RSC Advances PAPER View Article Online View Journal | View Issue Novel pathway to produce high molecular weight ce. kraft lignin–acrylic acid polymers in acidic n M. Lice Citethis:RSCAdv.,2018,8,12322 suspension systems† Ad 2:20:24 Unporte Fangong Kong,ab Shoujuan Wang,*ab Weijue Gaob and Pedram Fatehi *b 023 1n 3.0 Kraftlignin(KL)producedinkraftpulpingprocesshasalowmolecularweightandsolubility,whichlimitsits 2o on 2/14/Attributi asupsppliecnastiioonnisnysintedmusttroy.pFroordtuhceefiarswtatitmere,soKlLubwleaslipgonliynm–AeArizpeodlywmitehrawcirtyhlicaahciigdh(AmAo)liencuanlaracwideiicghatqiuneothuiss oaded mons rweoarckt.ioTnhceopnodliytimonesrizoantitohnerceaarcbtoioxnylawteasgrcoaurpriecdonotuetntusainndgmK2oSle2Ocu8laarswaenigihntitoiaftorer,sualntadntthliegnininflupeonlycmeeorsf wnlom was systematically investigated. The mechanism of polymerization of KL and AA was discussed Doe C fundamentally. The resulting lignin–AA polymer was characterized by Fourier Transform Infrared 18. ativ spectrophotometry (FTIR), proton nuclear magnetic resonance (1H-NMR) and elemental analyses. The 9 March 20under a Cre rumensodulealtrrsraasnhtiooaw,c0ied.di1c5tehmnaovtilrtohLne(cid:1)m1poehfneltni.goUnliincndhceyordntrchoeexnyctlroagntridooiuntip,o3n(Pshho-afOn1dH.58)0wcot(cid:3)%nCt,eotnfhteinoictfiaaKrtbLoorp,xry3ol.a5mteootfgerpdoHut,ph1ec0op.0notloeymfntAeaArin/zldaigttinohinne n 2ed molecularweightofthepolymerwere7.37mmolg(cid:1)1and7.4(cid:4)105gmol(cid:1)1,respectively.Thelignin–AA Published ocle is licens RADceOccIee:pi1vt0ee.dd10123s2t9nD/dce7Mcraea1mr2cb9he72r1h0210817 CflpoooclmycmpuaelarrteiowdnawspitwehraftpoeorrmlysaAonAlcu,ebtlheoefaltilgiganni1nin0––AgAAALp(cid:1)po1olyclmyomnecererwnitanrsataiaonnmaaolunrmedienaffiiupcmHienhotixgiflhdoeecrcstuuhlsaapnnetn4fs.o5ior.nFauluwrtmahseinrimeuvmoarlueoa,xtteihddee. Article. This arti rsc.li/rsc-advances suspension,whichshowsitspotentialtobeusedasagreenflocculantinindustry. s ces Introduction benecial purposes.7 One of these modications is the poly- c A merization of lignin with functional monomers, which can n pe Lignin is a natural biomacromolecule, found in wood and increase both the molecular weight and number of functional O vascularplants.Over60milliontonsofligninisproducedinthe groupsonligninstructure.Chenetal.8producedapolymerby pulp and paper industry annually in the world.1 Among tech- reacting lignosulfonate with 1-ethenylbenzene to enhance nicalligninsproduced,kraligninisthemostdominantone, thermal stability and molecular weight of the polymer. The but is mainly incinerated as a low cost fuel in the pulping polymerization of lignosulfonate with vinyl monomers, i.e., industry leading to the waste of resources and growing envi- acrylic acid, acrylonitrile, and methyl methacrylate, was also ronmentalproblems.2,3Withthedepletionoffossilfuelandthe studiedinaqueousororganicsolventsinthepastviachemical improvement of environmental awareness, greater endeavors radical starters9–12 or chemo-enzymatic starters,13 in order to have been made on developing lignin-based materials. producehighmolecularweightproductswithhighhydrophilic However,kraligninhasnotyetbeenutilizedeffectively.4,5 or hydrophobic properties. Meister et al.14,15 synthesized acryl- Lignin is a highly stable and complex compound with amide with kra lignin in dioxane solution and used it as a three-dimensional aromatic structure formed from three a drilling mud additive. In another report, 1-phenylethylene– phenylpropanoid monomer units of guaiacyl, syringyl and p- kra lignin polymer was produced in dimethyl sulfoxide solu- hydroxyphenyl,connectedbyetherandcarbon–carbonbondin tion and used as an oil recovery agent. However, organic an irregular form.6 Various modication techniques were solvents, such as dioxane and dimethyl sulfoxide, were gener- carriedoutinthepasttoproducenewlignin-basedproductsfor ally used for facilitating the homogeneous polymerization of kraligninand other monomers. However,these solvents are usually toxic, expensive and may need a complex recovery aKeyLaboratoryofPulpandPaperScienceandTechnologyofMinistryofEducation, processaeruse,whichhamperstheirpracticalapplicationin China,QiluUniversityofTechnology,Jinan,250353,China industry. bChemicalEngineeringDepartment,LakeheadUniversity,ThunderBay,ON,P7B5E1, In the past, the polymerization of lignin in aqueous solu- Canada.E-mail:[email protected];[email protected];Tel:+1-807-343-8697 tions was assessed. Ibrahim et al.16 polymerized soda lignin †Electronic supplementary information (ESI) available. See DOI: with 2-acrylamido-2-methylpropane in 1 wt% NaOH solution, 10.1039/c7ra12971h 12322 | RSCAdv.,2018,8,12322–12336 Thisjournalis©TheRoyalSocietyofChemistry2018 View Article Online Paper RSCAdvances andtheproduct,sodaligninpolymerwithamolecularweightof D O, trimethylsilyl propanoic acid (TMSP), dimethyl sulphate 2 2.6 (cid:4) 106 g mol(cid:1)1, was used as a drilling mud additive. Fang andpara-hydroxybenzoicacid(analyticalgrades)wereobtained etal.17alsoproducedacorn-stalklignin–acrylamidepolymerin from Sigma-Aldrich Company, and used as received. Dialysis NaOH solution and used it as an adsorbent for dye removal membrane (cut off of 1000 g mol(cid:1)1) was obtained from Spec- from wastewater. However, there is no report about the poly- trumLabs. merization of kra lignin and acrylic acid in aqueous acidic PolymerizationofKLwithAA.Thereactionswerecarriedout suspensions,whichisstudiedforthersttimeinthiswork. in a nitrogen atmosphere in 250 mL three-necked asks Asprovenintheliterature,thecomplexandheterogeneous equippedwithmagneticstirrers.Atrst,2gofligninwassus- e. structure of lignin played important roles in its polymeriza- pendedin30mLofdeionizedwateratroomtemperatureand nc tion.10,12,17–19 However, there are contradictory reports on the 300rpmfor20mininthreeneckasks.Aerthat,therequired M. Lice role of phenolic group in the polymerization of lignin: (1) the amount of AA was addedto the asks and the nal pH of the 0:24 Aported psthruenctoulircepgrrooduupceadctisnathseapnoliynmheibriiztaotrioonw,iwnhgicthowtahseoqbuseinrvoeidd ssoulsupteionnsi.onSsubwseaqsuaednjtulys,tetdhetote3m.5p,eurasitnugre1o.0f mthoel L(cid:1)as1kNsawOaHs 2n 023 12:n 3.0 U hinydthroechploolryimcseorizawtoioondloigfnsitnyr;1e9n(e2)wthitehplhigennoosliuclfgornoautpe1a8cotsrawsiatnh awdejruestpeudrbgeydkewepitihngntihtreogeansksfoirna20wamteirnb.aAthearnwdartdhse,sothluetipornes- 2o nloaded on 2/14/mmons Attributi acmpgocrreoetnitsuvvhepeeynrlosccieneomnntotehrfrteehalitpafgeoconsrrloyyotlmsfhautaeelecfr,oprizynoawllaitycetimoerme.n4e,o1ro1sinzfioTgaKmnthiLieoernarecns.fa,doInitr.tAeelw.,yA,atAihsasAceos,ctbareioslclleelrerynravloootetenfddciptltrehhiialneaernt,aobttnhhluideect dwatrheteeprti3oeeg0urah0mtgte)hirdnwpoeumaudtsn.aadAtmdhedrecoeouddnrnietffttiaonecoruttfeihoonienuntis.ttiaesaTsumtkhopsperpei(lnrKypa2oootSulrf2ydrOmnees8iret,rrt(woio6zgt0ai%entni(cid:3)ioCbtinwa,asat7eesr0detmaho(cid:3)ceCantiir,onlein8taga0cnitnwii(cid:3)noeaC'ndss, owCo is crucial for understanding the polymerization of KL and AA 90(cid:3)Cand95(cid:3)C),timeintervals(0.5h,1h,2h,3h,4hand5h), De 18. ativ fromacademicandindustrialpointsofviews.Inthepolymer- initiatordosages(0.5wt%,1.0wt%,1.5wt%,2.0wt%,2.5wt% March 20der a Cre iwtzhiaetthiloicnganrrbienao–cxAtyilAoantpe,otghlryeomuaeplirpiozhfaapttioioclnyhayrcedraryocltixicyolangcritdohur(pPosAuAgoh)fKfoeLrsmtmereiigdhcdtaurtreioianncgt, a((10n..30d573,.m20.w7o0lt%,L5(cid:1),.4b1,,a8s0.e.01d,1om0no,l1lig3Ln.(cid:1)5in1a,'ns0dw.11e56ig.m3h)to)a,lnALdA(cid:1)lt1iog,nl0iig.n2n2cinomnmcoeolnlLatrr(cid:1)a1rtaiatoinnodss n 29 ed un which would also gra PAA onto lignin.20 It is not clear if the 0.38molL(cid:1)1)inordertooptimizethereactionconditions. d oens esterication reaction would happen in an acidic heteroge- Extraction of lignin–AA polymer from reaction media. The Publishecle is lic neoIunstchoendwiotiroknp,rwehseicnhteidsthheeresienc,onthdeopbojelycmtiveeriozfattihoinssotfudkyr.a pthueriprcoactieodnuroefldigenveinlo–pAeAdpionlyomuerrewaarlsiecrarpraiepdero.2u1tTahcceorredainctgiotno s Article. This arti ldwiugancstientodwugiesthinneagrcaKrtye2lSiw2cOaa8tceairdssaionnluainbnlietaicalitidgoinrc.inTa–qhAueAemopuaoisnlysmaoilmeurtioowfnitthhwiasasshtcuoigdnhy- slrieogmlnuiotnivo–enAAtwhpaeoslfyomrrsmetrleyfdraocmPiAdiAtheehdsoomtoluotppioHonly,omafne1rd.5tahnteodnpcurenencrtiepraiifctutaegtdeedtAhtAoe s ce molecularweight,whichwillfacilitateitsapplicationasaoc- monomerfromlignin–AApolymer.Thedetailedprocedurewas c n A culant in wastewater systems. In addition, the inuence of statedintheESI. pe phenolicgrouponthepolymerizationefficiencywasidentied. PAA preparation. PAA was prepared in the presence of KL O This study also intended to report how the functional groups under the conditions of pH 3.5, 0.15 mol L(cid:1)1 lignin concen- andmolecularweightofsowoodkraligninwillbeaffectedby tration,8AA/ligninmolarratio,80(cid:3)C,3hand1.5wt%initiator. this polymerization. The properties of the lignin–AA polymer In the absence of KL, PAA was also produced under the same were determined using a light laser scattering technique, and conditions. Aer the reactions, the solution was treated theocculationperformanceoftheresultinglignin–AApolymer accordingtotheprocedureusedinourearlierpaper21(available for an aluminium oxide suspension, as a model suspension inESI†). system for representing wastes of the mining industry, was ReactionofKLwithPAA.Inonesetofexperiments,thePAA, evaluatedbyaphotometricdispersionanalyzer. produced in AA system, was reacted with KL under the condi- tionsof0.15molL(cid:1)1oflignin,8.0molmol(cid:1)1ofPAA/KL,1.5% Experimental initiator,80(cid:3)C,3handpH3.5.Aerthereaction,thesolution waspuriedasstatedaboveandthenalproductwasusedfor Materials H-NMRanalysis. Sowood kra lignin sample with a molecular weight (M ) of AA conversion analysis. The AAconversion inthe reactions w 17890 g mol(cid:1)1 was received from FPInnovations' pilot plant was determined using H-NMR. In this set of experiments, facilitiesinThunderBay,ON.Thekraligninwasproducedvia 0.2mLofreactionsolutionwascollectedandthenmixedwith LignoForce™ technology.20 Polydiallyldimethyl-ammonium 0.8mLD Ocontaining5mgmL(cid:1)1trimethylsilylpropanoicacid 2 chloride (PDADMAC, 100000–200000 g mol(cid:1)1), acrylic acid (TMSP) as an internal reference. The NMR spectra of these (AA),potassiumpersulfate(K S O )(analyticalgrades),sodium samples were recorded using an INOVA-500 MHz instrument 2 2 8 hydroxide (97%, reagent grade), hydrochloric acid (37%, (Varian,USA)witha45(cid:3)pulseandrelaxationdelaytimeof1.0s. reagent grade), potassium hydroxide (8 mol L(cid:1)1 solution), The area of the peak at 5.95–6.05 ppm was considered for potassium permanganate (analytical grades), ferrous ammo- determiningtheunreactedAAconcentration,C ,inthereaction 1 niumsulfate(analyticalgrades),0.1molL(cid:1)1hydrochloricacid, solution.TheAAconversionwascalculatedusingeqn(1) Thisjournalis©TheRoyalSocietyofChemistry2018 RSCAdv.,2018,8,12322–12336 | 12323 View Article Online RSCAdvances Paper C (cid:1)C wasaddedpereachmmoloftotalphenolichydroxylgroupsof AAconversion; %¼ 0 1(cid:4)100 (1) C KL, and the solution was stirred at room temperature for 0 30min.Thesolutionwasthenheatedto80(cid:3)Cfor2h.During where C was the initial AA concentration in reaction rseoalucttiioonn,s0moloultLio(cid:1)n1,amndolCL1(cid:1)w1.astheunreactedAAconcentrationin tchoentrineaucotuiosna,dtdhietiopnHooff0.t7hemsoolluLt(cid:1)i1onNawOaHs ksoepluttiaotn1.1U–p1o1n.5thbey completion of reaction, the solution was acidied to pH 2.5 Analysis of initiator consumption. A set of reaction was using2molL(cid:1)1HClsolutionandprecipitateswerewashedwith carriedundertheconditionsofat80(cid:3)Cfor3hoursinanitrogen excessamountofdeionizedwateruntilneutralpHwasobtained atmospherein250mLthree-neckedasks,butwithoutAA.At ce. rst, 25 mg of lignin was suspended in 50 mL of deionized and then the precipitates were freeze-dried. The nal product n wasconsideredasmethylatedKL.Themethylationconditions oaded on 2/14/2023 12:20:24 AM. mons Attribution 3.0 Unported Lice atoswawicbzauonnueaieitnsfdtntdihopecnoerHreefndies.entnCtlirAysattaarlhrinnlowoasrKudedtniooirtsa2soulhwaSurnagwd2atKmhOsiiraeo2zdoo8srSmenu,fc2adtstOotoihd.hnnntpe8jAeihuicotauresiecittaemtnanoteartsihntoedctsrsaierttaiatuiicuutnsoottlimaonfniuo3oamrdnso.tn5weuepewo.roesaspfSerarsos0Hrimc1mlue.aiu7s0adpdita5.(npilid5inacog.gleeruaynaad.Lls,.nrnoy(cid:1)2iects2dnaf1ooaet1.gncanedTt0til1thitkhrwb.orme0oaeoynilltLgmishsbneanaoaownesmaafclkeclkwLpsropspe(cid:1)aetnlttHaers1iodctsnsNramiuo)mdat.raflitraaTfoaOitiariohhenkndtHndeeees-- litcwwawinrinnaieeetdresanhHuetcuctme2yhdlosOnienieseicff2ntdndeecetttidort,rthooeeniteofianhtntnterpPtemensTrhPa,eHtea-thrsOnboOeeK-tlfHOaneOLcopcH–t1fceths,o.okeoawwnrnpfnaithorctdeehilanciprcclhttbaiahghroorienebysxfidqyotnKphlruxa.roLeyitoInxlentadyoortgluneonergacroeedttrg-uheodmredpoeurebsupktp,tyophrhooaHiflyfcduydo2mmerOrlntioiheegt2ngetrenthieunrezinynntratlsmedatp.sisteoeaeteIrrinnmddfoayixpaetKltihktlffihdLeeaieessss-- wnlom containingsolutionwaspipettedtoa100mLErlenmeyerask. thatareformedbyionizationofthephenolicligninmoietiesor oC by alkali-induced cleavage of the cyclic a-aryl ether bonds in 18. Dative Tfehreronu,s10ammmLoonfiu0m.5 MsulHfa2tSeOs4osluoltuiotnionwearneda1d0demdLtoofth0.e025asMk phenolicligninmoieties.24Thequinone-methideintermediates March 20der a Cre wwhasiletisttriartreindgacgoanisntsatnt0l.y0.0A2eMroKnMemnOin4otfostairrpinergm,tahneesnotluptiinonk (brseyedeuthFcetiigo.cnlSe2aovfiangPEehS-oOI†fH)tahgreerobuenpnazlcleyonnoetxeirndintizgeindiniKnLKto.L25,d,26irceaTsruhbleotixntyrgleiacitnmacetihdnest 9 un endpoint.Ablanktitrationwasconductedon10mLofferrous Article. Published on 2This article is licensed coaomnnmecqeonnntP(ir2uear)mtsiuoslnfuaoltffeaptceeornssotuellnufatt(cid:1)itoeLgni(cid:3)nint¼h1em0som(cid:4)luLMtioofn(cid:4)thw(cid:4)eaEs02(cid:1)V.c5aElMc0u(cid:5)Hla(cid:4)2tSe3dO4b.aTs(he2de) cT1tmtiho.ao0einbnsmdmleesidbtto2uirlo.adnnALmys(cid:1)e.e1eawmrnHabtds2hrSdaetOhnrti4eereedapanrtdamodnipaeddlenyircsattoi,ilseynt.zshseeioddTfsehoftroerleuredat4itsao8easndmhpwspeuaarlsmeosixnnpigdecleuoets-lthtlrreaeaecrlaeiatzetfeeldoiddrsetuKemfsdrLoieniimnnng- s Polymerization of treated lignins with AA. The polymeriza- s cce where E is the volumes (L) of KMnO4 solution used for the tionconditionsofacetylatedKL,methylatedKLsandperoxide- n A endpoint for blank sample. E0 is the volumes (L) of KMnO4 treatedKLswithAAwerexedatpH3.5,ligninconcentration pe solution used for the endpoint for actual sample, M is the 0.15molL(cid:1)1,AA/ligninmolarratio8.0,80(cid:3)C,3hand1.5wt% O molarity(molL(cid:1)1)ofKMnO ,Visthevolume(L)ofthesample initiator. Aer polymerization, the polymer was puried 4 andmisthemolarmassofK S O . accordingtotheprocedurestatedearlier.Thecarboxylategroup 2 2 8 Acetylationoflignin.InordertounderstandifAAcanreact contentwasmeasuredaccordingtothemethoddetailedinthe withotherreactionsitesonKL(inadditiontophenolichydroxyl following section, and the increased carboxyl group of lignin groups) under acidic conditions, the acetylation of lignin was was determined (via subtracting the carboxylate group of carriedoutaccordingtothemethoddescribedbyAndesetal.22 lignin–AApolymerfromthetotalcarboxylategroupofKL). Inthissetofexperiments,0.5gofKLwasdissolvedin6mLof Presenceofunreactedkralignininthepolymerization.As pyridine–acetic anhydride (1/1, v/v) by stirring for 30 min at statedpreviously,theunreactedKLmayexistinthenallignin– 300rpm,25(cid:3)Candthenkeptinthedarkatroomtemperature AApolymeraerthereaction.Inordertoevaluatethis,acetone for72h.Thesolutionwasaddeddrop-wiselyto120mLofcold wasusedtoextracttheunreactedligninfromlignin–AApolymer water and then centrifuged and washed 3 times. The solvent wasremovedfromthesampleusingafreezedryerandthenal productwasconsideredasacetylatedligninsample. Table 1 Methylation conditions and Ph-OH content of methylated Methylation of KL. In order tounderstand the relationship lignin between Ph-OH group content of KL and polymerization, KL Sample KL 1 2 3 was methylated according tothe method reported inthe liter- Dimethylsulphate/ 0 0.25 0.50 1.0 ature.23ThereactionschemeisavailableinESI(Fig.S1†).Inthis phenolicgroupofKL, method,onlyPh-OHgroupofKLcanbemethylated,whilethe molmol(cid:1)1 aliphatic hydroxyl group of KL is methylated marginally.23 A Ph-OHgroup, 1.73 1.41 1.02 0.70 1.0gofKLwasdissolvedin15mLof0.7molL(cid:1)1NaOHsolution mmolg(cid:1)1lignin Carboxylategroup, 0.37 0.38 0.36 0.36 at room temperature by stirring at 300 rpm for 20 min. Aer mmolg(cid:1)1lignin that,0.25mmol,0.50mmolor1.0mmolofdimethylsulphate 12324 | RSCAdv.,2018,8,12322–12336 Thisjournalis©TheRoyalSocietyofChemistry2018 View Article Online Paper RSCAdvances Table2 HydrogenperoxidetreatmentconditionsandPh-OHcontentofperoxide-treatedlignin Ligninconcentration, H O ,wt%, Time, Temperature, Carboxylategroup, Ph-OH, 2 2 Sample wt% basedonlignin h (cid:3)C mmolg(cid:1)1 mmolg(cid:1)1 1 5 18 1 90 1.65 0.74 2 5 8 1 80 1.06 0.95 3 5 4 1 80 0.65 1.23 4 5 4 0.5 80 0.43 1.39 KL — — — — 0.37 1.73 e. c n AM. d Lice samples extracted from the reaction medium in soxhlet angle laser detectors). For KL measurement, the columns of 20:24 nporte eexxttrraaccttoedr ffroorm12thhe.liIgnnitnh–isAAcapsoel,ymtheeruansrkeraacteldiglniginniinsscoalnubblee oPfAtSe1t0ra6hMy,dProAfSu1r0a3na(TnHdFP)AaSt110.02.m5wLemreinu(cid:1)s1e.dFowritlhiganinx–eAdApoowlymraeter 2023 12:on 3.0 U aincearcteationnea,mbouutntlig(anbionu–AtA2.0p–o2l.y5mge)roifssianmsopllueb,lMe.027,,2w8aIsnimtiaalilny-, mwiethasuaremxeednt,otwhercaoteluomfn0s.1ofmPoAlAL2(cid:1)016NaanNdOP3AsAo2l0u3tiowneraetu0s.e7d0 oaded on 2/14/mons Attributi tewaxnaitnsaraleacmditreia-nddsrsawieopidftrhteah-aneecxdsetarttoahmcnetpeneldefdo,rrMile1t1de2,rwihpna.asAapwnereeo,irvgatehnhnededatethax1netr0nda5ctthht(cid:3)iCeeonpsfa,oemtrrhc1pee2nlesthasam.gwTeephorleeef msswyyhssLttileememm,iasnan.(cid:1)nPa1do.tltpyTesmohtlyeyprtec(enwotelhaupsymlomenlnyamedteoeemxrtsiopdwecerel)earfateouvurreesttehhwdeeaaaPssqAsusAteeatocnhuadastairsn3dy5fssrt(cid:3)ofeCommri.olniMrggbneaoianntnih–c- wnlom unreactedligninwascalculatedusingeqn(3): AA via treating lignin–AA polymer in different acidic environ- Doe C M (cid:1)M ments so that the molecular weight of PAA chain attached to 18. ativ Unreacted lignin %¼100(cid:4) 0M 1 (3) lignin can be identied. However, this experiment was unsuc- n 29 March 20ed under a Cre conFtuenntcstioofnlaiglngirnouapndanliaglnysinis–.ATAhpeoclayrmboexrsylwateereg0rmouepasaunrdedPuhs-OinHg picneossAs4ef.bdu0oluumantsdL1te0hro0efamlciaiggdcneiocitfniccaopirnaanrddthirtioyieofddnrliiKsgdLnpeir/snpoa–yhmAriibApdilitpeninoewglya1mtsh/1ieinsr(iawtvin/aavals)llyyasssloisuslou.sptdieoencnodmebdy- d oens an automatic potentiometric titrator (785 DMP Titrino, Met- stirringfor30minat300rpmand25(cid:3)C;andthenthesolution Article. PublisheThis article is lic rpA1oomhleymLrm,soetfirSr,w0rmi.i8nt,zgwmeraaoltsal2naL0dd(cid:1)0d)1.erpdpAombttooaufs1ost0ri0u05mm.0m6Lhionygdf,rd4ooefxmiioddLnreiiozeifednd0a.Kw52L%a5te0oprrmacrolLaing-hbntayeiindank–rioAenxrAg-. aetcioxcmcenetetysaslsi.antaAeimngKeorLuKw.nLatTrdwh(5sea0,strmhekseeLup)slttooilifnvngiecnaestodwwlauaarttkseiorrpnealmanwcdoeavsceaedttnht2ferr5inofmu(cid:3)pCgoethdufo/erwresda2as4mhinehpdlaetno3s s ybenzoicacidsolutionwasaddedasaninternalstandard,and usingafreezedryer.TheacetylatedKLwasdissolvedin10mLof cces the solution was titrated with 0.1 mol L(cid:1)1 hydrochloric acid tetrahydrofuran(THF)bystirringat300rpmfor30minatroom A n solution.Duringthetitration,withthedecreaseinthepHofthe temperature, and then ltered with a PTFE lter having e Op sample solutions, three endpoints appeared in sequence a diameter of 13 mm and pore size of 0.2 mm. The ltered (V01;V02 andV03; respectively). The corresponding three sampleswereusedforamolecularweightanalysis.Forlignin– endpointsinthetitrationcurveofblanksamplewerespecied AApolymeranalysis,about50mgofairdriedpolymersamples asV1,V2andV3,respectively.ThecarboxylategroupandPh-OH was dissolved in 10 mL of 0.1 mol L(cid:1)1 NaNO3 solution and contents of samples were calculated according to eqn (4) and lteredwitha0.2mmnylonlter(13mmdiameter).Theltered (5).29 The reported data in this paper is the average of three solutionswereusedformolecularweightanalysis. repetitions. Hydrodynamic diameter of lignin–AA polymer. The hydro- (cid:1) (cid:3) mmol dynamicdiametersoflignin–AApolymersweremeasuredusing Phenolic hydroxylgroup g a dynamic light scattering instrument (type BI-200SM Broo- (cid:6)(cid:7) (cid:8) (cid:9) C V0 (cid:1)V0 (cid:1)ðV (cid:1)V Þ khaven Instruments Corp., USA). The light source was a solid ¼ HCl 2 1 2 1 (4) statelaserwithamaximumpowerof35mWandawavelength m of 637 nm. The experimental procedure was adopted as (cid:1) (cid:3) (cid:6)(cid:7) (cid:8) (cid:9) mmol C V0 (cid:1)V0 (cid:1)ðV (cid:1)V Þ describedbyYanetal.30Thelignin–AApolymerwasdissolvedin Carboxylate group g ¼ HCl 3 m2 3 2 1mgmL(cid:1)1NaClsolutionatpH10.5tomake0.2wt%polymer concentration.Theobtainedsolutionwasstirredfor30minat (5) 300rpmand25(cid:3)C.Then,thesolutionwaskeptfor24hwithout whereCHClistheconcentrationofHClsolution(0.1mmolL(cid:1)1) stirring to have a well-dissolved polymer in the solution. Aer astitrant,misthemass(g)ofthesample. that,thesamplesolutionof20mLwaslteredwitha0.45mm Molecularweightanalysis.Themolecularweightofsamples disposable syringe lter prior to the size measurement. Five was determined using a Gel Permeation Chromatography measurementswereperformedforeachsampleandthemean system, Malvern GPCmax VE2001 Module + Viscotek TDA305 valuewasreported.Theanalysiswasconductedat25(cid:5)0.02(cid:3)C. with multi-detectors (UV, RI, viscometer, low angle and right- Thescatteringanglewassetat90(cid:3). Thisjournalis©TheRoyalSocietyofChemistry2018 RSCAdv.,2018,8,12322–12336 | 12325 View Article Online RSCAdvances Paper Elemental analysis. The elemental analysis was performed addedintoDDJtoinducetheocculationprocess.Thedegree forKLand lignin–AApolymer usingElementar VarioEL Cube ofocculationwaspresentedasarelativeturbidity,whichwas Elemental Analyzer by a method described in the literature.31 calculated from the variations in the DC voltages of the PDA Thesampleswererstlydriedintheovenat105(cid:3)Covernightin analyzer beforeand aer adding lignin–AA polymer according ordertoremoveanymoisture.Approximately,2mgofsamples totheeqn(6).33,34Thereporteddatainthispaperistheaverage were used for determining carbon, hydrogen and oxygen ofthreerepetitions. (cid:1) (cid:3) contentsofthesamples. V Fourier transform infrared (FTIR). Fourier transform s ln V0 e. infraredspectroscopy(FTIR)analysiswasconductedonKLand sr¼ sf ¼ (cid:1)Vf(cid:3) (6) M. Licenc laitgn1i0n5–A(cid:3)CApoovleyrmniegrhs.tTahneds0a.m05plgesowfetrheesrastmlypdlersiedwains tuhseedovfeonr i ln V0i 20:24 Anported asonrayl)y.sTisheusspinegctFraTwIRer(eBrreuckoerrdeTdeninsoartr3a7n,sGmeirtmtaanncye,mAoTdReaincctehse- wsuhsepreenssiionis(btehfeoreinaidtidailngtulribgindiinty–AAofptohlyemaelru);msifniisumtheoxnidael 023 12:n 3.0 U sracnangsep60er0scamm(cid:1)p1leanwder4e00c0oncdmu(cid:1)c1tewdi.th4cm(cid:1)1resolution,and32 AtuArbpiodliytymoefr)a;luV0miisniiunmitiaolxibdaesesuDsCpevnoslitoange(a(weartearddsoinlugtiloignn);inV–i oaded on 2/14/2mons Attributio 5alin0gna1gliHynLz-–(cid:1)eNAd1MAcwRpoinothlcayenm1naHtelry-raNswtiMiseo.rRneT.dahTniehsaseloyKslsLvoieslud.atTniinohdtneolswDiaga2mnsOipnswtl–eiiArtsrhAeo1df0pdf.oo2rlriypem3Hd0eKarmtLaiwna4en0trdoe– as(wtlauintmhdoisnuitfuomlrignothxineid–eADAsCupsvpooellyntmasgieoern);oaafnaedrluaVmdfdiinsiniutghmeligDonxCiind–veAolAstaupgsoepleyonmfseitorh.ne nlm fullydissolvethematerials.TheNMRspectraofthesesamples Results and discussions wo 18. Doative C wUeSrAe)wreicthorade4d5(cid:3)upsuinlsgeaanndINrOelVaxAa-5ti0o0nMdeHlazyitnimstreuomfe1n.0ts(V.arian, ReactionmechanismofpolymerizationofKLandAA 9 March 20under a Cre mbileiStthyooloudfbKdilLeitsaycnraidbnleaidglynbsiiynsL–oAafpApKpaLonlayenmtdaelrl.i3wg2anAsibndo–euAtteA0rm.p5oignlyeomdfeKbrLa.soTerhdleiognsnotilhnu–e- hatomPlorowolpytopicsHesdciisrsesauiocsntuioaolnflyKsc2sShu2epOmp8reie.nsTsaehcdei,dfirbceececoarnauddsieitciaotlhnpesoieslyfficmoceniersinizdcaeytrioeondf n 2ed AApolymerwasaddedto50mLofdeionizedwateratdifferent lower than that inalkaline and neutral conditions.35 Toinves- s Article. Published o This article is licens aaNsnpuHaJw1s,t2saapU5nteueSntmsrsAisbnLi)owagEanteh1nrrlw.ede0sanhmcssmahokcolaeeellykenrLecet(r(cid:1)tnrIeni1fdn(uaN1sog0aakevO0n.addHT3rahp1tdome01rr0si0)1e,u0d.Bas00tprumare3pntn0omssl1wi(cid:3)o0LCfin5o(cid:1)ckr1fw(cid:3)o5HSCarcs2m,iS2eiwOimnnhth4.mi.isTcTeochhr,lhuseEeehtndsideoui,lsnippnoteheitnrndoe-, wdctciooingistnnaachddtloeiivcttaeiiotnoohrnennecdisseninwniatttnaihrasduaaltetiinanKolvtcnk2heeSsase2ltoioOinfgfc8eaolttihnccgeoeosdnnuniiwncmndehiipntoteiitntaonirtonaotintsnrrieoiwuatnoitnaafestddooeKsfrari2mt0dSa8.2eci7O0lci5ado8(cid:3)rimCcgiunpaanLonad(cid:1)sedbie1rts.ria3eolInknahtca,coeliwtuidnhaorieecssf cces determinethesolubilityofKLandlignin–AApolymerinwater lignin(i.e.,concentrationofunreactedK2S2O8was0.40gL(cid:1)1in n A atdifferentpHs.TodeterminethesolubilityofKLorlignin–AA acidic vs. 0.37 g L(cid:1)1 in alkaline solutions). However, the Ope polymer, the mass of NaOH or H2SO4 added for adjusting the unreacted K2S2O8 was 0.22 g L(cid:1)1 in acidic and 0.72 g L(cid:1)1 in pHwastakenintoaccount. alkalinesolutioninthepresenceoflignin,indicatingthatlignin Zeta potential and occulation of aluminium oxide probably inhibited the consumption of K S O under alkaline 2 2 8 suspension.Thezetapotentialofaluminiumoxidesuspensions conditions.Thus,moreradicalswereproducedatlowpHbythe was analyzed (2.5 wt% at pH 6 and 8) via a zeta potential redox systems in the presence of lignin, promoting polymeri- analyzer,ZetaPALS(BrookhavenInstrumentsCo.,USA).Inthis zation under acidic conditions. The results in this study indi- study,1mLofthesuspensionwasmixedwith20mLofa1mM catedthatthemechanismofgenerationoffreeradicalswasnot KCl solution. The zeta potential of the mixture was analyzed solelyattributedtotheproductionoftwosulfateradicalsfrom aer30secondsofmixing.Allthemeasurementswerecarried theinitiator.Theredoxsystemofpersulfate-phenolicmoieties out three times at room temperature. The occulation perfor- oflignincouldbealsoinvolvedandaffectedbypH.36Theself- manceoflignin–AApolymerinanaluminiumoxidesuspension decomposition of potassium persulfate in the initiator system wasevaluatedbyaphotometricdispersionanalyzer(PDA,PDA generate sulfate radicals.37 Sulfate radicals can remove 3000, Rank Brothers, UK), which was connected to a dynamic hydrogen from the hydroxyl groups on lignin and generate drainagejar(DDJ).Inthissetofexperiment,450mLdeionized lignin macro radicals. Once the macromolecular radicals are waterwithdifferentpHswasrstlypouredintotheDDJwithout generated, they react with the monomers and initiate the any mesh. The system circulated water through PDA and DDJ polymerization.38,39 for 10 min to reach a steady ow rate of 50 mL min(cid:1)1. Then, The nal KL–AA polymer from acidic and alkaline systems 50 mL of a 2.5 wt% aluminium oxide suspension at different hasverydifferentchargedensity(1.86meqg(cid:1)1underalkaline pHs was added to the DDJ while stirring at 100 rpm. The vs.7.22meqg(cid:1)1underacidiccondition)andmolecularweight suspensionwascirculatedinthesystemcontinuouslyataow (0.46(cid:4)105gmol(cid:1)1underalkalinevs.7.4(cid:4)105gmol(cid:1)1under rateof50mLmin(cid:1)1.Aerreachingasteadystatecondition,the acidiccondition).TheAAconversionofAAhomopolymerization lignin–AA polymer solution with 0.1 g L(cid:1)1 concentration was systematpH3.5and10.5wasmeasuredandpresentedinFig.1. TheAAconversionofreactionatpH3.5reached90.1%in2h, 12326 | RSCAdv.,2018,8,12322–12336 Thisjournalis©TheRoyalSocietyofChemistry2018 View Article Online Paper RSCAdvances however, it was only 38.8% at pH 10.5. Also, the molecular weightsofPAAsfromthereactionconductedatpH3.5andpH 10.5weredeterminedtobe4.26(cid:4)105gmol(cid:1)1and0.83(cid:4)105g mol(cid:1)1, respectively. This phenomenon was also observed in another work.35 One can conclude that the higher charge density and molecular weight of KL–AA polymer, prepared under acidic condition (pH 3.5), could be due to the fact that lignin accelerated the radical formation and thus more AA e. conversion. c n In this study, the polymerization of KL and AA was carried M. Lice out in an acidic aqueous suspension through heterogeneous 0:24 Aported PreAaActiporne.pTaroedclairnifythifisKsLtuadnydwPAasAuresaecdt vfoiar eisntveersiticgaattiionng, tthhee 2n oaded on 2/14/2023 12:mons Attribution 3.0 U r1ocdiseHaniadrat-bcNovntoaiMKoxoilytLnRal;oabbacitlleneecltuuawgilsrnryetoisrenEuainstSptioKIhnsfLe(goFthafatihgnceP.iadAdptSAirP3(coAi†a)dsA)nytu,hsdwcstetheiastmeolhoiswp,ftaeehaKnrdandLitdtiwachctnaiahhttdthiayooPntdnuAro(iotAriPx)eayrAatnelhcAaigtencirwottioitenaouirasnpmbt,sgoeiwrtrnowa.hafTetiKheceehnddLe ppFiregea.s2kesncoTehfeaPnAddiAsatrdbibisduentniocoentooeffxKmisLot.loencutlharewperiogdhtuocftPoAfAacfreotmylaKtLe–dAKALinatnhde nlm PAA formed during the polymerization reaction of KL and AA wo AA; demonstrating that (i) the polymerization of AA onto KL oC cannotbereinitiatedtoformKL–AApolymers. March 2018. Dder a Creative thlihgyednIrtiponocwlhmyalmsoorleeirrcceiuzpaalocetriistod.e1nd9l,4id0gtinhIdnianntooduttihrdoepcnrcpeouovtriloyoomucnsceutrwhrizooaorstnkeio,ganwlrieopouhdfpaesstsitcciynrrigebarneloedkuaptalhinnoadetf t(mnihoie)rtotihnupogtaxhhryetlibcageibprnsoazeutyneplicceianrnoafddtphiahcelaeiplnrsheoawalictacitcsihoynpndoo,rrtoatdixnoyednltegoc(ritofiaiul)bipglie,nntiihnntehmaaecrooidalmebiccsauetslinyecscsrteiednmiogdf,, 9 un phenolichydroxylgroupinKL,thepolymerizationofAAandKL Article. Published on 2This article is licensed Cdhatinhio6sbieHmtsoio5apnoCctrgdoiHeaerdtni2nio–oormHaunKdsiL(in9ceraa0ednnlauesktcrrctgiilaSnioilOeggnsmn4a2ioon(cid:1)coflicf(cid:1)dKr1iatLCc)hd6arapiHomcnoau5dlolOygsnmhA,–gHAewt.cr2hhih1z(eie8acDm9thhui.oi8eocanmartkleorocegltaairyhnlocteidtucimuoplocnsroweu,lid(cid:1)enpas1trt)bKue,yrbLep,oa4thnn1ho,e4ddef2- wcfttorhhaareasnmIinasnnfbaoeltsirdrtgeadninnnnioicstnietftoiehcnarrieasnrdtdedosaiiycntcpshattrilaeeesocms.lniiedgs,TnintoocchifencetKoeormLnsfatddaoiKfniilytLcediacoiwultnfshlasafeKs.orLgrmwrmoefeuweiagdnishncubttgryieooPtdfnAhPsAeaAniraAndasidftsoiaihcaratmorolawsred,nmditchaiianneyl s noxyl radicals from phenolic lignin units, and with smaller ces probability,benzylicradicalsfromnon-phenolicligninunits.It Fig.2. Ac As presented in Fig. 2, the molecular weight of PAA in the pen wmaosdeallssohardepsiogrnteidcainntltyhleowlietrerfaretuerrea42dicthalast(baecentzyyllaitcedradliigcanlisn) presenceofKL(111700gmol(cid:1)1)wasmuchlowerthanthatin O the absence of KL (426300 g mol(cid:1)1), illustrating that (i) KL than the untreated lignin samples. To clarify whether the functioned as a chain transfer agent in this polymerization polymerization of KL and AA occurred through the benzylic system,and(ii)thechaintransferreactionbetweenKLandPAA radicalsintheacidicconditions,theacetylatedKLwasusedto chain radicals formed some lignin radicals for this polymeri- polymerize with AA. The nal product was analyzed using 1H- zation.Asitiswellknown,thechaintransferinpolymerization NMR (Fig. S4 in ESI†) and showed that the characteristic system not only results in a reduced molecular weight of the polymer, but may also affect the polymerization rate, which dependsonthereinitiationreactionratebetweenchaintransfer radicalsandmonomers.InordertounderstandtheeffectofKL on the polymerization rate, the AA conversion in KL–AA poly- merization system and AA homopolymerization system was determinedandshowninFig.3.ItisapparentthatKLslightly increased the AA conversion, illustrating that the reinitiation reactionratebetweenligninradicalsandmonomersissimilar orslightlyhigherthanthatofpropagationreactionofAAchain radicals, which is also consistent with the ndings in the polymerizationoflignosulfonatewithAAintheliterature.43The reason for this behaviour can be ascribed to a greater decom- position of the initiator in the presence of KL (as discussed earlier). Basedontheanalysisabove,theproposedreactionscheme Fig.1 AAconversionintoproducePAAatpH3.5and10.5asfunction ofKLandAApolymerizationisshowninScheme1.Assowood ofreactiontime. Thisjournalis©TheRoyalSocietyofChemistry2018 RSCAdv.,2018,8,12322–12336 | 12327 View Article Online RSCAdvances Paper monomerstoformPAAchainradicals(reaction(3)).9,11TheKL radicals(ligninc)reactwithmonomer(AA)toformpropagated lignin–AA chain radicals (reaction (4)). In addition, the PAA chain radicals and lignin–AA radicals in the system can react with KL to form KL radicals through a chain radical transfer reaction(reaction(5)),andtheKLradicalsthenreinitiateAAto form lignin–AA chain radicals (reaction (6)). Finally, the prop- agated AA chain radicals and propagated lignin–AA chain e. radicals react with each other to produce PAA homopolymer nc andlignin–AApolymerthroughterminationreactionasshown M. Lice in reactions (7). As a result, the carboxylate groups are intro- Ad 20:24 nporte Fig.3 AAconversioninKL–AAsystemandAAsystemasfunctionof ducIemdpoancttooKfLPhan-OdHthgeromuopleocnulatrheweKigLh–AtAofpKoLlyimseinriczraetaiosend..As 023 12:n 3.0 U reactiontime. sKhLowwnasincoSncvheermteed1t,otheethOeHr ogrrocuaprboonnytlhestpruhcetnuorleiscisntruthcteurenoafl 2o nloaded on 2/14/mmons Attributi pfKuoonLrlimytismse,4dek4rnbiiztoyawwthinaeosanttocdrhbeeoaecscoetcminoompnto,opsotiphtsireeoednsseup(nrlrtefianaKtcceLtiiporaiannldly(it1cho)a)ifl,sswcsochcanhinciefhemirntyehil.teianIanllclryoethhabociestl ppamg(cid:1)ooe1lleayy,rmmsbuteeurrrreet.adpTti.ritoonTddghcueelacwcPrtri,iehtfwhay-sOhteihHindciihstct,iowoatnthoo1tueer.l5nPdo9thrro-emOfdpHmKoulcLyocemlowtnheagtres(cid:1)ei1znPoahrtatsi-igOooiennHfraKrcltleLoryaenbc1att.etei7ifnon3ontgrmoewfwmateinhtrohdeel wo oC withphenolichydroxylgroupofKLtogeneratephenoxyradicals K S O .AerpolymerizationwithAA,thePh-OHcontentofKL De 2 2 8 18. ativ and its resonance radicals (reaction (2)). The formation of the wasfurtherdecreasedto0.55mmolg(cid:1)1.Onecanconcludethat March 20der a Cre KmfoLromrreadAsuiAclafralastdewicriaallldsliec(aAadlAsc.t)oA.Tlmshooe,rtAehAdeersacuodlfmiactapelosrsatihdtieiocnnalrisenaccraetnawicnittiihotinaott(eh1eA)raAAntAdo twthhheeicpPhohl-wyOmaHsermciozaanittnieolnynt.aitntriKbLutdeedcltionethdedpuarrintigcipthaetiopnolyomf Perhi-zOaHtioinn, 9 un n 2ed d oens ec Publishcle is li Article. This arti s s e c c A n e p O Scheme1 ProposedreactionschemeofpolymerizationofKLandAAinitiatedbyK S O underacidicconditions. 2 2 8 12328 | RSCAdv.,2018,8,12322–12336 Thisjournalis©TheRoyalSocietyofChemistry2018 View Article Online Paper RSCAdvances Inanothersetofexperiments,theimpactofPh-OHcontent ESI†).TheresultsshowedthatAAwasnotpolymerizedwiththe of KL on the polymerization efficiency was determined via acetylatedperoxide-treatedlignin,illustratingthefactthatthere treatingKLwithhydrogenperoxide,whichcanreducethePh- were no other reaction sites on the peroxide-treated lignin. OH content of lignin.45,46 The H O treatment conditions and Therefore, it can be concluded that the more signicant 2 2 thePh-OHcontentofthetreatedligninarelistedinTable2.As increaseinthecarboxylategroupofperoxide-treatedlignin–AA seeninTable2,byincreasingthedosageofH O ,thetemper- polymer was attributed to the easier accessibility of AA to the 2 2 ature and time of the treatment, the Ph-OH content of the phenolic hydroxyl group of KL, as the reaction site for the resultingKLsdecreased;whereas,thecarboxylatecontentofthe polymerizationwasstillphenolicgroupofperoxidetreatedKL. e. treatedKLsincreased,whichwasduetotheoxidationofKLby This phenomenon was also observed by Phillips et al.19 in the c n H O .46,47ThetreatedanduntreatedKLswerepolymerizedwith polymerizationofstyreneandcalciumlignosulfonate. M. Lice AA2, a2nd the carboxylate group of the resulting lignin–AA poly- Participation of KL in polymerization. To investigate the Ad 0:24 porte monecrawrbaosxmyleaatesucroendt.enFitgo.f4KpLr–eAsAenptoslytmheeri.mItpcaacntobfePsehe-OnHthaotftKhLe pwaitrhticAiApa,taicoentoonfelwigansinuseindathsiasshoelvteernotgteoneeoxtursacptoulnymreearcitzeadtiKonL 2n 023 12:n 3.0 U Pinhc-rOeHasecdocnatrebnotxyolfatleiggnrionuphoafsthaelinneaalrporleylmateior,nisnhdiipcawtiinthgththaet (tiifonp,ressinencet)KfrLomhasthaehliiggnhins–oAluAbpiloitlyymineracaeteornethbeuptolliygmnienr–izAaA- 2o nloaded on 2/14/mmons Attributi trgthheraoeeTcuOtompioHfeonutfrghstrKyhiotlLeeaurtpfaeaondsradsttetlhiasignescnhctpirhenoedeaslyrstmeewoldaeittrthhciioazeanrdbptsiiohhoffxeniepyn.rleobgnleirttcowuaseptmernuoocufptnhuKterLsen–oAoolfAficKpphLohyldeiysnrmootxehliyrecl, epatdiinoeotmalhnyle,myorsneitbsshrytearwtarhaetpiesnleiiirgsnnctiseettonhdialtauitatnobgrtleTehtareioebnaflleitagmuc3nen.eitnnrIone'tnsaotechprtseretoodhalpeubetlsariiegtocininnedcis.inecTwohterrfeeerAeaarAtcemnhsiuoenedltnttstha.9ffoeI8fenr.ce8tttha%hecides-, wo oC group were polymerized with AA. The increased carboxylate absenceoftheinitiator,thepercentageoftheunreactedlignin De 18. ativ group had a linear relationship with the phenolic hydroxyl wasalsohigherthan99%,whichcouldberegardedasevidence March 20der a Cre ghrygoduurropexotyhflaKgtrL,oa(uFtpigao.fh4K)i,gLhdeoamnmoponouslntyrmtateoirnfigzpahtthieoenniom.liIcptoihsrytaadlnrsocoxeysolefegpnrhoiuennptoholiincs tAuhnAa,rteibancaitsteiidcaatolllirygnnainondrewaKacLstiominninotichmceuarlpre(oodlyn.mlHyeo0rwi.z6ea1vt–eio1r,.n1i,n3ttwhhete%pa)rm.eFsoeuunrntctheeoorff- 9 un n 2ed either peroxide-treated lignin or methylated lignin, the more, the reaction was very fast as the amount of unreacted d oens increased carboxylate groups for lignin–AA polymers are lignin was marginal even aer 0.5 h of the reaction. One can ec Publishcle is li shiymdriloaxry.lHgroowuepv,etrh,ewiinthcrdeaesceredacsainrbgotxhyelaatemgoruonuptoofftthheerpehseunltoinligc cinonthcleupdoelfyrmomeritzhaetiaonnalwysitihstAhAatianlmacoidsticalcloonfdthiteioKnLs.participated s Article. This arti pstorluTycmhtueerrreewaosafoslnimgsnofiorneratphrioesrnppohueernnocoxemiddeefnotrorenpaemtmroigexhnidttebc-oetrm(eia)pttaehrdeedKmLwo.ritehotpheant Effectsofreactionconditions s cce aer methylation, and (ii) the lower molecular weight and Initiator. The effect of initiator dosage on the carboxylate A n higher solubility of peroxide-treated KL compared with meth- groupcontentandmolecularweightoflignin–AApolymerwas e Op ylatedlignin.Inotherwords,themoreopenstructureprovides investigated and the results are shown in Fig. 5. With the higheraccessibilityofAAtothereactionsitesonKL.Toclarify increase in the initiator dosage from 0.5 wt% to 1.5 wt%, the this,theacetylatedperoxide-treatedligninwasreactedwithAA carboxylate group content increased from 4.0 mmol g(cid:1)1 to andthenalproductwasanalyzedusing1H-NMR(Fig.S5†in 5.38 mmol g(cid:1)1. Further increase in the dosage marginally increased the carboxylate group content. However, the molec- ular weight of lignin–AA polymer decreased from 7.9 (cid:4) 105 g mol(cid:1)1 to 4.8 (cid:4) 105 g mol(cid:1)1 when the dosage of the initiator Table3 ReactionconditionsandpercentageofunreactedKLa AA/lignin Initiator, Percentageof molarratio, Time, wt%on unreacted Sample n:1 h ligninmass lignin,% 1 1:1 0.5 1.5 1.07 2 1:1 2 1.5 1.13 3 0.5:1 2 1.5 1.08 4 2:1 2 1.5 0.61 5 1:1 2 0 99.3 6 0:1 2 1.5 98.8 7 0:1 2 0 99.5 aOther reaction condition: temperature 80 (cid:3)C, lignin concentration Fig. 4 Relationship between Ph-OH group of KL and increased 0.15molL(cid:1)1,pH3.5. carboxylategroupofKL–AApolymer. Thisjournalis©TheRoyalSocietyofChemistry2018 RSCAdv.,2018,8,12322–12336 | 12329 View Article Online RSCAdvances Paper e. c n AM. d Lice Fig.6 Carboxylategroupcontentandmolecularweightoflignin–AA 0:24 porte pcoonlycmeenrtraastiofunn,c0t.i1o5nmooflreLa(cid:1)c1,tiAoAn/tliigmnein(pmHo,l3a.r5r,aintioiti,a5to.5r,,81.05(cid:3)wCt)%.,lignin 2n 2:U 023 1n 3.0 Fig. 5 Carboxylate group content, molecular weight and hydrody- oaded on 2/14/2mons Attributio 8n(pa0Hm(cid:3)C3ic.,5d3,ialhimg).neintercoonfcligennitnra–tAioAnp0o.l1y5mmeroalsLa(cid:1)1f,uAnAc/tiloignnionfminiotilaatrorradtioosa5g.5e, mamwffeoeeirlgc(cid:1).ht1eTt,dhsrehethsoipewneccecrhdteiavaaresgnleeys.adciFencunerlstteihhtreyaertaiconainnrdbcriomnexaoytsllhaeecteeuinplagorrtlhoywumeepeirgraaihtznitaodtoimofmntahorrlegeaictpneuoalllaolyyrf- nlm lignin and AA due to an increased AA content in the reaction owCo increasedfrom0.5to3.0wt%.Itwaswellknownthatthelower medium.52 However, when the ratio of AA/KL was higher than March 2018. Dder a Creative twaohcoelcuoudnlrdogsuefarnogrdcemehorafoittnwnh.o4el8i,i4pgn9noiTstinishai,tebowirlphi,toitilcheyhsemf(weei)rowiauzealrdsttmihorneaelsrluoanlfdtuilciimnaglnbsaien(rgprooaanlfydmlionneAgrgAcwiPctieAatsnhA) 1pan3ro.d5Tb,eAambAthlpy(ecedararhobtmouomrixneyo.alpatToteehdlyegmtrhoeeauffrtipezdcaaettsncioedonlefMraorwtefeawdcAetAtriheoentcooptnoegslmyetamnpneeetrrr)aa.i5tzt0eua,5tr3iePoAnoAnofwtKhaLes d on 29 ensed un sneugmmbeenrtoafttsahcohretdPtAoAlisgengimneinntantatalcKhLe–dAtAoplioglnymineirnorn(iai)laKLla–rAgAe acarerbporxeyslaetnetegdroiunpFaingd. 8m.oIlteccualnarbweesigehent otfhlaitgnwinit–hAArispionlgymtheer Article. PublisheThis article is lic ppsPheooAygdllAyymrmmoseedeengyrrtmn.oIawennmnotltuiihcgwledndofiuionianlr.mdmcInrebeetertaehsrgceearoaslfaedt,luetitedgehrneocitnnoahsylseidtgi,hgrnaeonisdniapy,ncrlieaatasnrmmegtneliayccyn.edunTimooaotmfbccleehlartoraenoinrffgygosefthPhttoAhhirsAeet, raigcen(cid:1)aa1dlcltyaminofrodnolemt5ec.mu41l.pa(cid:4)1re2rw1am0etu5imgrgheotlmfrogoo(cid:1)fml1(cid:1)li1ag6,nn0rdi(cid:3)enCs0–p.At4eoAc(cid:4)8tpi0v1oe(cid:3)0llCy5ym,.gteThmrheieocnlai(cid:1)cnrr1bectoaroexsaey6sld.ae5tsd2erimganrmmotuahotpel- cess the hydrodynamic diameters of lignin–AA polymers produced cmaorbreoxeyfflaectetivgeroauccpesasnodfAmAomlecounloamr weretioghthtearreeaactttiroinbusitteedsotontthhee Ac were measured via using different initiator dosages and pre- n lignin at a higher temperature, which could be due to the e sented inFig.5. Withthe increaseinthe initiator dosage,the p extended conformation of lignin molecules and the dissocia- O hydrodynamic diameter of the polymer decreased, illustrating tion of lignin from its self-assembly of aggregates at a high the polymer produced at high initiator dosage probably had temperature.54,55Inaddition,theresultsinFig.8suggeststhat more of shorter PAA segment. It should be noted that, the thepolymerizationofKLwithAAisendothermicreactionasit hydrodynamicdiametersofKLwere6.1nm.Thedistributions waspromotedatahighertemperature.Whenthetemperature of hydrodynamic diameter of KL and KL–AA polymer are was higher than 90 (cid:3)C, both carboxylate group and molecular provided in Fig. S6 in ESI† and the results depicted better uniformityforKL–AApolymerthanforKLinthesolution. Reaction time. The effects of reaction time on the carbox- ylate group and molecular weight of lignin–AA polymer are showninFig.6.Itcanbeseenthatbothcarboxylategroupand molecular weight increased with extending the reaction time. The carboxylate group and molecular weight of lignin–AA polymersignicantlyincreasedfrom2meqg(cid:1)1to5.32meqg(cid:1)1 and from 1.0 (cid:4) 105 to 5.0 (cid:4) 105 g mol(cid:1)1, respectively. The increasesinthecarboxylategroupandmolecularweightcould be attributed to the addition of monomers to the growing of graedchainsatanextendedreactiontime.50,51 AA/ligninmolarratio.TheinuenceofAA/ligninmolarratio onthecarboxylategroupandmolecularweightofthepolymeris showninFig.7.ItcanbeobservedthatbychangingAA/lignin molarratiofrom1.4to10.8,thecarboxylategroupandmolec- Fig.7 Carboxylategroupcontentandmolecularweightoflignin–AA ular weight increased rapidly to 7 meq g(cid:1)1 and 7.1 (cid:4) 105 g p1.o5lywmt%er,liagsninacfuonnccteionntraotifonA,A0/.l1ig5nminolmLo(cid:1)l1a,r3rha,ti8o0((cid:3)pCH)., 3.5, initiator, 12330 | RSCAdv.,2018,8,12322–12336 Thisjournalis©TheRoyalSocietyofChemistry2018 View Article Online Paper RSCAdvances To investigate the relationship between carboxylate group andmolecularweightoflignin–AApolymer,thedatapresented inpreviousguresisplottedinFig.10.Asseen,themolecular weightofthepolymerincreasedlinearlywiththeincreaseinthe carboxylate group content, indicating that the increase in the molecular weight of the polymer was mainly attributed to the PAA segment in the KL–AA polymer. The linear relationship betweencarboxylategroupcontentandmolecularweightisY¼ e. 1.0618X(cid:1)0.9738,R2¼0.9462,whereYisthemolecularweight nc ((cid:4)105gmol(cid:1)1)andXisthecarboxylategroupofKL–AApolymer M. Lice (mmolg(cid:1)1).Thisformulacanbeusedtocorrelatethemolecular 20:24 Anported Iwneiagdhdtiotifolnigtnoint–hAeAmpoolleycmuelarrwwitehigihtst,cathrbeoHxyylaotfelgigrnoiunp–AcoAnpteonlyt-. 023 12:n 3.0 U pFiogl.y8meCraarsbaofxuynlactteiognrooufptecmopneternattuarned(pmHo,l3e.c5u,lianritwiateoigr,h1t.5ofwlitg%n,inlig–nAiAn msaemrsplwesithwedrieffmereeanstucraerdboaxnydlapteregsreonutpedcoinntFeingt.s1f0o.rTthhee Hsaymoef nloaded on 2/14/2mmons Attributio cwteoemnigcpheentrtardtaeuticrorene,am0se.a1d5d,emwtohhlieLc(cid:1)hi1n,wAitAaia/sltiogdrnuinelemstosolteahffrereacfttiaoicv,te8.4t.0,h9,a3Atlhst)ho.e, ahihghigehr al(lciicaggodrnnibeliieotnnedx––ry/AAmlliaAAnitneeppeaoogdrllr)yyommmuinepoerrl,esmicsldlouauillydsuathrtrniaaowotvntieensisgdghhiiotfffthwecartaatehnneleivtynbemeenawogtrleheerronceeuuelargltapahirtroeolcndidogs,unnhtcfiihonpeerd–wmAfioAautrhtnmwiodtihentehdesr wo oC temperature favored the chain termination and chaintransfer different conditions. The higher H of samples with lower De y 18. ativ reactions as well as the competing homopolymerization (PAA) carboxylate group may imply that, when the amount of March 20der a Cre rceaarLbctioigxonynil.na1t0ec,2o8g,n4r3c,o5e2unptraantidonm.oTlheecuelffaercwtseoigfhltigonfinligcnoninc–eAnAtraptoiolynmoenr cthhaigerbhpocoxalyyrlmabtoeexryglwraoatuespglir(naoenuadprm(oarnoldmecohurilegahrligMwneWiing)hwtth)aesofpinopvloyolmylvmeerder,gebwnuaetsrwalotiewthd, 9 un n 2ed areshowninFig.9.Asisobserved,byconcentratingligninin acoilshapeconformation. d oens the solution, the carboxylate group and molecular weight of Basedontheresultsshowninpreviousgures,theoptimal s Article. Publishe This article is lic mluwmitgeooenldlnli(cid:1)nao1tsm–oaAienttAhrc0erpr.ea1oiadn5lsyicemcmrdaeeolapsrlsreiaLondn(cid:1)bcd1araebmtlaiihglsoieentuydiinnnottifotcoicoa7font.pl3oclh7iresenimmnotrnoomalltaieoicmcoluhngoly,(cid:1)ends1wgratholonixigcydfnhlo7irrna.am4rdrea(cid:4)ilcdiaagi1tlnct0srai5inlabsg–s-, cg7Kmor.L3oan,7sudAspmi)At,im/o8Kan0noLsld(cid:3)mgCfo(cid:1)omra1lnpaoadrrnloedr3cdauu7thil.coa4.irnU(cid:4)1g0nw1.dl0ie0eg,i5rngignhitnhitmt–eiAasooetAlfo(cid:1)crp1oK,o1nrLl.ey5d–smiApwtAieeotrc%ntwpisv(,eoebrltlyeahyms.e0eT.edc1hra5oirsbnmreloioalgxiclygnhlLniane(cid:1)itnde–1 s ce AA polymer.56–58 When lignin concentration was higher than AApolymerwasselectedforfurtheranalysis. c n A 0.15molL(cid:1)1,thephenolichydroxylradicalshadmorechances Ope tointeractwithotherligninradicals,suchasbenzylorphenolic Characterizationoflignin–AApolymer hydroxyl radicals, by disproportionation or radical coupling reactions.4,50Thus,theactiveradicals,capableofinitiatingthe FTIR. The FTIR spectra of KL–AA polymer prepared under polymerization of monomers, were ineffectively consumed, theoptimalconditionsandKLsarepresentedinFig.11.Both KL and KL–AA polymer showed a broad band around leadingtothedeclinedmolecularweightandcarboxylategroup. 3400cm(cid:1)1,whichisassignedtotheOHstretchingofphenolic Fig.9 Carboxylategroupcontentandmolecularweightoflignin–AA polymerasafunctionofligninconcentration(pH,3.5,initiator,1.5wt%, Fig.10 Relationshipbetweencarboxylategroupcontentoflignin–AA AA/ligninmolarratio,10.0,3h,80(cid:3)C). polymerwithitsmolecularweight(basedon1.5wt%initiator). Thisjournalis©TheRoyalSocietyofChemistry2018 RSCAdv.,2018,8,12322–12336 | 12331
Description: