ebook img

Novel scenario for production of heavy flavored mesons in heavy ion collisions PDF

0.48 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Novel scenario for production of heavy flavored mesons in heavy ion collisions

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2017 7 1 0 Novel scenario for production of heavy flavored mesons 2 in heavy ion collisions n a J 5 B.Z.Kopeliovich1a,J.Nemchik2,3,I.K.Potashnikova1,andIvanSchmidt1 2 1DepartamentodeFísica,UniversidadTécnicaFedericoSantaMaría;and CentroCientífico-TecnológicodeValparaíso;Casilla110-V,Valparaíso,Chile ] h 2CzechTechnicalUniversityinPrague,FNSPE,Brˇehová7,11519Prague,CzechRepublic p 3InstituteofExperimentalPhysicsSAS,Watsonova47,04001Kosice,Slovakia - p e Abstract. The observed strong suppression of heavy flavored hadrons produced with h high p , is caused by final state interactions with the created dense medium. Vacuum [ T radiationofhigh-p heavyquarksceasesatashorttimescale,asisconfirmedbypQCD T 1 calculationsandbyLEPmeasurementsofthefragmentationfunctionsofheavyquarks. v Productionofaheavyflavoredhadronsinadensemediumisconsiderablydelayeddue 1 topromptbreakupofthehadronsbythemedium. Thiscausesastrongsuppressionof 2 theheavyquarkyieldbecauseofthespecificshapeofthefragmentationfunction. The 1 parameter-freedescriptionisinagoodaccordwithavailabledata. 7 0 . 1 0 1 Introduction 7 1 : Inthepopularscenario,explainingjetquenching,observedinheavyioncollisions,byinducedenergy v lossinthehotmediumcreatedinthenuclearcollision, amuchweakersuppression, comparedwith i X lighthadrons,wasanticipated[1]forheavyflavors,causedbythedead-coneeffect. r Later, however, measurements revealed similar magnitudes of suppression for heavy and light a hadrons. Hereweproposeanalternativescenarioforproductionofheavyflavoredhadronsfromahot medium. Thenovelmechanismwellexplainsdatainaparameter-freeway. 2 Hard parton collision High-p parton-partonscatteringleadstoformationof4conesofgluonradiation:(i)thecolorfieldof T thecollidingpartonsisshakenoffinforward-backwarddirections;(ii)thescatteredpartonscarrying no field up to transverse frequences k < p , are regenerating the lost components of their field, T radiatinggluonsandformingtwohigh-p jets. Thisprocessisillustratedinfigure1. T Thecoherencelength/timeofgluonradiationbyaquarkofmassm andenergyEhastheform, q 2Ex(1−x) l = , (1) c k2+x2m2 q ae-mail:[email protected] EPJWebofConferences Figure 1. High-p parton T scattering. The two forward- Figure 2. Radiational energy backwardjetsareformedbythe shaken-off gluon fields. The loss of light, c and b quarks Figure3.Fractionalradiational hloigsthfi-peTld,praardtoiantsinrgeggelunoernast.e the h(cid:113)apv2in+gmi2niti=al 1e5nGeregVy, Eversu=s eqnuearrgky, plroosdsucbeydawihthigdhi-ffpeTrebn-t T q initialenergies. pathlength. where xisthefractionallight-cone(LC)momentumoftheradiatedgluon. Apparently,firstofallare radiatedandregeneratedgluonswithsmalllongitudinalandlargetransversemomenta. The peculiar feature of these jets is closeness of their initial virtuality, imposed by p , and en- (cid:113) T ergy E = p2 +m2. Therefore, increasingthejetenergyoneunavoidablyintensifiesradiationand T q dissipationofenergy. Itisinstructivetoevaluatetheamountofenergy,radiatedafterthehardcollisionbythescattered partonoverpathlengthL[2], (cid:90)p2T (cid:90)1 dn ∆E (L)= E dk2 dxx g Θ(L−l ), (2) rad dxdk2 c Λ2 0 wheretheradiationspectrumreads, dn 2α (k2) k2[1+(1−x)2] g = s . (3) dxdk2 3πx [k2+x2m2]2 q The results of calculations for absolute and fractional radiated energy loss are presented in fig- ures 2 and 3 respectively. One can see that radiation of heavy quarks ceases shortly. Only a small fractionoftheinitialquarkenergy,∆z = ∆E /E,isradiatedevenafteralongtimeinterval. Thisis rad quitedifferentfromthehadronizationpatternforlightquarks,whichkeepradiatinglongtimeandlose mostoftheinitialenergy(seefigure2). Therefore, thefinal Bor Dmesonscarryalmostthewhole momentumofthejet. Thisexpectationisconfirmedbythedirectmeasurementsofthefragmentation functionsine+e− annihilation[3]. Theexampleoftheb→ Bfragmentationfunctiondepictedinfig- ure4indeedshowsthatthedistributionstronglypeaksatz ∼ 0.85. Asimilarbehaviorwasobserved alsoforthec→ Dfragmentationfunction[4]. Atthesametimethefragmentationfunctionsoflight quarkstolightmesonsarewellknowntofallsteadilyandsteeplyfromsmallztowardsz=1[5] 3 Production length of heavy mesons In what follows we mainly consider for concreteness B-meson production. If a B-meson (or a bq¯ dipole) is produced at the length l , the momentum of Bequals to the momentum of the b-quark at p ICNFP2016 Q h − q q } X Figure 6. Redistribution of Figure 4. The b → B fragmenta- the energy inside a Qq¯ tion function, from e+e− annihila- dipole by gluon radia- tion. The curve is the DGLAP fit Figure5.Thel -distributionof tion by Q absorbed by p [3]. B-mesonsproducedwithdiffer- q¯. entp inppcollisions. T thispoint. Thefractionofthemomentumcarriedbythelightqisverysmall,x≈m /m ,i.e. isabout q b 5%. We neglect this correction in what follows. Since the radiational vacuum energy loss dE/dl is known, we can directly relate the production length distribution W(l ) to the b → B fragmentation p functionD (z), b/B (cid:12) dW = ∂∆pb+/pb+(cid:12)(cid:12)(cid:12) D (z), (4) dlp ∂l (cid:12)(cid:12)l=lp b/B wheretheproductionlengthprobabilitydistributionandthefragmentationfunctionarenormalizedto unity,(cid:82)∞dl dW/dl =1and(cid:82)1dzD (z)=1respectively;z≡ pB/pb =1−∆pb(l )/pb;and 0 p p 0 b/B + + + p + (cid:90)lp dpb(l) ∆pb(l )= dl + . (5) + p dl 0 (cid:113) The rate of LC momentum loss is related to energy loss in accordance with pb = E + E2−m2. + b Thus,knowledgeofD (z)anddE/dlgivesadirectrelationbetweenzandl . Asfarasweareable b/B p tocalculate∆z(L), wecanextracttheproductionlengthof B-mesonsdirectlyfromdatafor D (z). b/B The results for dW/dl are plotted vs l in figure 5. Remarkably, the mean value of l shrinks with p p p rising p ,likeithappensforproductionofhigh-p lighthadrons[6]. T T Concluding, the fragmentation of a b-quark in vacuum looks like radiational energy loss up to a point l = l , where it picks up a light q¯ forming a colorless bq¯ dipole, which performs a direct p transitiontoBwithoutlosstheb-quarkmomentum. 4 In-medium fragmentation While in vacuum production of B at l = l is the end of the story, in a dense medium the B-meson p (or bq¯ dipole) can easily breakup interacting with the medium, and release the b-quark, which will continuehadronizationandpick-upanotherlightantiquark,andsoon. Suchrecreationsandbreakups ofB-mesonswillbemultiplyrepeated,untilthefinalproductionofthedetectedB-meson,whichwill survive escaping from the medium. We should understand what happens with the b-quark, while it propagateseitherasaconstituentofabq¯ dipole,orisreleasedandislosingenergytohadronization. Afterthecoloroftheb-quarkisneutralizedbyq¯,thedipolepropagateswithoutradiationandloss of energy. However, if the b-quark did not finish regeneration of its color field, it keeps radiating EPJWebofConferences insidethedipole. Theonlydifferencewiththeprecedingradiationprocessbyasinglequark,isthat theradiationinsidethedipoleisreabsorbedbyaccompanyingq¯,asisillustratedinfigure6. Thus,the bq¯ dipole does not radiate, its energy remains constant, however the b-quark energy is redistributed insidethedipole,deceleratingtheb-quarkandacceleratingtheq¯. Aswasemphasisedaboveanddemonstratedinfigures2,3,perturbativeradiationofaheavyquark ceasesshortly, withinadistanceofabout1fm(foratypical p range). Onemightthink, lookingat T figure 2 that on longer distances the quark propagates like a free particle with a constant energy. However, this would certainly contradict confinement. A popular model for the non-perturbative mechanismofenergylossisthestringmodelwithdE /dl=−κ,wherethestringtensioninvacuum str isκ≈1GeV/fm. While in vacuum a heavy flavored meson is produced on a very short length scale, l (cid:28) 1fm, p inahotmediumstrongabsorptionpushestheproductionpointtothedilutemediumsurface. There- fore non-perturbative energy loss becomes important for such a long-lasting hadronization process, which is continuing throughout the whole area occupied by the medium. However, in a deconfined hotmediumnostringcanbeformed. Thereforethemagnitudeofthestringtension,andevenitsvery existence,dependsonthemediumtemperature. Werelyonthemodel[7–9]basedonthelatticesim- ulations, of temperaturedependence of the string tension, κ(T) = κ(1−T/T )1/3, where thecritical c temperatureisfixedatT =280MeV. c Thus,thefullrateofenergylosscomesfrombothperturbativeandnonperturbativemechanisms, dE dE = rad −κ(T). (6) dl dl Aftertheb-quarkhaspromptlyradiatedthewholespectrumofgluonsanddecreaseditsvirtuality downtothesoftscale,thestringbecomestheonlysourceofenergyloss.Ifthebquarkpick-upalight q¯ theyareconnectedbyastring,whichisalsodeceleratingtheb-quarkandacceleratingtheq¯ witha rategivenbythestringtension. Suchanexchangeofenergybetweenbabdq¯ issimilartowhatwe observedaboveforperturbativeradiation. Sowecanconcludethattheb-quarkisconstantlyloosing energywitharate,whichdoesnotdependonwhetheritpropagatesalone,orasaconstituentofabq¯ dipole. Theprocesswillfinalizeonlyafterthelastrecreationofa B-meson,whichescapesfromthe medium without further breakups. Apparently, the final B-meson will have a reduced energy com- paredwitha B-mesonproducedatl = l invacuum,whereithasnopossibilityforfurtherbreakups. p In other words, with the same starting momentum pb the final momentum of the B coming out of + a medium, will be smaller than in vacuum. This causes suppression because of steeply falling p T distributionoftheperturbativelyproducedb-quarks,andduetothesteepfall-offoftheb-quarkfrag- mentationfunctionatsmallz,asisshowninfigure4. Noticethatabovedescriptionoffragmentation andtime-dependentenergylossholdsforcharmquarksaswell. 5 Where does the suppression come from? ThecrosssectionofproductionofaB-mesonwithmomentum p in ppcollisionreads, T (cid:90) dσ(pp→ BX) dσ(pp→ QX) 1 = d2pb D (z), (7) d2p + d2pb z b/B T + (cid:113) where pb = pb + (pb)2+m2istheinitialLCmomentumoftheb-quark; + T T b (cid:113) z≡ (pT + p2T +MB2) =1− ∆pb+(lp). (8) pb pb + + ICNFP2016 SimilarrelationholdsforAAcollisions,howeverlAA,theproductionlengthofthefinal,lastcreated p colorless Qq¯ dipole,islongerthanin ppcollisions,soLCmomentumloss∆pb islarger,andz is + AA smaller. Besides,the B-mesonproductioncrosssectionacquiresasuppressionfactorS(lAA),whichisthe p survival probability of the Qq¯ dipole, created at the point lAA, to escape the medium without being p broken-up,andtodevelopthehadronicwavefunction. ThusinAAcollisionEq.(7)ismodifiedas, (cid:90) dσ(AA→ BX) dσ(pp→ QX) 1 = d2pb D (z )S(lAA), (9) d2p + d2pb z b/B AA p T + AA withz =1−∆pb(lAA)/pb. AA + p + ThelastfactorS(lAA)in(9)isanimportantplayer,makingthehadronizationprocessesin ppand p AAdifferent. Indeed,ifthisfactorwereunity,S =1,thentherewouldbenoreasontodelayproduc- tion point to a longer distance lAA compared with hadronization in vacuum, equation (8). However, p absorptionterminatesthecolorlessbq¯ dipolesproduced"tooearly",soitpushestheproductionpoint tothedilutedsurfaceofthehotmedium,makingtheproductionlengthlong,lAA (cid:29) l ,andz (cid:28) z, p p AA resultinginastrongsuppressionofthefragmentationfunctionD (z )accordingtofigure4. b/B AA Thus,thetwolastfactorsin(9)workinoppositedirections,causingsuppressionofproducedBor Dmesons: (i)ThefragmentationfunctionD (z),peakingatlargez(fig.4),tendstoreducemomentumloss b/B ∆pb(lAA),selectingshorterlAA. + p p (ii)However,ashorterlAA meansalongerpathlengthforfurtherpropagationofthecolorlessQq¯ p dipoleinthemedium,increasingitschancetobrake-up. 6 Attenuation of a Qq¯ dipole in a hot medium AQq¯ pairproducedperturbativelywithinitiallysmallseparation,quicklyexpands. Indeed,thelight quarkinthe Qq¯-mesoncarriesatinyfractionofthemomentum, x ∼ m /m . Therefore,evenifthe q Q producedbq¯dipolehasasmalltransverseseparation,itssizeexpandswithahighspeed,enhancedby 1/x. TheformationtimeoftheB-mesonwavefunction(inthemediumrestframe)isveryshort, (cid:113) p2 +m2 tB = T B , (10) f 2m ω B where ω = 300MeV is the oscillator frequency, which determines the splitting of the ground state and the first radial excitation. For instance at p = 10GeV the B meson is formed on a distance T lB =0.8fm. f Thus,notasmall-sizer2 ∼1/p2 dipole,likeforlighthadronproduction[10],butanearlyformed T largeQq¯ dipoleispropagatingthroughthemedium. Itcanbeeasilybroken-up,soitsmeanfreepath is quite short. Indeed, the B-meson is nearly as big as a pion, (cid:104)r2 (cid:105) = 0.378fm2 [11]. The mean ch B freepathofsuchamesoninahotmediumisveryshort,λ ∼(cid:104)qˆ(cid:104)r2(cid:105)(cid:105)−1,where(cid:104)r2(cid:105)=8(cid:104)r2 (cid:105)/3. The B T T ch so called transport coefficient qˆ is the rate of broadening of the quark transverse momentum in the medium,thisiswhyitcontrolsthedipoleabsorptioncrosssection. Forinstance,atqˆ = 1GeV2/fm (compare with [10]) the mean free path λ = 0.04fm, i.e. the b-quark propagates through the hot B medium, frequently picking up and losing light antiquark comovers. Meanwhile the b-quark keeps losingenergywitharate,enhancedbymedium-inducedeffects. Eventuallythedetected B-mesonis formedandcansurviveinthediluteperipheryofthemedium. EPJWebofConferences 6.1 ThesuppressionfactorS(lAA) p Thus,thefinallydetectedB-mesonisproducedatl=lAA.Inthelowenergylimittheformationlength p (10)isveryshortandonecanusetheeikonalGlauberapproximation,   S(lApA)=exp−(cid:104)r22B(cid:105)(cid:90)∞dlqˆ(l) , (11) lApA where(cid:104)r2(cid:105)≡(cid:104)r2(cid:105) =8(cid:104)r2 (cid:105) /3. B T B ch B Incontrast,inanotherextreme,thehigh-energylimit,thedipolesizeis"frozen"byLorentztime dilation. Then,   S(lApA)=(cid:90) d2rdx |ΨB(r,x)|2exp−r22 (cid:90)∞dlqˆ(l) , (12) lApA whereΨ (r,x)istheLCwavefunctionoftheB-meson. B Thegeneraldescriptioninterpolatingbetweenthesetwolimits,isthepath-integraltechnique[12], summingallpathsoftheQandq¯. Theresulthastheform, (cid:12) (cid:12) (cid:12)(cid:12)(cid:90)1 (cid:90) (cid:12)(cid:12)2 (cid:12) (cid:12) S(l1,l2)∝(cid:12)(cid:12)(cid:12) dx d2r1d2r2Ψ†M(r2,x)GQq¯(l1,(cid:126)r1,x;l2,(cid:126)r2,x)Ψin(r1,x)(cid:12)(cid:12)(cid:12) , (13) (cid:12) (cid:12) (cid:12) (cid:12) 0 where in the case under consideration l = lAA, l → ∞. The initial distribution amplitude 1 p 2 Ψ (r ,x) is taken in the Gaussian form with mean separation (cid:104)r2(cid:105) = (cid:104)r2(cid:105). The Green function in 1 1 B G (l ,(cid:126)r ,x;l ,(cid:126)r ,x)describingpropagationofthedipolebetweenlongitudinalcoordinatesl , l with Qq¯ 1 1 2 2 1 2 initialandfinalseparations(cid:126)r and(cid:126)r respectively,satisfiesthe2-dimensionalLCequation, 1 2 d (cid:34) ∆ (cid:35) i G (l ,(cid:126)r ,x;l ,(cid:126)r ,x)= − r2 +V (l ,(cid:126)r ) G (l ,(cid:126)r ;l ,(cid:126)r ). (14) dl Qq¯ 1 1 2 2 2p x(1−x) Qq¯ 2 2 Qq¯ 1 1 2 2 2 T TheimaginarypartoftheLCpotentialisresponsibleforabsorption, ImV (l,(cid:126)r) = −qˆ(l)r2/4. The Qq¯ realpartisthephenomenologicalCornell-typepotential,adjustedtoreproducethemassesanddecay constantsforBandDmesons[11,13]. 7 Results While the employed phenomenology allows a parameter-free description of data, one parameters is unavoidably present in such kind of analysis. This is the transport coefficient qˆ, which cannot be reliably predicted, in particular its coordinate and time dependence. We employ here the popular model[14], qˆ l n ((cid:126)b,(cid:126)τ) qˆ(l,(cid:126)b,(cid:126)τ)= 0 0 part Θ(l−l ), (15) l n (0,0) 0 part where(cid:126)b is the impact parameter of nuclear collision,(cid:126)τ is the impact parameter of the hard parton- partoncollisionrelativetothecenterofoneofthenuclei,n ((cid:126)b,(cid:126)τ)isthenumberofparticipants,and part qˆ istherateofbroadeningofaquarkpropagatinginthemaximalmediumdensityproducedatimpact 0 ICNFP2016 parameterτ = 0incentralcollisions(b = 0)atthetimet = t afterthecollision. Thetimeinterval 0 after the hard collision is t = l/v where v is the speed of the Qq¯ dipole. We fixed the medium Qq¯ Qq¯ equilibrationtimeatt =1fm. 0 In such a scheme qˆ is the only fitted parameter, which, however, has been already determined 0 from other hard processes in AA collisions. In particular, in the analysis [10] of data on quenching √ oflighthigh-p hadronsitwasfoundqˆ = 1.6GeV2/fmat s = 200GeVandqˆ = 2GeV2/fmat √ T 0 0 s=2760GeV. Differentsourcesoftime-dependentmedium-inducedenergylosswereadded,includingradiative andcollisionalmechanisms[15]. Medium-inducedenergylossismuchsmallerthanthevacuumone, anddonotproduceadramaticeffect. Theyareparticularlysmallforheavyflavors. TheresultsofcalculationsforB-mesonproductionarecomparedwithdataonindirectproduction of J/ψ,originatingfrom Bdecays. Comparisonismadevs p andcentrality. Infigure7thedashed T curve is calculated with pure vacuum energy loss (radiative plus string) neglecting induced energy loss for qˆ = 2.5GeV2/fm. The upper and bottom solid curves are calculated with qˆ = 2.5 and 0 √ 0 3GeV2/fmrespectively,at s=2.76TeVincomparisonwithdata[16]. 1 1 Pb-Pb √—s = 2.76 TeV Pb-Pb √—s = 5.02 TeV NN NN B ⇒ J/Ψ, 0 - 100 %, CMS non-prompt J/Ψ, 0 - 80 %, ATLAS 0.75 0.75 A A RA0.5 RA0.5 0.25 0.25 0 0 2 10 10 10 p (GeV) p (GeV) T T 1 1 Pb-Pb √—s = 2.76 TeV Pb-Pb √—s = 5.02 TeV NN NN B ⇒ J/Ψ, 6.5 < p < 30 GeV, CMS T 0.75 0.75 A A RA0.5 RA0.5 0.25 0.25 non-prompt J/Ψ, 9 < p < 40 GeV, ATLAS T 0 0 0 100 200 300 400 0 100 200 300 400 N N part part Figure7. ComparisonwithCMSdataforindi- √ rectJ/ψproduction[17]at s=2.76TeV.The √ dashedcurvesarecalculatedneglectinginduced Figure8. ThesameasinFig.7, butat s = energyloss.Theupperandbottomsolidcurves 5.02TeV.Theupperandbottomcurvesarecal- arecalculatedwithqˆ =2.5and3GeV2/fmre- culatedwithqˆ =2.6and3.2GeV2/fmrespec- 0 0 spectively. tively.Dataarefrom[17]. EPJWebofConferences Figure 8 demonstrate comparison with recent data from ATLAS [17]. The upper and bottom √ curves are calculated with qˆ = 2.6 and 3.2GeV2/fm respectively, at s = 5.02TeV. The lack of 0 riseofR athigh p indatalooksunusual,comparedwiththetypicalbehaviorofotherhadrons,so AA T wewouldrestrainofclaimingaseriousdisagreement. Notice that the rise of qˆ with energy is natural, but its value, should not depend on the process 0 used to measure it. However, different analyses of different reactions rely on many simplifications andmodel-dependentassumptions. Therefore,itwouldbenaivetoexpectexactcorrespondenceofqˆ 0 valuesextractedfromdataondifferenthardprocesses. Thevaluesfoundhereareprettyclosetothose extractedin[10]fromdataonhigh-p productionoflighthadrons. T The approach developed here can also be applied to production of D-mesons. The results are comparedwithdatainfigures9and10vs p andcentrality. T 1.25 1 Pb-Pb √—sNN = 2.76 TeV Pb-Pb √—s = 5.02 TeV NN 1 D mesons, 0 - 7.5 %, ALICE 0.8 D mesons, CMS D mesons, 0 - 10 %, CMS 0.75 0.6 A A A A R R 0.5 0.4 0.25 0.2 0 - 10 % 0 0 2 2 10 10 1 10 10 p (GeV) T 1 Pb-Pb √—s = 2.76 TeV NN D mesons, 8 < pT < 16 GeV, ALICE 0.8 0.75 D mesons, 8 < pT < 16 GeV, CMS 0.6 A A RA0.5 RA 0.4 0.25 0.2 0 - 100 % 00 100 200 300 400 01 10 102 N part p (GeV) T Figure 9. The same as in figure 7, but for √ D-mesons at s = 2.76TeV. Calculations Figure 10. The same as in figure 9, but at √ are done with the same values of qˆ = 2.5 s=5.02TeVforcentralities0-80%andmin- 0 and 3GeV2/fm. Data are from [18–20] and imum bias events. Data from CMS measure- [21,22]. ments[23]. Notice that c-quarks radiate in vacuum much more energy than b-quarks, while the effects of absorptionofcq¯andbq¯dipolesinthemediumaresimilar.Therefore,D-mesonsaresuppressedinAA collisionsmorethanB-mesons. ICNFP2016 8 Summary Fragmentationofhigh-p heavyquarksexposenontrivialfeatures. T • Heavyandlightquarksproducedinhigh-p partoniccollisionsradiatedifferently.Heavyquarksre- T generatetheirstripped-offcolorfieldmuchfasterthanlightones,andradiateasignificantlysmaller fractionoftheinitialenergy. • This peculiar feature of heavy-quark jets leads to a specific shape of the fragmentation functions. Differentlyfromlightflavors,theheavyquarkfragmentationfunctionsstronglypeakatlargefrac- tionalmomentumz,i.e. theproducedheavy-lightmeson,BorD,carrythemainfractionofthejet momentum. Thisisaclearevidenceofashortproductiontimeofheavy-lightmesons. • Contrarytothepropagationofasmallq¯qdipole,whichsurvivesinthemediumduetocolortrans- parency,aq¯Qdipolepromptlyexpandstoalargesize. Suchabigdipolehasnochancetosurvive intactinahotmedium. Ontheotherhand,abreakupofsuchadipoledoesnotsuppressdirectlythe productionrateofq¯Qcolorlessdipoles,butincreaseenergylossprecedingthefinalproductionofa heavyflavoredmeson. Thisisdifferentfromthescenarioofhigh-p productionoflightq¯qmesons T [10]. • Data for production of high-p B and D mesons are explained in a parameter-free way. The ex- T tractedvaluesofthetransportcoefficientagreewiththeresultsofpreviousanalyseswithinunavoid- ableuncertainties,relatedtoemployedsimplificationsandmodeldependentassumptions,madein thecalculations. • We havedisregarded sofar thesmall initial statesuppression ofheavy flavorsdue tohigher twist heavydipoleattenuationandleadingtwistshadowing[24]. Inclusionoftheseeffectwillleadtoa smalldecreaseofthevaluesofqˆ extractedfromtheanalysis. 0 Acknowledgements ThisworkwassupportedinpartbyFondecyt(Chile)grants1130543,1130549,1140842,1140377,byProyecto BasalFB0821(Chile),andbyCONICYTgrantPIAACT1406(Chile). J.N.workwaspartiallysupportedby thegrant13-20841SoftheCzechScienceFoundation(GACˇR),bytheGrantMŠMTLG15001,bytheSlovak ResearchandDevelopmentAgencyAPVV-0050-11andbytheSlovakFundingAgency,Grant2/0020/14. References [1] Y.L.DokshitzerandD.E.Kharzeev,Phys.Lett.B519,199(2001);[hep-ph/0106202]. [2] B.Z.Kopeliovich,I.K.PotashnikovaandI.Schmidt,Phys.Rev.C82,037901(2010). [3] B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Phys. Rev. D 77, 014011 (2008); [arXiv:0705.4392[hep-ph]]. [4] T. Kneesch, B. A. Kniehl, G. Kramer and I. Schienbein, Nucl. Phys. B 799, 34 (2008); [arXiv:0712.0481[hep-ph]]. [5] B.A.Kniehl,G.KramerandB.Potter,Nucl.Phys.B597,337(2001);[hep-ph/0011155]. [6] B.Z.Kopeliovich,H.-J.Pirner,I.K.PotashnikovaandI.Schmidt,Phys.Lett.B662,117(2008). [7] H.Ichie,H.SuganumaandH.Toki,Phys.Rev.D52,2944(1995); [8] H.Toki,S.Sasaki,H.IchieandH.Suganuma,Austral.J.Phys.50,199(1997);[hep-ph/9602367]. [9] H.Ichie,H.SuganumaandH.Toki,Phys.Rev.D54,3382(1996);[hep-ph/9602412]. [10] B. Z. Kopeliovich, J. Nemchik, I. K. Potashnikova and I. Schmidt, Phys. Rev. C 86, 054904 (2012);[arXiv:1208.4951[hep-ph]]. EPJWebofConferences [11] C.W.Hwang,Eur.Phys.J.C23,585(2002);[hep-ph/0112237]. [12] B.Z.KopeliovichandB.G.Zakharov,Phys.Rev.D44,3466(1991). [13] M.Z.Yang,Eur.Phys.J.C72,1880(2012);[arXiv:1104.3819[hep-ph]]. [14] X. F. Chen, C. Greiner, E. Wang, X. N. Wang and Z. Xu, Phys. Rev. C 81, 064908 (2010); [arXiv:1002.1165[nucl-th]]. [15] R.Baier,Nucl.Phys.A715,209(2003);[hep-ph/0209038]. [16] S.Chatrchyanetal.(CMSCollaboration);JHEP1205,063(2012);arXiv:1201.5069[nucl-ex]. CMS-PAS-HIN-12-014. [17] ATLASNOTE:"Studyof J/Ψ → µ+µ− andΨ(2S) → µ+µ− productionwith2015Pb+Pbdata √ √ at s = 5.02TeVand ppdataat s = 5.02TeVwiththeATLASdetector"; ATLAS-CONF- NN 2016-109(2016). [18] A.Dubla(fortheALICECollaboration)"Measurementsofheavy-flavournuclearmodification √ factorandellipticflowinPb-Pbcollisionsat s =2.76TeVwithALICE",QuarkMatter2015, NN Sep.27-Oct.3,2015,Kobe,Japan. [19] J.Adametal.(ALICECollaboration);JHEP03,081(2016);arXiv:1509.06888[nucl-ex], CERN-PH-EP-2015-25. [20] J.Adametal.(ALICECollaboration);JHEP1511,205(2015)arXiv:1506.06604[nucl-ex], CERN-PH-EP-2015-151. [21] JianSun(fortheCMSCollaboration);"OpenHeavyFlavorMeasurementsinHeavyIonColli- sionswithCMS",QuarkMatter2015,Sep.27-Oct.3,2015,Kobe,Japan. [22] S.Chatrchyanatal.(CMSCollaboration);"NuclearModificationFactorofpromptD inPb-Pb √ 0 Collisionsat s =2.76TeV"CMS-PAS-HIN-15-005. NN [23] A.M.Sirunyanetal.(theCMSCollaboration) D0 mesonnuclearmodificationfactorin Pb-Pb √ collisionsat s =5.02TeV",CMSPASHIN-16-001. NN [24] B.Z.KopeliovichandA.V.Tarasov,Nucl.Phys.A710,180(2002)[hep-ph/0205151].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.