ebook img

Novel n-3 Fatty Acid Oxidation Products Activate Nrf2 by Destabilizing the Association between ... PDF

13 Pages·2007·0.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Novel n-3 Fatty Acid Oxidation Products Activate Nrf2 by Destabilizing the Association between ...

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.282,NO.4,pp.2529–2537,January26,2007 ©2007byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Novel n-3 Fatty Acid Oxidation Products Activate Nrf2 by Destabilizing the Association between Keap1 and Cullin3*□S Receivedforpublication,August10,2006,andinrevisedform,October23,2006 Published,JBCPapersinPress,November25,2006,DOI10.1074/jbc.M607622200 LingGao‡1,JiakunWang§¶1,KonjetiR.Sekhar§¶,HuiyongYin‡,NicholasF.Yared§¶,ScottN.Schneider(cid:1), SoumyaSasi§¶,TimothyP.Dalton(cid:1),MarkE.Anderson**2,JeffersonY.Chan‡‡,JasonD.Morrow‡3, andMichaelL.Freeman§¶4 Fromthe‡DepartmentsofMedicineandPharmacology,DivisionofClinicalPharmacology,§DepartmentofRadiationOncology, ¶Vanderbilt-IngramCancerCenter,VanderbiltUniversitySchoolofMedicine,Nashville,Tennessee37232,the(cid:1)Departmentof EnvironmentalHealthandCenterforEnvironmentalGenetics,UniversityofCincinnatiMedicalCenter,Cincinnati, Ohio45267,the**DepartmentofMedicine,CarverCollegeofMedicine,UniversityofIowa,IowaCity,Iowa52242, andthe‡‡DepartmentofPathology,UniversityofCalifornia,Irvine,California92697 Consumptionofeicosapentaenoicacid(EPA)anddocosa- oil. Epidemiological studies and randomized controlled trials hexaenoic acid (DHA) can mitigate the progression of dis- have demonstrated that n-3 fatty acid supplementation can easesinwhichoxidativestressrepresentsacommonunder- reducesuddencardiacdeath,nonfatalstroke,anddecreasepro- lying biochemical process. Nrf2-regulated gene expression gression of arteriosclerosis (1–3). Dietary supplementation regulatesdetoxificationofreactiveoxygenspecies.EPAand withfishoilalsoshowspromiseforsuppressingprogressionof DHAweresubjectedtoaninvitrofreeradicaloxidationproc- neurodegenerativediseases(4),neuropsychiatricdisorders(5), ess that models in vivo conditions. Oxidized n-3 fatty acids humanimmunodeficiencyvirus(6),anddiseasesoftheretina reacted directly with the negative regulator of Nrf2, Keap1, (7).Thus,identifyingthemolecularmechanism(s)responsible initiatingKeap1dissociationwithCullin3,therebyinducing forn-3fattyacidmitigationofthesediversediseasesrepresents Nrf2-directedgeneexpression.Liquidchromatography-tan- animportantandintriguingquestion. dem mass spectrometry analyses of oxidized EPA demon- Oxidativestressisacommonfactorintheetiologyofthedis- strated the presence of novel cyclopentenone-containing easesimpactedbyDHAandEPA(1,8–17).Thesen-3fattyacids molecules termed J -isoprostanes in vitro and in vivo and are very susceptible to free radical oxidation, exceeding that of 3 wereshowntoinduceNrf2-directedgeneexpression.These arachidonic acid (AA) (18–20). Yet, recent studies have shown experiments provide a biochemical basis for the hypothesis thatEPAandDHAsupplementationreducedurinaryF -isopro- 2 that formation of J-ring compounds generated from oxida- tanelevels,amarkerforoxidativestress,aswellasenhancedcel- tionofEPAandDHAinvivocanreachconcentrationshigh lularantioxidantdefensesystems(21–24).Althoughareduction enoughtoinduceNrf2-basedcellulardefensesystems. ofF -isoprostanelevelscanbeattributed,inpart,toadecreasein 2 membraneAAcontent(20,25),therelationshipbetweenEPA/ DHAoxidationversusEPA/DHA-mediatedinductionofantioxi- Eicosapentaenoic acid (EPA, C20:5n-3)5 and docosahexae- dantresponsesisnotwellunderstood. noicacid(DHA,C22:6n-3)aretwomajorcomponentsoffish Non-enzymaticfree-radicalperoxidationofAAresultsinthe formation of multiple stereoisomers of prostaglandin H -like 2 *ThisworkwassupportedinpartbyNCI,NationalInstitutesofHealth(NIH) bicyclicendoperoxidesthatcanundergothiol-mediatedreduc- GrantsCA38079,CA104590,T32CA093240,DK26657,ES012463,DK48831, tiontoformprostaglandin-likecompoundstermedF -isopros- CA77839, GM15431, and ES13125 and by NHLBI, NIH Grants HL070250, 2 tanes (F -IsoPs) or rearrangement and reduction to form HL62494,andHL046681.Thecostsofpublicationofthisarticleweredefrayed 2 inpartbythepaymentofpagecharges.Thisarticlemustthereforebehereby E -IsoPs, D -IsoPs, and isothromboxanes. E /D -IsoPs can 2 2 2 2 marked“advertisement”inaccordancewith18U.S.C.Section1734solelyto then dehydrate to highly reactive A /J -isoprostanes contain- indicatethisfact. 2 2 □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains ing cyclopentenone rings. These compounds readily adduct supplemental“ExperimentalProcedures”andFigs.S1andS2. thiolgroupsonproteinsandhavebeenshowntoinduceNrf2/ 1Bothauthorscontributedequallytothiswork. ARE-directedgeneexpression(26). 2AnEstablishedInvestigatoroftheAmericanHeartAssociation. NF-E2-relatedfactor2,Nrf2,isamastertranscriptionfactor 3Towhomcorrespondencemaybeaddressed:DivisionofClinicalPharmacol- showntoregulateexpressionofmorethan200genes,including ogy,Dept.ofMedicineandPharmacology,VanderbiltUniversitySchoolof Medicine,526RRB,23rdandPierceAves.,Nashville,TN37232.Tel.:615-322- thoseinvolvedinPhaseIIdetoxificationandantioxidantgene 4785;Fax:615-322-3669;E-mail:[email protected]. expression(27).RegulationofNrf2activityrepresentsacritical 4Towhomcorrespondencemaybeaddressed:B902TVCRadiationOncology, stepininitiatingacellularantioxidantresponsetoreactiveoxy- VanderbiltUniversitySchoolofMedicine,Nashville,TN37232.Tel.:615-322- 3606;Fax:615-343-3061;E-mail:[email protected]. genspecies.Nrf2-dependentgeneexpressionisregulatedbya 5Theabbreviationsusedare:EPA,eicosapentaenoicacid;LC/MS/MS,liq- cis-element located in the proximal promoter region and is uidchromatography-tandemmassspectrometry;DHA,docosahexae- noic acid; AA, arachidonic acid; IsoP, isoprostane; ARE, antioxidant response element; MeOAMVN, 2,2(cid:1)-azobis(4-methoxy)-2,4-dimethyl- valeronitrile; AAPH, 2,2(cid:1)-azobis(2-amidinopropane) hydrochloride; 5,5(cid:1)-dithiobis(2-nitrobenzoicacid);siRNA,smallinterferenceRNA;Nrf2, PPh3,triphenylphosphine;GFP,greenfluorescentprotein;HPLC,high- NF-E2-relatedfactor2;E3,ubiquitin-proteinisopeptideligase;CID,col- performanceliquidchromatography;GC,gaschromatography;DTNB, lision-induceddissociation. This is an open access article under the CC BY license. JANUARY26,2007•VOLUME282•NUMBER4 JOURNALOFBIOLOGICALCHEMISTRY 2529 n-3FattyAcidOxidationandNrf2 termedanantioxidantresponseelement(ARE)(28).Nrf2binds ried out as described (33). Immunoprecipitation was carried to AREs as a heterodimer and regulates ARE-directed gene outasdescribedpreviously(34).Cardiactissuewasobtainedas expression(29).Nrf2isnegativelyregulatedbyassociationwith describedinapreviousstudy(35).Slicesofflashfrozencardiac theubiquitinligaseadaptorproteinKeap1(30).BindingofKeap1 tissueweresonicatedat4°Cfor10sinnuclearisolationbuffer to Nrf2 directs the ubiquitination and proteasome-dependent (33).Nucleiwerepelletedfollowingcentrifugationat12,000(cid:3) degradationofNrf2.InhibitionofNrf2ubiquitinationresultsin g,washedtwiceinnuclearisolationbuffer,andthensolubilized Nrf2accumulation,increasedARE-directedgeneexpression,and in5(cid:3)Laemmlibuffer. anenhancedabilitytorespondtooxidantstress(31). Preparation for Flow Cytometric Assay—Washed, trypsinized Non-enzymatic free-radical peroxidation of n-3 fatty acids HepG2ARE-GFPreportercellswereassayedusingaBDLSRII are predicted to generate reactive species analogous to those bytheVanderbiltInstitutionalflowcytometrycore. formedfromAA.Itwouldbeofsignificantinteresttoidentify Transfection—COS-7cells,inoculatedinT25flasks,wereco- those analogous species and elucidate their bioactivity. We transfected with a plasmid expressing human Keap1 (2 reporthereonnovelstudiesthatdemonstratetheformationof (cid:1)g/flask)andofaplasmidexpressinghumanV5-taggedCul3(2 cyclopentenone-containing J-ring isoprostanes following oxi- (cid:1)g/flask)usingDMRIE-C(Invitrogen).TheKeap1vectorhas dationofn-3fattyacids.Furthermore,thesestudiesshowthat been described previously (36). A cDNA expressing human J -IsoPs stabilize Nrf2 levels and induce Nrf2-directed gene Cul3wasobtainedfromtheI.M.A.G.EConsortium(Lawrence 3 expression. Whereas, AA-derived 15-deoxy-(cid:2)12,14-prostag- LivermoreNationalLaboratory)cDNAClonesandsubcloned landin J was hypothesized to activate Nrf2-directed gene intopcDNA6/V5-His(Invitrogen).48haftertransfection,cells 2 expressionviadissociationofNrf2fromadductedKeap1(26), wereexposedto50(cid:1)MEPA . ox ourdatasupportanalternativemechanism:dissociationofCul- PurificationofActiveComponentinOxidizedEPA—EPAwas lin3fromoxidizedKeap1. oxidized by AAPH, and the oxidation mixture was extracted usingaC-18cartridge.Theeluatewasevaporatedtodryness, EXPERIMENTALPROCEDURES andtheresiduewasresuspendedinisopropanolandpurifiedby Materials—Eicosapentaenoic acid, docosahexaenoic acid, normal phase high-pressure liquid chromatography (HPLC) 15-E -isoprostane, and 15-F -isoprostane were purchased usingaPhenomenexLuna10(cid:1)(10mm(cid:3)25cm)Silicasemi- 2 2 fromCaymanChemicalCo.15-A -isoprostaneand15-J -iso- preparationcolumnwithamobilephaseofhexane/isopropa- 2 2 prostane were obtained by total synthesis (38, 39). The free- nol/aceticacid(100/3/0.1,v/v)at9ml/minflowrate.Thefrac- radicalinitiator2,2(cid:1)-azobis(4-methoxy)-2,4-dimethylvaleroni- tionwascollectedeveryminute.HepG2cellswereexposedto trile (MeOAMVN) was generously donated by Wako theHPLCfractions,andnuclearNrf2wasmeasuredbyimmu- Chemicals and 2,2(cid:1)-azobis(2-amidinopropane) hydrochloride noblotting.TheHPLCfractionthatmaximallyinducednuclear (AAPH) was obtained from Kodak. Triphenylphosphine Nrf2accumulationwasfurtheranalyzedbyLC/MS/MS. (PPh3) and diethyl maleate were purchased from Aldrich- PurificationandAnalysesofA /J -IsoPsfromTissue—Liver 3 3 Chemical.SulforaphanewasobtainedfromICN.Primaryanti- tissues were collected from mice fed with 6% fish oil (Dyets, bodiestoNrf2,HO1,andactinwerefromSantaCruzBiotech- Inc.)for8weeks.Phospholipidsintheliverswereextractedby nology,StressGen,andSigma,respectively,whereasGCLCwas FolchsolutionandhydrolyzedbyphospholipaseA torelease 2 purchasedfromLabVision. freeA /J -IsoPs.TheA /J -IsoPsinthesampleswerethenana- 3 3 3 3 Cell Culture—Human HepG2 cells stably expressing GFP lyzedbyLC/MS/MS. undercontrolofamurineGSTA1ARE/thymidinekinasereporter Structural Characterization Using Tandem Mass Spec- wereagraciousgiftfromDr.W.E.Fahl(ProCertusBioPharm). trometry—Theinvitroandinvivosampleswereanalyzedusinga HepG2andCos-7cellsweremaintainedinDulbecco’smodified ThermoFinniganTSQQuantum1.0SR1massspectrometerin Eagle’smediumsupplementedwith10%fetalbovineserum. negativeionmode.FortandemMSexperiments,collisionenergies AnimalCare—MicewerefedanAIN-76Adietandwaterad wereoptimizedbetween10and30eVunder1.5millitorrofargon. libitum and housed under controlled conditions (12-h light/ Spectrathatareshownwereobtainedat15eV.Dataacquisition dark periods). All experimental protocols conducted on the andanalysiswereperformedusingXcalibersoftware,version1.3. micewereperformedinaccordancewiththestandardsestab- For electrospray ionization-MS, the capillary temperature was lishedbytheU.S.AnimalWelfareActs,assetforthinNational 300°C.Thevaporizertemperatureis350°C.Thesheathandaux InstitutesofHealthguidelinesandthePolicyandProcedures gaspressurewere31and17p.s.i.Thesprayvoltagewas3.0kV,and and the Vanderbilt University Institutional Animal Care and thetubelensvoltagewas(cid:4)102V.Sampleswereintroducedby UseCommittee. reversed-phase HPLC with a Phenomenex Luna(cid:2)ODS 5(cid:1)(2.1 PreparationofOxidizedFattyAcid—EPAandDHAwereoxi- mm(cid:3)25cm)column.Themobilephasewasagradientstarting dizedbyeitherAAPHinphosphate-bufferedsalinebuffer(20)or with80%solventA(2mMNH Ac:CH CN/MEOH(95/5)(cid:5)95:5) 4 3 MeOAMVNinbenzene(32).BothAAPHandMeOAMVNare and20%solventB(MeOH:CH CN(cid:5)5:95),holdingfor1minand 3 free radical initiators. The concentrations denoted in Figs. 1–3 increasingto50%Bin18minandholdingfor2min.Theflowrate and 6 represent the initial free acid concentrations of EPA or was0.2ml/min. DHAthatweresubjectedtooxidation. Gaschromatography(GC)/negativeionchemicalionization Preparation of Nuclear Extracts, Immunoprecipitation, and MSwasperformedusinganAgilenttechnologies6890Nnet- Immunoblot Analysis—Preparation of nuclear extracts from workGCsystem.Methanewasusedasthecarriergasataflow cellsandimmunoblottingofNrf2,HO1,andGCLCwerecar- rateof2ml/min.Ionsourcetemperaturewas250°C,electron 2530 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER4•JANUARY26,2007 n-3FattyAcidOxidationandNrf2 resentsnumberofaminoacidresi- dues; and l represents cell path lengthincentimeters. hKeap1 was dissolved at a con- centrationof0.1mg/mlin100mM Tris buffer (pH 8.0). For the CD measurements, hKeapl was incu- batedwith10(cid:1)M15-J -IsoPor100 2 (cid:1)M oxidized EPA at 37°C for 1 h. Percentage of secondary structure was calculated using the K2d pro- gram (37). Structural changes in (cid:3)-helix, (cid:4)-sheet, and random coil were expressed as the increase/de- creaseofthepercentageofstructure for 15-J -IsoP or oxidized EPA- 2 treated hKeap1 compared with non-treatedhKeap1. FIGURE1.DHA andEPA induceARE-directedGFPreporteractivityandincreaseexpressionofendog- RESULTS ox ox enousNrf2,HO1,andGCLC.DHA(A,C,andE)andEPA(BandD),atinitialconcentrationsdenotedinthe Oxidationofn-3polyunsaturated figure,wereoxidizedinvitrobyfreeradicalinitiationandthenaddedtoHepG2.RelativefluorescenceofaGFP reporterstablyexpressedinHepG2cellsandundercontrolofamurineGsta1AREfusedtoathymidinekinase fattyacidsisrequiredforinduction minimalpromoterisshowninAandB.ThefreeacidsofDHAandEPAwereaddeddirectlytocells.After16hof ofARE-directedGFPreportergene exposure,GFPfluorescencewasmeasured.Cellsexposedto25or50(cid:1)Msulforaphanewereusedasapositive expression. HepG2 cells stably control.Theconcentrationsdenotedrefertotheinitialstartingconcentrationsthatweresubjecttooxidation. HepG2cellswerealsoexposedtotheoxidizedn-3fattyacidsfortheindicatedtimespriortoimmunoblotting transfected with a plasmid that (CandD). expressedGFPundercontrolofthe murineGsta1ARE(38)wereusedto energywas70eV,andfilamentcurrentwas0.25mA.Foranal- determineifn-3fattyacidswerecapableofinducingNrf2-di- ysis,samplesweredissolvedin20(cid:1)lofundecane. rectedgeneexpression.ThedatapresentedinFig.1(AandB) ReactivityofKeap1Sulfhydryls—Thereactivityofsulfhydryl showthatawellcharacterizedNrf2activatorsuchassulfora- groups in Keap1 was determined in a competition reaction phane(31)producedastatisticallysignificantincreaseinARE- occurring between oxidized EPA and 5,5(cid:1)-dithiobis(2-nitro- reporterdirectedGFPfluorescence(p(cid:6)0.05,analysisofvari- benzoic acid) (DTNB). Recombinant Keap1 (0.2 mg/ml) was ance). However, exposure to DHA or EPA free acids, did not reactedat30°Cwith100(cid:1)MDTNBinargon-saturated100mM affectGFPfluorescencecomparedwithcontrol(p(cid:7)0.05,anal- Tris,pH8.0,supplementedwitheithercarriercontrolsolvent ysisofvariance). or100(cid:1)MoxidizedEPA.Theinitialrelativeabsorbanceofthe BecauseEPAandDHAreadilyundergoauto-oxidationinvivo two reactions was set to zero and then monitored simulta- (39),itwasofinteresttodetermineifoxidizedn-3fattyacidsexhib- neouslyatA usingadual-beamVarianDMS80spectropho- itedtheabilitytoinduceNrf2-regulatedactivity.Thus,EPAand 412 tometer. Competition between oxidized EPA and DTNB for DHAwereoxidizedinvitrobyfreeradicalinitiation(see“Experi- Keap1sulfhydrylswasrecordedasadecreaseinabsorbanceat mental Procedures”). HepG2 cells were exposed to the EPA or A ,asafunctionoftimerelativetotheabsorbanceproduced DHAoxidationproducts.Adose-dependentincreaseinARE-re- 412 in the reference cell by reaction of DTNB and Keap1 in the porter-directedGFPfluorescencewasobserved(Fig.1,Aand1B, absence of oxidized EPA. Control experiments demonstrated p(cid:6)0.05,analysisofvariance).ThesedatademonstratethatEPA thatoxidizedEPAdidnotreactwithDTNB.DTNBreactivity andDHAoxidationproductsinduceARE-directedreportergene with Keap1, measured as an increase in absorbance at A activity. 412 demonstrated that all 27 His -Keap1 cysteine residues were Oxidized n-3 fatty acids stabilize Nrf2 and increase the 6 availablefortitration. endogenous expression of Nrf2-regulated genes. Nrf2 is a CDSpectroscopy—CDspectrawereacquiredonaJascoJ-810 short-lived protein due to its association with Keap1, which spectropolarimeterequippedwithaPeltier-controlledtemper- directstheubiquitinationofNrf2andsubsequentproteasome- atureblockusinga1-mmpathlengthquartzcuvette.Thedata dependentdegradation(40).Underbasalconditions,verylittle werecollectedat1-nmincrementsfrom200to260nmusinga Nrf2accumulatesinthenucleus(30).AgentsthatactivateNrf2 response time of 2 s and a scan speed of 10 nm/min. Spectra functiondosobyinhibitingKeap1-directedubiquitinationof represent an average 2 scans with the background corrected Nrf2, allowing Nrf2-regulated gene expression to increase. againstabufferblankorabuffertreatmentcompound.Dataare Inhibition of ubiquitination and stabilization of Nrf2 can be reportedasmeanresidueellipticity,[(cid:2)](deg(cid:3)cm2(cid:3)dmol(cid:4)1), followedbymeasuringnuclearaccumulationofNrf2(31). whichwascalculatedas[(cid:2)](cid:5)100(signal)/(C(cid:3)n(cid:3)l),where HepG2 cells were exposed to oxidized DHA (DHA ) for ox degrepresentsdegrees;signalrepresentsrawoutputinmillide- up to 30 h, and nuclear protein was isolated and immuno- grees;Crepresentsproteinconcentrationinmillimolar;nrep- blottedforthepresenceofNrf2(Fig.1C).NuclearNrf2levels JANUARY26,2007•VOLUME282•NUMBER4 JOURNALOFBIOLOGICALCHEMISTRY 2531 n-3FattyAcidOxidationandNrf2 increasedwithin2hofexposuretoDHA .Similarly,HepG2 acidformofEPAdidnotstabilizeNrf2(Fig.1D).Moreover, ox cells exposed to oxidized EPA (EPA ) showed significant stabilization of Nrf2 was followed by the increased expres- ox increasesinnuclearNrf2levelswithin4h,althoughthefree sion of two well characterized endogenous Nrf2-regulated genes,hemeoxygenase-1(HO1)(41)andGclc(42)(Fig.1,C andE).Theseresultsareconsistentwiththedatapresented in Fig. 1 (A and B) and suggest that oxidation products of DHA and EPA result in Nrf2 stabilization, allowing increasedNrf2-regulatedgeneexpression. A siRNA approach was used to determine if oxidized n-3 fatty acid-mediated expression of HO1 was dependent upon Nrf2. NMuMG cells were transiently transfected with either controlsiRNAorsiRNAdirectedagainstNrf2.48haftertrans- fection,cellswereexposedtoDHA for4h,andthennuclear ox extractswerepreparedforimmunoblotting.Theimmunoblot was probed with antibodies directed against Nrf2, HO1, and actin(Fig.2A).ExposuretoDHA producedarobustincrease ox in Nrf2 expression in cells transfected with control siRNA. Gene silencing with siRNA directed against Nrf2 suppressed DHA -mediatedexpressionofNrf2by50%(Fig.2B).Incells ox transfectedwithcontrolsiRNA,DHA alsoproducedarobust ox increase in the HO1 expression. The intensity of the HO1 immunoreactivebandwasmeasuredandexpressedrelativeto the expression of actin (Fig. 2B). Transfection of siRNA directedagainstNrf2suppressedDHA -mediatedexpression ox ofHO1by50%(Fig.2,AandB).Theseexperimentsdemon- FIGURE2.TheincreaseinendogenousHO1mediatedbyDHA requires ox strate a direct correlation between Nrf2 and HO1 expression expressionofendogenousNrf2.A,NMuMGcellsweretransfectedwitheither control siRNA or siRNA directed against Nrf2. After transfection, cells were andsupportthecontentionthatoxidizedn-3fattyacids-medi- exposedtoDHAoxfor4h.B,imageanalysisquantitationofNrf2,HO1relativeto atedexpressionofHO1isNrf2-dependent. theexpressionofactin.TheintensitiesofimmunoreactiveNrf2andHO1bands Oxidizedn-3FattyAcidsReactwithKeap1Sulfhydryls,Alter- weremeasuredbyimageanalysissoftwareandexpressedrelativetoactin.The valuesobtainedfromcontrolcellswerearbitraryassignedavalueof1.0. ing Keap1 Secondary Structure That Is Followed by a Loss of Association between Keap1 and Cullin3—It was previously con- cluded that adduction of Keap1 by 15-deoxy-(cid:2)12,14-prostaglandin J2-initiatedreleaseofNrf2,allowing forthelatter’sstabilization(26).To determine if a similar mechanism prevailedforn-3omegafattyacids, experiments were undertaken to determine if EPA could reacted ox directly with Keap1 cysteine resi- dues. The reaction of cyclopen- tenone isoprostanes with protein sulfhydrylscanbemonitoredusing DTNBtitration(43).Thisassaywas modifiedtoincreasesensitivitysuch thatwecouldmonitorthereactivity of a small number of sulfhydryls. The ability of EPA to compete ox with DTNB for reaction with recombinantKeap1sulfhydrylswas monitored as described under “ExperimentalProcedures,”andthe data are presented in Fig. 3A. The decreaseinabsorbancemeasuredat FIGURE3.EPA reactswithKeap1sulfhydryls,altersKeap1secondarystructure,andinitiatesdisassociation A can be attributed to EPA ofKeap1fromoxCullin3.A,competitionbetweenEPA andDTNBresultedindifferentialtitrationofrecombinant 412 ox 1K5e-aJp2-1IsSoHPg(1r0ou(cid:1)pMs),fmore1ashuraetd37at°CA.4C12,.EBP,ACoDxisntiutidayteosfdriescaooxssmobciiantaionntKoefaKpe1ap(01.1frmomg/Cmull)lirne3a.cSteeedtwexitthfo1r0d0e(cid:1)taMilEs.PAoxor mgrooduipfsic,arteinodnerionfgt4hemKeuanpa1vailtahbiolel 2532 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER4•JANUARY26,2007 n-3FattyAcidOxidationandNrf2 fortitrationwithDTNB.Takentogether,theLC-MS-MS(see spectrometry (Fig. 4B), suggesting the presence of different below)andDTNBtitrationdataareconsistentwiththemodel regioisomers in this fraction. We subsequently purified the proposed by (44) in which an inducer transiently reacts with A /J -IsoPregioisomersshowninFig.4B,exposedHepG2cells 3 3 Keap1cysteineresiduesthatultimatelyundergodisulfidebond tothemfor16handmeasuredNrf2/ARE-directedGFPfluo- formation. rescence.AsshowninFig.5,A /J -IsoPregioisomerswereable 3 3 CDwasusedtoprobeforsecondarystructuralchangespro- toproduceasignificantincreaseinGFPfluorescencecompared duced by EPA interaction with Keap1 residues (Fig. 3B). withcontrol(p(cid:6)0.05). ox Basedonworkdescribedbelow,wealsointerrogatedsecondary We then performed collision-induced dissociation (CID) structuralchangesinKeap1followingreactionwith15-J -IsoP. analysisonthem/z331iontogetmorestructuralinforma- 2 TheanalysisindicatedthatKeap1underwentanisoprostane-me- tion(Fig.4C).TheCIDoftheparentalionat331resultedin diated loss of (cid:3)-helix content; coincident with an increase in the formation of a number of relevant product ions that (cid:4)-sheetcontentandrandomcoilstructure.TheEPA -mediated would be predicted to be common to all of the A /J -IsoP ox 3 3 lossin(cid:3)-helixconformationmaybeconsequenceofachangein regioisomers (Fig. 4C), including m/z 313[M-H O](cid:4), m/z 2 theBTBdomain(cid:3)-helixregion(45),becausethekelchdomain 295[M-2H O](cid:4), m/z 287[M-CO ](cid:4), and m/z 269[M-H O- 2 2 2 doesnotcontain(cid:3)-helixfolding(46).Currently,thereisnoinfor- CO ](cid:4). Otherprominentproductionswerepresentthatmight 2 mationconcerningthestructureoftheinterveningdomain. result from fragmentation of different A /J -IsoP regioisomers. 3 3 Keap1BTBandinterveningdomainsareessentialforassoci- Onthebasisofourpreviousworkandstudiesbyothergroups(50, ation with the E3 ligase scaffold protein Cullin3 (47). Loss of 54–56), these ions can be tentatively assigned as follows, m/z Keap1-Cullin3 association inhibits Nrf2 ubiquitination, 229[M-CH CH CH (OH)-CO ](cid:4) (18-series), m/z 215[M- 3 2 2 2 thereby stabilizing Nrf2 and initiating Nrf2-directed gene CH CH CH(cid:5)CHCH CH (OH)-H O](cid:4)(15-series),m/z189[M- 3 2 2 2 2 expression(47,48).COS-7cells,transientlyco-transfectedwith CH CH CH(cid:5)CHCH CH (OH)-CO ](cid:4) (15-series), and m/z 3 2 2 2 2 plasmids expressing Keap1 and V5-tagged Cullin3, were 175[M-CH CH CH(cid:5)CHCH CH(cid:5)CHCH CH (OH)-H O](cid:4) 3 2 2 2 2 2 exposed to solvent control or 50 (cid:1)M EPA for 2 h (Fig. 3C). (12-series). The structure was further confirmed by GC/MS ox ImmunoprecipitationwithV5antibodyfollowedbyimmuno- after trimethylsilylation derivatization (data not shown). The blottingwithantibodytoKeap1demonstratedthatKeap1and molecular weight, CID results (Fig. 4C), and GC/MS analysis V5-Cullin3 associated in a complex under control conditions areconsistentwiththepresenceofA /J -IsoPs. 3 3 whereNrf2immunoreactiveproteinwasbarelydetected(Fig. Although we have only demonstrated formation of A /J - 3 3 1D). Exposure to EPA , which resulted in Nrf2 stabilization IsoPs from oxidation of EPA, DHA should undergo a similar ox (Fig. 1D), disrupted the association between Keap1 and oxidationscheme.Tosupportthiscontention,EPAandDHA V5-Cullin3(Fig.3C).Takenalltogether,thedatapresentedin were subjected to the oxidation process, and then PPh3 was Fig. 3 indicate that EPA modification of Keap1 sulfhydryls added before applying the lipids to HepG2 cells. Addition of ox was followed by a change in secondary structure that was PPh3toEPA andDHA resultedintheformationofF-ring ox ox accompaniedbyalossofassociationwithCullin3andprovidea finalproductsratherthanAorJcyclopentenones.Asshownin mechanismforNrf2stabilizationobservedinFig.1. supplementalFig.S1,theproductofDHA reductionbyPPh3 ox A Series of Novel Cyclopentenone-containing Molecules wasnotabletoactivatetheARE-directedGFPreporter(p(cid:7)0.05, TermedJ -isoprostanesGeneratedfromNon-enzymaticPeroxi- analysisofvariance).Similarly,PPh3reductionofEPA resulted 3 ox dationofEPAArePotentActivatorsofNrf2—Majorfreeradi- inalossofinducingactivity(datanotshown).Thesedataarecon- cal-catalyzed oxidation products of AA, including F -IsoPs, sistentwiththehypothesisthatA/J-ringcompoundsarerequired 2 D /E -IsoPs, and A /J -IsoPs, have been characterized previ- fortheactivationofARE-directedreporteractivity. 2 2 2 2 ously(49).EPAandDHAalsoundergoanalogousfreeradical- In addition, 15-F -IsoP, 15-E -IsoP, 15-A -IsoP, and 15-J - 2 2 2 2 induced oxidation, however significantly more regioisomers IsoPwereusedassurrogatecompoundstofurtherdefinethe result (20, 50). In the presence of the free radical initiators, structure(s) responsible for activation of Nrf2. HepG2 cells AAPHorMeOAMVN,EPAandDHAareoxidizedtobicyclic wereexposedtothesurrogatecompoundsfor16h,andNrf2/ endoperoxideswithdozensofregioisomersanddiastereomers. ARE-directed GFP fluorescence was measured (supplemental ThesebicyclicendoperoxidescanbereducedtoF-ringisopros- Fig.S2A).Exposureto15-J -IsoPproducedarobustincreasein 2 tanes by GSH (in vivo) (51) and PPh3 (in vitro) (52) or rear- GFPfluorescencecomparedwithcontrol(p(cid:6)0.05,Student’st ranged to D/E-ring isoprostanes in aqueous solution (53). To test).Moreover,nuclearNrf2levelsincreasedfollowingexpo- identifytheactivecomponent(s)inoxidizedn-3fattyacids,we sureto15-J -IsoPfor4h(supplementalFig.S2B).Theseresults 2 oxidized EPA in phosphate-buffered saline buffer, separated aresupportedbythedatashowninFig.3Bandsuggestedthat theoxidationmixturebynormalphaseHPLC,andcollected80 J-ringisoprostanestructureiscapableofNrf2activation. fractions.WethenexaminedtheabilityofeachHPLCfraction A /J -isoprostanes Are Detected in Vivo—For these studies, 3 3 toinducenuclearaccumulationofNrf2,asmeasuredbyimmu- micewerefedadietsupplementedwith0.56%EPAfor8weeks. noblotting (data not shown). The oxidation products in the We did not observe any significant formation of IsoPs in the HPLC fraction that maximally induced Nrf2 accumulation in chow,whichwaschangeddaily,duringthe8weeksoffeeding the nucleus were further identified by LC/MS/MS. The mass (datanotshown).AA,EPA,F -,andF -isoprostanelevelswere 2 3 spectrometryanalysisofthisfractionshowedthemajorionin quantitatedpergramofcardiactissue.Innon-stressedcondi- this fraction was m/z 331 (Fig. 4A). A series of peaks can be tions, cardiac tissue obtained from mice fed a control diet observed when m/z 331 was monitored by second ion mass contained0.35((cid:8)0.07)pgofF -IsoPspernmolofAA.Nei- 2 JANUARY26,2007•VOLUME282•NUMBER4 JOURNALOFBIOLOGICALCHEMISTRY 2533 n-3FattyAcidOxidationandNrf2 FIGURE4.StructurecharacterizationofA /J -IsoPinvitroandinvivo.A,MSspectrumshowingm/z331,themolecularweightofA /J -isoprostane,isthe 3 3 3 3 majorcomponentinHPLCfractionthatexhibitedthemaximalabilitytoinduceNrf2accumulationinnucleiofHepG2cells.B,secondionmassspectrometry analysisillustratesthepresenceofA /J -IsoPregioisomersintheactiveHPLCfraction.C,CIDanalysisresultoftheactiveHPLCfraction.D,CIDanalysisofmouse 3 3 liver.Micewerefedadietsupplementedwith0.56%EPAfor8weeks. ther EPA nor F -IsoPs were detected in cardiac tissue extracted and utilized for A /J -IsoPs analysis by LC/MS/ 3 3 3 obtainedfromthecontrolmice.Innon-stressedconditions, MS. In the CID analysis of the liver, all of the product ions cardiac tissue obtained from mice fed a diet supplemented that would be predicted to be common to all of the A /J - 3 3 with0.56%EPAcontained25((cid:8)5)pgofF -IsoPspernmolof IsoP regioisomers were detected (Fig. 4D), including m/z 3 EPAand0.40((cid:8)0.08)pgofF -IsoPspernmolofAA.These 313[M-H O](cid:4),m/z295[M-2H O](cid:4),m/z287[M-CO ](cid:4),and 2 2 2 2 measurementsdemonstratethatEPAissignificantlymoresus- m/z269[M-H O-CO ](cid:4).Inaddition,12-,15-,and18-series 2 2 ceptibletooxidationthanAAandprovidesupportforthecon- regioisomericcharacteristicfragmentswereformed,includ- ceptthatoxidationofEPAwouldresultinsignificantgenera- ing m/z 229[M-CH CH CH (OH)-CO ](cid:4) (18-series), m/z 3 2 2 2 tionofoxidant-mediatedA /J -IsoPs. 189[M-CH CH CH(cid:5)CHCH CH (OH)-CO ](cid:4) (15-series), 3 3 3 2 2 2 2 AnalogoustoLC/ESI/MS/MSstudiesperformedinvitro, and m/z 175[M-CH CH CH(cid:5)CHCH CH(cid:5)CHCH CH (OH)- 3 2 2 2 2 experiments were then carried out to obtain evidence that H O](cid:4)(12-series).AsisevidentinFig.4D,theCIDpatternis 2 A /J -IsoPs are detected in vivo. Liver and heart were verysimilartothatobtainedfromtheinvitrostudies,although 3 3 2534 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER4•JANUARY26,2007 n-3FattyAcidOxidationandNrf2 formationofF -,F -,andF -isoprostanes(19,20,60).Oxida- 2 3 4 tive stress-mediated formation of isoprostanes represents an important biochemical parameter, because the different iso- prostanescanexhibitvariousbioactivefunctions:F -IsoPscan 2 increaseexpressionofthecytokineinterleukin-8(61)andstim- ulate the thromboxane receptor (62), whereas 15-J -IsoP can 2 activate the peroxisome proliferator-activated receptor (cid:5) nuclear receptor (63), as well as ARE-directed Phase II gene expression(26). ThetranscriptionfactorNF-E2-relatedfactor2(Nrf2)plays an important role in regulating the expression of genes that encodeproteinsresponsiblefordecreasingoxidativestressand inflammationinvivo(64–67).Nrf2isnegativelyregulatedby associationwithKeap1,aCullin3ubiquitinligaseadaptorpro- tein(47,48).Keap1function,inturn,requiresassociationwith FIGURE5.Them/z331fractionshowninFig.4BinducesARE-directedGFP Cullin3, a scaffold protein that positions Keap1 and its sub- reporteractivityinHepG2cellsstablyexpressingtheGFPreporter.Cells wereexposedtovehiclecontrol(Me2SO(DMSO)),50(cid:1)Msulforaphane,or2(cid:1)M strateinproximitytotheE3ligaseRbx1,allowingthesubstrate ofpurifiedm/z331for16h. tobepolyubiquitinated.Cullin3isregulatedbyneddylationand deneddylation(34,68).HumanKeap1contains27cysteineres- idues hypothesized to function as sensors of oxidative stress (31,69).However,adductionofKeap1cysteineresiduesdoes not induce release of Nrf2 (70). Nor does every reagent that adducts Keap1 induce Nrf2-mediated gene expression (33). Thus,therate-limitingstepsresponsibleforactivationofNrf2 arenotwellunderstood. Levonen, et al. (26) found that 15-deoxy-(cid:2)12,14-prostag- landin J adducted Keap1and hypothesized that activation of 2 Nrf2 by15-deoxy-(cid:2)12,14-prostaglandin J was a consequence 2 ofdissociationofNrf2fromKeap1.However,subsequentwork hasshownthatadductionofKeap1by15-deoxy-(cid:2)12,14-pros- FIGURE6.n-3fattyacidsstabilizeNrf2invivo.Immunoblotillustrating taglandinJ doesnotcausedisassociationfromNrf2(70).Thus, increasedexpressionofendogenousNrf2incardiactissuefollowingintrap- 2 the mechanism by which cyclopentenone-containing IsoPs eritonealinjectionofDHA .6-week-oldfemaleNrf2wild-typeC57BL/6Jmice were injected intraperitoonxeally with either ETOH (lanes 1–4) or DHA (2 activateNrf2hasremainedobscure.Ourstudiesdemonstratea ox mg/animal,lanes5–10).6hafterinjection,themiceweresacrificed.Hearts requirement for free radical-mediated oxidation of DHA and wereremovedandwashed.Nucleiisolatedfromhearttissueandnuclear EPA for the process of Nrf2 stabilization, ARE-directed proteinwasimmunoblottedforthepresenceofNrf2oractin. reportergeneexpression,aswellasforexpressionofendoge- therelativeabundanceofthedifferentproductionsareslightly nousHO1andGCLC.Wehavepresentednoveldatademon- different(comparewithFig.4C).Asimilarresultwasobtained stratingthatfreeradical-mediatedoxidationproductsreacted fromhearttissue(datanotshown).Takentogether,theseexperi- withKeap1sulfhydryls,alteringKeap1structure,aconforma- mentsprovideevidencethatA /J -IsoPsarepresentinvivo. tionalchangethatwasassociatedwithlossofbindingtoCul- 3 3 n-3FattyAcidsStabilizeNrf2inVivo—AsshowninFig.6,a lin3.ThesedataidentifytheassociationofKeap1withCullin3 bolusintraperitonealinjectionofDHA resultedinstabiliza- asakeyregulatorystepinNrf2biologywithrespecttoactiva- ox tion of Nrf2 in heart tissue. Similar results were observed if tionbyJ -IsoPsand,byextension,othercyclopentenone-con- 3 animalswereinjectedwithfreeacidDHA,consistentwiththe tainingIsoPs. occurrenceofinvivooxidation(datanotshown). LC-MS-MS analysis of the oxidized EPA identified novel cyclopentenone-containing J -IsoPs that induced Nrf2-medi- DISCUSSION 3 atedgeneexpression.Ouranalysisprovidedevidencethatthese Oxidativestressrepresentsacommonunderlyingbiochem- novelIsoPsarepresentinvivo.Moreover,ourstudiessuggest ical process that contributes to the progression of many dis- thatthebioactivityofJ -IsoPsmaycomefromthemixtureof 3 easesmitigatedbydietarysupplementationwithDHAandEPA different of regioisomers and suggest that J-ring IsoPs are far (1, 8–14). Although EPA and DHA are more easily oxidized morepotentthanA-ringIsoPsinactivationofNrf2.Takenall comparedwitharachidonicacid,DHA/EPAsupplementation togetherthedatasuggestthatJ-ringstructureiscrucialforNrf2 hasbeenassociatedwiththeinductionofcellularantioxidant activation. responses (57–59). However, the biochemical pathways InvivoDHAandEPAaremoresusceptibletoauto-oxida- responsiblefortheseeffectsarecurrentlynotwellunderstood. tionthanAA,becausetheypossessmoredoublebondsthan Thegenerationofisoprostanesreflectingthenon-enzymatic AA.WefoundthatthelevelofF-ringIsoPsgeneratedfrom processoflipidperoxidationofarachidonicacid,EPA,orDHA EPA and DHA is at least one order higher than that gener- is a major consequence of oxidative stress, as exemplified by ated from AA after mice were supplemented with fish oil. JANUARY26,2007•VOLUME282•NUMBER4 JOURNALOFBIOLOGICALCHEMISTRY 2535 n-3FattyAcidOxidationandNrf2 OurdatasupportthehypothesisthattheformationofJ-ring 31. Zhang,D.D.,andHannink,M.(2003)Mol.Cell.Biol.23,8137–8151 compounds generated from oxidation of EPA and DHA in 32. Yin,H.,Musiek,E.S.,Gao,L.,Porter,N.A.,andMorrow,J.D.(2005) J.Biol.Chem.280,26600–26611 vivocanreachconcentrationshighenoughtoinduceNrf2- 33. Hong,F.,Sekhar,K.R.,Freeman,M.L.,andLiebler,D.C.(2005)J.Biol. based antioxidant and Phase II detoxification defense Chem.280,31768–31775 systems. 34. Lo,S.C.,andHannink,M.(2006)Mol.Cell.Biol.26,1235–1244 35. Zhang,R.,Khoo,M.S.,Wu,Y.,Yang,Y.,Grueter,C.E.,Ni,G.,Price, REFERENCES E. E., Jr., Thiel, W., Guatimosim, S., Song, L. S., Madu, E. C., Shah, 1. Chen,J.,andMehta,J.L.(2004)IndianHeartJ.56,163–173 A.N.,Vishnivetskaya,T.A.,Atkinson,J.B.,Gurevich,V.V.,Salama, 2. Barnham,K.J.,Masters,C.L.,andBush,A.I.(2004)Nat.Rev.DrugDiscov. G.,Lederer,W.J.,Colbran,R.J.,andAnderson,M.E.(2005)Nat.Med. 3,205–214 11,409–417 3. Harrison,N.,andAbhyankar,B.(2005)Curr.Med.Res.Opin.21,95–100 36. Sekhar,K.R.,Crooks,P.A.,Sonar,V.N.,Friedman,D.B.,Chan,J.Y., 4. Lukiw, W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Meredith,M.J.,Starnes,J.H.,Kelton,K.R.,Summar,S.R.,Sasi,S.,and Gotlinger,K.,Serhan,C.N.,andBazan,N.G.(2005)J.Clin.Invest.115, Freeman,M.L.(2003)CancerRes.63,5636–5645 2774–2783 37. Andrade,M.A.,Chacon,P.,Merelo,J.J.,andMoran,F.(1993)ProteinEng. 5. Young,G.,andConquer,J.(2005)Reprod.Nutr.Dev.45,1–28 6,383–390 6. Woods,M.N.(2005)Nutr.Clin.Care8,24–30 38. Zhu,M.,andFahl,W.E.(2001)Biochem.Biophys.Res.Commun.289, 7. SanGiovanni,J.P.,andChew,E.Y.(2005)Prog.Retin.EyeRes.24,87–138 212–219 8. Cross,C.E.,Halliwell,B.,Borish,E.T.,Pryor,W.A.,Ames,B.N.,Saul, 39. Porter,N.A.,Caldwell,S.E.,andMills,K.A.(1995)Lipids30,277–290 R. L., McCord, J. M., and Harman, D. (1987) Ann. Intern. Med. 107, 40. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O’Connor, T., and 526–545 Yamamoto,M.(2003)GenesCells8,379–391 9. Kehrer,J.P.(1993)Crit.Rev.Toxicol.23,21–48 41. Alam,J.,Stewart,D.,Touchard,C.,Boinapally,S.,Choi,A.M.,andCook, 10. Lee,J.M.,Li,J.,Johnson,D.A.,Stein,T.D.,Kraft,A.D.,Calkins,M.J., J.L.(1999)J.Biol.Chem.274,26071–26078 Jakel,R.J.,andJohnson,J.A.(2005)FASEBJ.19,1061–1066 42. Chan,J.Y.,andKwong,M.(2000)Biochim.Biophys.Acta1517,19–26 11. Soccio,M.,Toniato,E.,Evangelista,V.,Carluccio,M.,andDeCaterina,R. 43. Shibata,T.,Yamada,T.,Ishii,T.,Kumazawa,S.,Nakamura,H.,Masutani, (2005)EurJ.Clin.Invest.35,305–314 H.,Yodoi,J.,andUchida,K.(2003)J.Biol.Chem.278,26046–26054 12. Moreira,P.I.,Smith,M.A.,Zhu,X.,Honda,K.,Lee,H.G.,Aliev,G.,and 44. Wakabayashi,N.,Dinkova-Kostova,A.T.,Holtzclaw,W.D.,Kang,M.I., Perry,G.(2005)DrugNewsPerspect.18,13–19 Kobayashi,A.,Yamamoto,M.,Kensler,T.W.,andTalalay,P.(2004)Proc. 13. Sacktor,N.,Haughey,N.,Cutler,R.,Tamara,A.,Turchan,J.,Pardo,C., Natl.Acad.Sci.U.S.A.101,2040–2045 Vargas,D.,andNath,A.(2004)J.Neuroimmunol.157,176–184 45. Li,X.,Lopez-Guisa,J.M.,Ninan,N.,Weiner,E.J.,Rauscher,F.J.,3rd,and 14. Zarbin,M.A.(2004)Arch.Ophthalmol.122,598–614 Marmorstein,R.(1997)J.Biol.Chem.272,27324–27329 15. Palozza, P., Sgarlata, E., Luberto, C., Piccioni, E., Anti, M., Marra, G., 46. Li,X.,Zhang,D.,Hannink,M.,andBeamer,L.J.(2004)ActaCrystallogr. Armelao,F.,Franceschelli,P.,andBartoli,G.M.(1996)Am.J.Clin.Nutr. Sect.DBiol.Crystallogr.60,2346–2348 64,297–304 47. Kobayashi,A.,Kang,M.I.,Okawa,H.,Ohtsuji,M.,Zenke,Y.,Chiba,T., 16. Vericel,E.,Polette,A.,Bacot,S.,Calzada,C.,andLagarde,M.(2003)J. Igarashi,K.,andYamamoto,M.(2004)Mol.CellBiol.24,7130–7139 Thromb.Haemost.1,566–572 48. Cullinan,S.B.,Gordan,J.D.,Jin,J.,Harper,J.W.,andDiehl,J.A.(2004) 17. Grundt,H.,Nilsen,D.W.,Mansoor,M.A.,andNordoy,A.(2003)Eur. Mol.Cell.Biol.24,8477–8486 J.Clin.Nutr.57,793–800 49. Morrow,J.D.,andRoberts,L.J.(1997)Prog.LipidRes.36,1–21 18. Roberts,L.J.,2nd,Montine,T.J.,Markesbery,W.R.,Tapper,A.R.,Hardy, 50. Reich,E.E.,Zackert,W.E.,Brame,C.J.,Chen,Y.,Roberts,L.J.,2nd, P.,Chemtob,S.,Dettbarn,W.D.,andMorrow,J.D.(1998)J.Biol.Chem. Hachey,D.L.,Montine,T.J.,andMorrow,J.D.(2000)Biochemistry39, 273,13605–13612 2376–2383 19. Fam,S.S.,Murphey,L.J.,Terry,E.S.,Zackert,W.E.,Chen,Y.,Gao,L., 51. Morrow,J.D.,Roberts,L.J.,Daniel,V.C.,Awad,J.A.,Mirochnitchenko, Pandalai,S.,Milne,G.L.,Roberts,L.J.,Porter,N.A.,Montine,T.J.,and O., Swift, L. L., and Burk, R. F. (1998) Arch. Biochem. Biophys. 353, Morrow,J.D.(2002)J.Biol.Chem.277,36076–36084 160–171 20. Gao,L.,Yin,H.,Milne,G.L.,Porter,N.A.,andMorrow,J.D.(2006)J.Biol. 52. Yin,H.,andPorter,N.A.(2003)Anal.Biochem.313,319–326 Chem.281,14092–14099 53. Roberts,L.J.,2nd,andFessel,J.P.(2004)Chem.Phys.Lipids128,173–186 21. Sarsilmaz,M.,Songur,A.,Ozyurt,H.,Kus,I.,Ozen,O.A.,Ozyurt,B., 54. Kerwin,J.L.,andTorvik,J.J.(1996)Anal.Biochem.237,56–64 Sogut,S.,andAkyol,O.(2003)ProstaglandinsLeukot.Essent.FattyAcids 55. Kerwin,J.L.,Wiens,A.M.,andEricsson,L.H.(1996)J.MassSpectrom.31, 69,253–259 184–192 22. Iraz,M.,Erdogan,H.,Ozyurt,B.,Ozugurlu,F.,Ozgocmen,S.,andFadil- 56. Waugh,R.J.,Morrow,J.D.,Roberts,L.J.,2nd,andMurphy,R.C.(1997) lioglu,E.(2005)Ann.Clin.Lab.Sci.35,169–173 FreeRadic.Biol.Med.23,943–954 23. Mori,T.A.,Puddey,I.B.,Burke,V.,Croft,K.D.,Dunstan,D.W.,Rivera, 57. Choi-Kwon,S.,Park,K.A.,Lee,H.J.,Park,M.S.,Lee,J.H.,Jeon,S.E., J.H.,andBeilin,L.J.(2000)RedoxRep.5,45–46 Choe,M.A.,andPark,K.C.(2004)BrainRes.Dev.BrainRes.152,11–18 24. Nalsen, C., Vessby, B., Berglund, L., Uusitupa, M., Hermansen, K., 58. Galvez,J.,deSouzaGracioso,J.,Camuesco,D.,Vilegas,W.,Monteiro Riccardi, G., Rivellese, A., Storlien, L., Erkkila, A., Yla-Herttuala, S., SouzaBrito,A.R.,andZarzuelo,A.(2006)Fitoterapia77,515–520 Tapsell,L.,andBasu,S.(2006)J.Nutr.136,1222–1228 59. Bhattacharya,A.,Sun,D.,Rahman,M.,andFernandes,G.(2007)J.Nutr. 25. Calviello,G.,Palozza,P.,Franceschelli,P.,Frattucci,A.,Piccioni,E., Biochem.18,23–30 Tessitore,L.,andBartoli,G.M.(1999)Nutr.Cancer34,206–212 60. Morrow,J.D.,Hill,K.E.,Burk,R.F.,Nammour,T.M.,Badr,K.F.,and 26. Levonen,A.L.,Landar,A.,Ramachandran,A.,Ceaser,E.K.,Dickinson, Roberts,L.J.,2nd.(1990)Proc.Natl.Acad.Sci.U.S.A.87,9383–9387 D.A.,Zanoni,G.,Morrow,J.D.,andDarley-Usmar,V.M.(2004)Biochem. 61. Scholz,H.,Yndestad,A.,Damas,J.K.,Waehre,T.,Tonstad,S.,Aukrust,P., J.378,373–382 andHalvorsen,B.(2003)Cardiovasc.Res.59,945–954 27. Kwak,M.K.,Wakabayashi,N.,Itoh,K.,Motohashi,H.,Yamamoto,M., 62. Kinsella,B.T.,O’Mahony,D.J.,andFitzgerald,G.A.(1997)J.Pharmacol. andKensler,T.W.(2003)J.Biol.Chem.278,8135–8145 Exp.Ther.281,957–964 28. Favreau,L.V.,andPickett,C.B.(1991)J.Biol.Chem.266,4556–4561 63. Musiek,E.S.,Gao,L.,Milne,G.L.,Han,W.,Everhart,M.B.,Wang,D., 29. Venugopal,R.,andJaiswal,A.K.(1996)Proc.Natl.Acad.Sci.U.S.A.93, Backlund,M.G.,DuBois,R.N.,Zanoni,G.,Vidari,G.,Blackwell,T.S.,and 14960–14965 Morrow,J.D.(2005)J.Biol.Chem.280,35562–35570 30. McMahon,M.,Itoh,K.,Yamamoto,M.,andHayes,J.D.(2003)J.Biol. 64. Hirayama,A.,Yoh,K.,Nagase,S.,Ueda,A.,Itoh,K.,Morito,N.,Hirayama, Chem.278,21592–21600 K.,Takahashi,S.,Yamamoto,M.,andKoyama,A.(2003)FreeRadic.Biol. 2536 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER4•JANUARY26,2007 n-3FattyAcidOxidationandNrf2 Med.34,1236–1242 68. Wu,J.T.,Lin,H.C.,Hu,Y.C.,andChien,C.T.(2005)Nat.CellBiol.7, 65. Cho,H.Y.,Reddy,S.P.,andKleeberger,S.R.(2006)Antioxid.Redox. 1014–1020 Signal.8,76–87 69. Dinkova-Kostova, A. T., Holtzclaw, W. D., Cole, R. N., Itoh, K., 66. Ma, Q., Battelli, L., and Hubbs, A. F. (2006) Am. J. Pathol. 168, Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P. (2002) 1960–1974 Proc.Natl.Acad.Sci.U.S.A.99,11908–11913 67. Thimmulappa,R.K.,Lee,H.,Rangasamy,T.,Reddy,S.P.,Yamamoto,M., 70. Eggler,A.L.,Liu,G.,Pezzuto,J.M.,vanBreemen,R.B.,andMesecar,A.D. Kensler,T.W.,andBiswal,S.(2006)J.Clin.Invest.116,984–995 (2005)Proc.Natl.Acad.Sci.U.S.A.102,10070–10075 JANUARY26,2007•VOLUME282•NUMBER4 JOURNALOFBIOLOGICALCHEMISTRY 2537

Description:
Epidemiological studies and randomized controlled trials have demonstrated that .. is Nrf2-dependent. Oxidized n-3 Fatty Acids React with Keap1 Sulfhydryls, Alter- .. Sogut, S., and Akyol, O. (2003) Prostaglandins Leukot. Essent.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.