindingsitesforNrf2 arelocatedinthepromoterregionofalargevarietyofgenes,includingNox4[55]. Theseself-limiting negativefeedbackmechanismspredominateduringphysiologicconditionsbutmayalsobeinvolved inmaintaininglowoutputofthenonphagocyteNox,whereasapositivemechanismmaypredominate inavarietyofvasculardiseases[36]. Figure1. Noxenzymeswithinthevasculature. TheschematicdepictstheNoxenzymeswithinthe vascularwall.Allthreelayersofthevascularwall[intima(i.e.,endothelialcells),media(i.e.,smooth musclecells),andadventitia(i.e.,fibroblastsandmacrophages)]expressNoxfamilymembers.Nox4 is the predominant isoform in endothelial cells, Nox1 and Nox4 in smooth muscle cells, Nox4 in fibroblasts,andNox2andNox4instemcells.Nox-derivedO −avidlyreactswithNO.Nox-derived 2 ROS also affect the extracellular matrix and the external (EEL) and internal elastic lamina (IEL), influencegeneexpressionandareinvolvedincellproliferation,migrationanddifferentiationthatlead tovasculardiseaseprogression[55]. 3. NoxandVascularEndothelialCells TheroleofNoxisoformswithintheintimalendotheliallayerhasbeenthesubjectofseveralstudies. Thevascularendotheliumplaysacriticalroleincardiovascularhomeostasis. Vascularendothelialcells normallyperformkeyhomeostaticfunctionssuchasmaintainingbloodfluid,regulatingbloodflow, regulatingmacromoleculeandfluidexchangewiththetissuesandpreventingleukocyteactivation[57]. Antioxidants2017,6,90 5of22 Endothelial dysfunction is characterized by a shift in the actions of the endothelial cell towards areducedendothelium-dependentvasodilation(viareducedbioavailabilityofNOandprostacyclin) andpromotionofinflammatoryandprothromboticstate[57]. Thesechangesareassociatedwithmost formsofcardiovasculardisease,suchasarteriosclerosis,hypertension,peripheralvasculardisease anddiabetes. Alterationinendothelialfunctionprecedesthedevelopmentofmorphologicalchanges inarterioscleroticdiseaseandcontributestoIMTdevelopmentandlaterclinicalcomplications[57]. Low levels of Nox activity are evident under normal physiological conditions. Upregulation of the various Nox isoforms is associated with vascular pathology in response to injury underlying arteriosclerosis, diabetes, obesity, hypertension, and hypoxia [55]. In this regard, ECs express fourNoxisoformsincludingthesuperoxide-generatingenzymesNox1,2,and5andthehydrogen peroxide-generatingenzymeNox4[36]. Underphysiologicalconditionstheseenzymesareexpressed atrelativelylowlevelsonmembranesoftheendoplasmicreticulum(ER)andnucleuswherethey contribute to intracellular redox signalling processes. However, in cardiovascular disease such as atherosclerosis,endothelialexpressionofNox2,andtoalesserextentofNox1,appearstobeenhanced, resultinginexcessivesuperoxidegeneration—especiallyintheextracellularcompartment[36]. Recent studies on human arteries from patients with coronary artery disease (CAD) [58], and experimentally induced hypertension [40], diabetes and atherosclerosis [59] in animal model systemssuggestthatNox1,2and5allpromoteendothelialdysfunction,inflammation,andapoptosis withinthevesselwall[1],whereasNox4isbycontrastvasoprotectiveviaincreasingNObioavailability andsuppressingapoptoticpathways(Figure2). Itisclearfrommostinvitrostudiesthatthefunctional roleofNox4isbeneficial[60],inparticular,bymediatinganendothelium-derivedhyperpolarizing factor(EDHF)-typeendothelium-dependentvasodilatationtosystemicallylowerbloodpressure[61]. Endothelial-specificoverexpressionofNox2generatesO − andpromotesvasculardysfunction 2 andoxidativestress[40]. SimilareffectsarereportedfollowingectopicexpressionofNox1within vSMCs [62]. Hence, it is thought that Nox-derived O − reacts with endothelium-derived NO to 2 loweritsbioavailabilityandincreasethegenerationofONOO−. ThefreeradicalONOO− ishighly reactiveandoxidizescysteinesandtetrahydrobiopterin,anessentialcofactoroftheeNOS.Lackof tetrahydrobiopterin uncouples the enzyme, and promotes further O − generation exacerbating 2 the dysfunction [63]. Unlike O −, Nox4 derived H O doesn’t react with NO but may induce 2 2 2 NOsynthase[64]. ItisalsoclearthattypeofROSandthesiteofproductionisofparticularimportance. Despite generating H O , ectopic expression of endothelial Nox4 did not promote medial hypertrophy in 2 2 contrasttoectopicexpressionofNox4invSMCordirectapplicationofH O [61]. TheH O may 2 2 2 2 counteractthehypertrophyorreactwithperoxiredoxins,whichsubsequentlymediatesignallingby thiol-basedredoxreactions[65]. AlthoughpreclinicalstudieshaveprovidedcompellingevidenceforselectivetargetingofNox1 andNox2inECs,itremainsunclearwhetherchronicinhibitionofNoxactivityinhumanswillalsobe efficacious. Oneinhibitor,apocynin,isthoughttoinhibitNoxactivitybyblockingphosphorylationof p47phox,andconsequentlyitsinteractionwithmembrane-boundoxidasecomponents[66].Short-term administrationofapocynintohumansiswelltoleratedandeffectiveatreducingROSproduction, butitisunclearwhetherthepharmacodynamicandpharmacokineticprofilesofapocyninaresuited tolong-termadministration[67]. Antioxidants2017,6,90 6of22 Figure 2. Simplified schematic of common forms of Nox enzymes in endothelial cells. H O can 2 2 beconvertedtoH Obycatalase(CAT)orglutathioneperoxidase(GPx). O − canalsoreactwith 2 2 NO to generate the reactive nitrogen species ONOO− that could be converted into NO ·, which 2 reactswithproteintyrosineresiduestogenerateNO -Tyr. Thisreactioncanleadtoadecreasein 2 thebioavailabilityofNO,leadingtoendothelialdysfunction. Nox-derivedROSmayalsocontrol endothelial-mesenchymalstemcelltransition(EndoMT)[36]. 4. NoxandVascularSmoothMuscleCells The role of Nox isoforms within the medial layer has also been addressed. A hallmark of arterioscleroticdiseaseistheaccumulationofvSMC-likecellsresultinginIMT[9].Severalstudieshave focussedontheputativerolesofdifferentNoxisoformsinvSMCthatgenerateROSandthesubsequent repercussions on vSMC cell phenotype and fate that contribute to vascular disease progression (Figure 3). The intracellular signalling pathways responsible for ROS generation are still unclear, but it is known that Nox1, 2, 4, and 5 are all expressed in vSMC but may differ in their activity, responsetostimuli,andthetypeofROSreleased[68]. Antioxidants2017,6,90 7of22 Figure3. SimplifiedschematicofcommonformsofNoxenzymesinvascularsmoothmusclecell (vSMCs).Nox4,onceactivated,generatesH O .Nox1expressionisincreasedearlyanddecreasedwith 2 2 lesionprogression,whileinductionofNox4isalateevent.Nox2andp22phoxareelevatedthroughout lesiondevelopment.SMCshaveincreasedgenerationofROS,cellcyclearrest,evidenceofsenescence, andincreasedsusceptibilitytoapoptosis[69]. Several recent studies have provided exciting new insight into the molecular mechanisms by which agonists, through Nox1 generation of ROS, may promote vascular lesion formation. Vascular SMC migration is pivotal to lesion formation and IMT and is considered an integrated, dynamic, and cyclical process dependent upon orchestrated control of regulators of the actin cytoskeleton,includingcofilin. CofilinisamajoreffectorofNox1-mediatedvSMCmigrationinvitro and is notably reduced in Nox1-deficient (Nox1−/−) cells under both basal and PDGF-stimulated conditions [70]. Thrombin-induced shedding of N-cadherin and vSMC migration is mediated by Nox1-dependent transactivation of the epidermal growth factor receptor (EGFR) and subsequent activationofmatrixmetalloproteinase-9(MMP-9). Nox1-dependentROSgenerationwithinvSMC involves (i) Nox1-dependent transactivation of EGFR via c-Src; (ii) transactivation of EGFR leadingtoextracellularsignal–regulatedkinases(ERK1/2)phosphorylation; (iii)Nox1-dependent EGFR transactivation leading to MMP-9 activation via ERK1/2 phosphorylation, and (iv) Nox1/EGFR/MMP-9-inducedN-cadherinshedding[71]. ThemechanismbywhichNox1promotesmigrationviaN-cadherinsheddingandtheroleof N-cadherin in modulating SMC migration remain controversial, other, yet undefined, pathways may also be involved. It is unclear whether a diminished cofilin/MMP-9 axis contributes to the dysfunctional migratory response of Nox1-deficient cells in response to thrombin [71] or whether thrombin induced ROS engages a Slingshot-1L (SSH-1L)-cofilin pathway to regulate cytoskeletal Antioxidants2017,6,90 8of22 organizationandvSMCmigrationwithinvascularlesions. Nox1-mediatedstimulationofMMP-9may alsoberesponsibleforincreasedplasmaclusterofdifferentiation-44(CD44)levelsinapoE−/− mice followingproteolyticcleavageofmembrane-anchoredCD44[72]. Whilebasicfibroblastgrowthfactor (bFGF)-andPDGF-induced,Nox1-dependentmigrationofvSMCisdependentonc-Jun-N-terminal kinase (JNK) and Src/phosphoinositide-dependent kinase-1 (PDK1)/p21-activated protein kinase (PAK),respectively,thrombin-inducedvSMCmigrationappearsdependentonROS-regulatedp38 MAPKactivation[73]. APoldip2mechanismforvSMCmigrationviaregulationoffocaladhesion turnover and traction force generation in a Nox4/RhoA/focal adhesion kinase (FAK)-dependent manner has also recently been reported [74]. While many of the aforementioned studies on Nox isoformswereperformedusingvSMCinculture,thelikelihoodthatthesecellsarede-differentiated vSMCs[75]and/orstemcellderivedmyogenicprogeny[18]and,thus,maynotrepresenttheputative responseofdifferentiatedvSMCstochangesinNoxactivitycannotberuledout. Itremainstobe seen whether these mechanisms observed invitro are operational invivo under physiological or pathophysiologicalconditions. Ofnote,previousstudieshavereportednochangesinSrc,p38MAPK, orJNKinresponsetoPDGFinwild-typeorNox1-deficientcells[69]. Asarterialinjuryandarterioscleroticlesionsarecharacterizedbyenhancedthrombinexpression andactivitywithincreasedNoxactivityandROSproduction[72],activationofthissignallingcascade bythrombinidentifiesonepotentialmechanismbywhichNox1-derivedROSmaypromoteIMT. Enhanced Nox-1 expression is also associated with elevated O − levels within intimal and 2 medial vSMCs following carotid vascular injury [76]. Nox-derived ROS may also participate in neointimalformationbyPDGF-inducedsignalling[77]. Indeed,ROSproducedbyNox5mayplay animportantroleinPDGF-inducedJAK/SignalTransducerandActivatorofTranscription(STAT) activationandvSMCproliferation[78]. PDGFisheavilydependentonJAK/STATactivationsince specific knockdown of Nox5 reduces PDGF-induced ROS production and proliferation of these cell and inhibits PDGF-stimulated JAK2 and STAT3 phosphorylation [78]. Other studies have implicatedNox1invSMCphenotypicchanges,includingangiotensinII-inducedhypertrophy[79], serum-inducedproliferation[80],andbFGF-inducedmigration[81]andstrain-inducedphenotypic switching[82].VascularSMCspecificdeletionofNox1reducedIMTinresponsetofemoralarterywire injury[69]whileectopicexpressionofNox1exhibitedincreasedPDGF-inducedO − productionin 2 aortic vSMCs concomitant with increased growth and migration [69] . EGF, FGF-2, angiotensin II (AngII)andtheplasminogen/plasminsystem(uPA)allpromoteNoxactivitywithvSMCinvitroand contributetoIMTinvivo[69]. Finally,theprecisemechanismofhowNoxmediatedROSdeteriorates vascularfunctionandpromotesvascularremodellingandIMTinvivohasbeenrecentlyelucidated. CyclophilinA(CyPA),a20kDchaperoneproteinthatissecretedfromvSMCsinresponsetoROSand stimulatesvSMCproliferationandinflammatorycellmigrationinvitroandinvivo[79]. DespitethebeneficialsignallingroleofNox4generatedH O fromtheendothelium,excessive 2 2 concentrationsfromvSMCmayinduceinflammation,fibrosis,apoptosis,andevennecrosis[83].Given theconstitutivenatureofNox4activity,theregulationofH O formationmaybeharmfulorprotective 2 2 depending on the levels and source of ROS generated [60]. Under certain conditions, such as the releaseoftransforminggrowthfactor-β1,diabetes,andheartfailure,Nox4-dependentH O formation 2 2 maybecomeharmful. 5. TheRoleofNoxinAdventitialCells The role of Nox isoforms within the adventitial layer has also been addressed (Figure 4). Arteriosclerotic vessels are characterized not only by IMT, but also increased stiffness secondary to collagen and elastin deposition, a process regulated by the adventitial fibroblast and termed fibrosis. Thefibroblastistheprimarycelltypeoftheadventitiallayerandcontributestothecontinual reorganization of the extracellular matrix via matrix deposition and secretion of growth factors, chemokines,andinflammatorycytokines[84].Fibroblastsalsoinfluenceandpromotetheinflammatory responsebyfacilitatingleukocyterecruitment,survivalandfunction. Theimportanceofthevascular Antioxidants2017,6,90 9of22 adventitia to IMT and arteriosclerotic disease progression has also recently been highlighted [85]. Compellingevidencenowsuggeststhatthevascularadventitiaisactivatedearlyfollowingvascular injuryandduringIMTprogressionandmayplayanimportantroleinvascularinflammationassociated witharterioscleroticdisease[86]. AdventitialcellsproducealargeamountofNox-derivedROSin responsetovascularinjurythatcanleadtoanexpandedvascularisationthroughthevasavasorumand deliveryofinflammatorycellstotheadventitiaandoutermediaculminatinginvascularhypertrophy andhyperplasia[87]. Figure 4. Simplified schematic of common forms of Nox enzymes in adventitial cells. Nox2 and p22phox are predominant in the adventitia of hypertensive vessels and promote the secretion of monocyte chemoattractant protein-1 (MCP-1) and interleukin 6 (IL-6). Nox1 and Nox4 with Nox4-derivedH O consideredprotectivearealsopresent[87]. 2 2 Earlystudiesrevealedabundantco-localizationofNox2,withmembranep22phoxandcytosolic p47phox and p67phox in aortic vascular adventitia and enrichment of p67phox-dependent Nox activityinculturedadventitialfibroblasts[88]. AdventitialcellsalsoexpressNox1andNox4with Nox4-derivedH O consideredprotective. However,Nox2-derivedROSremainsoneofthemain 2 2 isoformforadventitialROSsignalingwithadventitialleukocytesexhibitingsignificantexpression[37]. Nox-2isenhancedbyseveralstimuliincludinghypoxia,cytokines,hormones,metabolicfactorsand mechanicalinjury[87]. Adventitial Nox2 generated ROS also plays an important role in angiotensin II-hypertension associated IMT by modulating the secretion of monocyte chemoattractant protein-1 (MCP-1) and interleukin6(IL-6)[89].AdventitialNox2isactivatedinhypertensionmodels[90]whileROSsignaling alsopromotesvSMChypertrophyviaaquaporin1andNox1[91]. Thesestudiessuggestaputativerole foradventitia-derivedROSinmedialSMChypertrophyandneointimalhyperplasia. Thesuperoxide anionmetabolite,H O isthelikelyresponsiblefortheadventitia-derivedparacrinesignallingacross 2 2 Antioxidants2017,6,90 10of22 thevesselwallasitishighlystable,cellpermeant,andcapableofactivatingdownstreamsignaling mechanismsinvSMCs,leadingtophenotypicmodulationandde-differentiation[86]. Itiswidelyacceptedthatthefibroblast/myofibroblastisthecellmostresponsibleforinterstitial matrixaccumulationandconsequentstructuraldeformationsassociatedwithadventitialfibrosis[92]. AccumulatingevidencenowsuggeststhatoxidativestressresultinginROSgeneration,mainlyinthe formofsuperoxideandhydrogenperoxide,playsasignificantroleintheinitiationandprogression ofadventitialfibrosis[93]. Moreover,Nox4mediatedROS-inducedfibroblastcellactivationiskey eventwhereitfacilitatesTGF-β1signallingoffibroblastactivationanddifferentiationintoaprofibrotic myofibroblastphenotypeandmatrixproduction[94]. 6. TheRoleofNoxinStemCells Resident stem/progenitor cells are characterized by their unique ability to self-renew and proliferatewhileretainingtheirabilitytodifferentiateintospecializedcellswithinthebody. Thereare severalreportedresidentvascularprogenitorcellsresidinginallthreelayersofthevessel;theintima, media and adventitia, each displaying the ability to differentiate into vascular cell lineages [15]. Theseprogenitorstemcellpopulationsaremultipotentandhavethecapabilityofdifferentiatinginto MSC-likecells[12]. ResidentvascularMSCs-likecellsarepericytesdefinedasmultipotentstromalcells withtheabilitytodifferentiateintocellsassociatedwithmesodermalandneuroectodermallineage includingvSMCs,osteoblasts,adipocytesandchondrocytes[95]. ROS play an important role in dictating the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal whereas increases in ROS productionareassociatedwithstemcellproliferation/differentiation,senescence,andapoptosis[96]. The production of ROS in stem cells is therefore by necessity tightly regulated to maintain tissue homeostasisandrepairbyvariousintrinsicandextrinsicfactors,whichmaybecomealteredleadingto dysregulationofROSproductionundervariouspathologicalconditions. ThepresenceofNoxinstem cellsisthoughttohaveafunctionalroleasO sensorand/orasalow-levelROSproducerandredox 2 messengerforcontrollingcellgrowthanddifferentiation[25]. In order to better understand the differentiation process, several studies have focused on the metabolicchangesthatoccurduringdifferentiation[97,98]. Inanundifferentiatedstate,MSCreside inaspecialmicroenvironmentcalledthestemcellniche. Thepurposeofthis“niche”istokeepcells inanundifferentiated,quiescentstatemaintainingtheirstemness. Forthistohappen,O levelsare 2 keptataminimum. WhenO levelsarekeptlow,thestemcellnicheisforcedtoturntotheuseof 2 analternativeanaerobicmetabolismforenergy[99,100]. This,inturn,resultsinlowlevelsofROS productionduetothelackofavailableoxygenkeepingproliferationactivityataminimumwhilst maintainingthecellscorestemcellpropertiesofself-renewalanddifferentiationabilities. During thetransitionofstemcellsfromtheirundifferentiatedstatewithintheniche,severalchangesoccur. ThenumberofmitochondriapresentinthecellincreasesinresponsetoO levelsleadingtoincreased 2 levelsofROSproduction. Althoughthisgeneralprocessispresentacrossalldifferentiationcells,MSCs displayauniqueredoxpathwaydependingontheirfatesuggestingthatMSCshaveexplicitredox profilesdependingontheirultimatelineagespecificity[101]. ThemainsourceofROSinstemcellsisthemitochondria.Thisoxidativereductionprocessistriggered byaleakageofasmallnumberofelectronsfromtheelectrontransportchain.Thesemitochondrialelectrons reactwithmolecularO resultinginformationofO −,aprecursorforROSgenerationwithinthestem 2 2 cell[102].Theoxidativereductionprocessissuccessfullyachievedthroughtheactivityofseveralvital mitochondrialrespiratorycomplexformationsontheinnermitochondrialmembranespace. Theinitial complex I formation is composed of Nox enzymes and acts as a catalyst during the oxidation of NADPHtoNADP+leadingtotheformationofsuperoxideradicals[102]. ThemainNoxenzymesin MSCsderivedfromadiposetissueresponsibleforthisprocessareNox1and4[103]. Othersourcesof O − maybegeneratedatvaryinglevelsinundifferentiatedhumanMSCsbycomplexIIcomprising 2 of succinate dehydrogenases [99]. The enzyme works by catalysing the oxidation of succinate to
Description: