ebook img

Novel Thermoelectric Materials and Device Design Concepts PDF

327 Pages·2019·13.532 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Novel Thermoelectric Materials and Device Design Concepts

Sergey Skipidarov · Mikhail Nikitin Editors Novel Thermoelectric Materials and Device Design Concepts Novel Thermoelectric Materials and Device Design Concepts (cid:129) Sergey Skipidarov Mikhail Nikitin Editors Novel Thermoelectric Materials and Device Design Concepts Editors SergeySkipidarov MikhailNikitin RusTecLLC RusTecLLC Moscow,Russia Moscow,Russia ThermoelectricPowerGeneration ISBN978-3-030-12056-6 ISBN978-3-030-12057-3 (eBook) https://doi.org/10.1007/978-3-030-12057-3 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Book 1 of book series Thermoelectric Power Generation includes chapters that discussedwaysonhowtocreateeffectivethermoelectricmaterialsformanufactur- inghigh-performancethermoelectricgenerators(TEGs)operatinginlow-,mid-,and high-temperature ranges. The problem is very old and very difficult to solve. Unfortunately,nowadays,weseealackofinnovativeandaffordablen-typeandp- typethermoelectricmaterialsandTEGsonthemarket. The indomitable consumption of fossil fuels has resulted in gigajoules of low-potentialwasteheatandhugeamountofgreenhousegases.Wasteheatenergy, whichisconditionallyafree-of-chargeenergy,isestimatedtobefrom50to70%of theprimaryenergyproducedfromtheburningoffossilfuels.Low-potentialheatcan be generated due to absorption of sunlight as well. So, it is easy to generate waste heat,butdifficulttoconvertitintoelectricalenergy. The efficient recovery of low-potential heat is an important and nontrivial task. Sourcesofsuchheatareplentifullyeverywhere,and,asarule,itissimplydissipated withoutanybenefittothepeople.Thisiscausedbythefactthatlow-potentialwaste heatisstronglylocalizednearheatsources;therefore,thatheatisdifficulttouseina cost-effectivemannerforanintendedpurpose.TEGsaresmall-sizeditemsthatcan be placed as close as possible to heat (thermal) energy sources, which can have temperatures of hundreds of degrees Celsius. It can operate anywhere (including indoors)andatanytimeoftheday.ThesefactorsaredecisiveforapplyingTEGsto recoverlow-potentialheat.Therefore,inpracticalapplications,TEG’sstructurewill be exposed to systematic long-term heavy temperature gradients, mechanical stresses (thermomechanical stresses), and high temperatures on one (hot) side. TEGs,andhencethethermoelectricmaterialsforminglegsofthermocouples,must withstandtheabovementionedshock. Obviously, only materials based on pressed powders and composites can with- stand long time in real heavy thermal and mechanical attacks during TEG exploitation. v vi Preface InTEGs,duetohightemperatures(hundredsofdegreesCelsius)onthehotside and heavy thermomechanical stresses in module, many processes become active, leading to a quick or gradual degradation in the performance of the thermoelectric materials and TEG itself. These degradation processes are, namely, interdiffusion, recrystallization, alloying, dissolution, phase transitions, phase separation, phase segregation, sublimation, oxidation, mechanical damage of legs, commutation and interconnections,andotherphenomena. Authorsofchapterspresenttheirlookonmodernsolutionsofconsideredproblem includingmicrostructuralmanipulation(alloying,nanoprecipitatesandstrains,com- posites,nanoinclusions,multiphaseandall-scalenanocomposites),optimizingcon- centrationofchargecarriers(deep-leveldoping,dynamicdoping),bandengineering (band convergence, resonant states, low effective mass, and deformation potential coefficient), crystal structure defect engineering, potential interface barriers, and solubilitymanipulation. To become attractive and affordable to customers, TEGs should have a service lifeofatleast5000h,withthousandcycleson-off,and,ofcourse,becheapaswell. Thisbookisanattempttoarrangetheinterchangeofresearchanddevelopment results concerned with hot topics in TEGs research, development, and production, including: 1. Trendsintraditionalinorganicmaterials 2. Novelinorganicmaterials 3. Researchresultsininnovativecompositenanomaterials 4. Novel methods and measurement techniques for performance evaluation of thermoelectricmaterialsandTEGs 5. Thermoelectricpowergeneratorssimulation,modeling,anddesign Moscow,Russia SergeySkipidarov MikhailNikitin Contents PartI TrendsinTraditionalInorganicMaterials 1 InvestigatingthePerformanceofBismuth-AntimonyTelluride. . . . 3 ZinoviDashevskyandSergeySkipidarov 2 SnSe:BreakthroughorNotBreakthrough?. . . . . . . . . . . . . . . . . . 23 ChristopheCandolfi,DorraIbrahim,Jean-BaptisteVaney, SelmaSassi,PhilippeMasschelein,AnneDauscher, andBertrandLenoir 3 TinSulfide:ANewNontoxicEarth-AbundantThermoelectric Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 HongWu,XuLu,XiaodongHan,andXiaoyuanZhou 4 SnTe-BasedThermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 WenLi,JingTang,XinyueZhang,andYanzhongPei 5 LeadChalcogenideThermoelectricMaterials. . . . . . . . . . . . . . . . . 83 ShanLi,XinyueZhang,YuchengLan,JunMao, YanzhongPei,andQianZhang 6 HighThermoelectricPerformanceduetoNanoprecipitation, BandConvergence,andInterfacePotentialBarrier inPbTe-PbSe-PbSQuaternaryAlloysandComposites. . . . . . . . . . 105 DiantaGintingandJong-SooRhyee 7 MulticomponentChalcogenideswithDiamond-Like StructureasThermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 DanZhang,GuangshengFu,andShufangWang 8 1-2-2LayeredZintl-PhaseThermoelectricMaterials. . . . . . . . . . . . 159 JingShuai,ShanLi,ChenChen,XiaofangLi,JunMao, andQianZhang vii viii Contents 9 Skutterudites:ProgressandChallenges. . . .. . . . . . . .. . . . . . . .. . 177 GerdaRoglandPeterRogl 10 Half-HeuslerThermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 RanHe,HangtianZhu,andShuoChen PartII NovelInorganicMaterials 11 Polymer-DerivedCeramics:ANovelInorganic ThermoelectricMaterialSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . 229 RakeshKrishnamoorthyIyer,AdhimoolamBakthavachalam Kousaalya,andSrikanthPilla PartIII PerformanceEvaluationandMeasurementTechniques 12 GrainBoundaryEngineeringforThermalConductivity ReductioninBulkNanostructuredThermoelectricMaterials. . . . . 255 AdamA.Wilson,PatrickJ.Taylor,DanielS.Choi, andShashiP.Karna 13 NovelMeasurementsandAnalysisforThermoelectricDevices. . . . 277 PatrickJ.Taylor,AdamA.Wilson,TerryHendricks, FivosDrymiotis,ObedVillalpando,andJean-PierreFleurial PartIV DeviceDesign,ModelingandSimulation 14 ModelingandOptimizationofThermoelectricModules forRadiantHeatRecovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Je-HyeongBahkandKazuakiYazawa Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Part I Trends in Traditional Inorganic Materials Chapter 1 Investigating the Performance of Bismuth-Antimony Telluride ZinoviDashevskyandSergeySkipidarov Abstract Weprovidetherationaleforpossiblesignificantimprovingefficiencyof low-temperature thermoelectric generators (TEGs) based on bismuth-antimony tel- luride(Bi2Te3)x(Sb2Te3)1(cid:1)xternaryalloys. It has been shown by experiments that using in TEGs of p-type legs made of (Bi2Te3)x(Sb2Te3)1(cid:1)x material with orientation alternative to traditional, i.e., when cleavageplanesoflegsaretransversetoheatfluxdirection,resultsinincreasingin thermoelectricefficiencybyanaverageof25%inthetemperaturerangefrom100(cid:3)C to350(cid:3)C. 1.1 Introduction Development and wide application of thermoelectric generation as user-friendly directenergyconversiontechnologyarelimitedmainlybytwofactors: – Relativelylowconversionefficiencyofthermoelectricgenerators(TEGs) – Limitedresourcesofthermoelectricmaterialsforlarge-scaleproductionofhigh- performanceTEGsforindustrialapplications Researchersandengineersfocustheireffortsonsolvingtheseproblemsby: – Increasing in thermoelectric efficiency Z in a wide range of operating tempera- tures50–1000(cid:3)C – Research and development activity and arranging production of novel high- performance thermoelectric materials consisting of elements which are in abun- danceontheEarth Unfortunately, situation with candidates for new high-performance materials is far from satisfactory: there are some potential effective candidates for using in mid-temperature range (300–550 (cid:3)C), but there are no currently high-performance candidates for low-temperature range (below 300 (cid:3)C) which are able to replace Z.Dashevsky·S.Skipidarov(*) RusTecLLC,Moscow,Russia e-mail:[email protected] ©SpringerNatureSwitzerlandAG2019 3 S.Skipidarov,M.Nikitin(eds.),NovelThermoelectricMaterialsandDeviceDesign Concepts,https://doi.org/10.1007/978-3-030-12057-3_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.