SScchhoollaarrss'' MMiinnee Doctoral Dissertations Student Theses and Dissertations Spring 2009 NNoovveell mmoodduullaatteedd aanntteennnnaass aanndd pprroobbeess ffoorr mmiilllliimmeetteerr wwaavvee iimmaaggiinngg aapppplliiccaattiioonnss Mohamed A. Abou-Khousa Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Electrical and Computer Engineering Commons DDeeppaarrttmmeenntt:: EElleeccttrriiccaall aanndd CCoommppuutteerr EEnnggiinneeeerriinngg RReeccoommmmeennddeedd CCiittaattiioonn Abou-Khousa, Mohamed A., "Novel modulated antennas and probes for millimeter wave imaging applications" (2009). Doctoral Dissertations. 2005. https://scholarsmine.mst.edu/doctoral_dissertations/2005 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. NOVEL MODULATED ANTENNAS AND PROBES FOR MILLIMETER WAVE IMAGING APPLICATIONS by MOHAMED AHMED ABOUKHOUSA A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY in Partial Ful(cid:133)llment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING 2009 Approved by Reza Zoughi Richard E. Dubro⁄ Barbara N. Hale David Pommerenke R. Joe Stanley Copyright 2009 Mohamed Ahmed AbouKhousa All Rights Reserved iii ABSTRACT Microwaveandmillimeterwave(300MHz- 300GHz)imagingtechniqueshave shown great potential for a wide range of industrial and medical applications. These techniques are fundamentally based on measuring relative and coherent electromag- netic (cid:133)elds distributions, e.g., electric (cid:133)elds, around the object to be imaged. Various imagingsystemscanbedevisedformeasuringrelativeelectric(cid:133)elddistributions; each with it own advantages and limitations. This dissertation is focused on addressing critical challenges related to the practical implementation of various microwave and millimeter wave imaging systems. Speci(cid:133)cally, this research is meant to achieve three main objectives related to designing e¢ cient modulated imaging methods/array ele- ments, reducing the sensitivity to stando⁄ distance variations in near-(cid:133)eld imaging, and designing a simple and accurate vector network analyzer (VNA) for in-situ imag- ing applications. The concept of modulating millimeter wave antenna and scatterer structures, directly to increase the overall system sensitivity and reduce the image acquisition time, is central to the development presented herein. To improve upon the conventional modulated scatterer technique (MST) based on dipole scatterers; a new multiple loaded scatterer (MLS) method and novel loaded elliptical slot are introduced and analyzed. A unique near-(cid:133)eld di⁄erential probe based on dual-loaded modulated single waveguide aperture is developed to compensate for and reduce the e⁄ect of stando⁄distance variations in near-(cid:133)eld imaging. Finally, a novel vector net- work analyzer (VNA) design is introduced to meet the rising need for in-situ vector measuring devices. To realize a robust handheld millimeter wave VNA, a custom- designed waveguide phase shifter based on sub-resonant loaded slots is introduced. The proposed MLS method, modulated elliptical slot, dual-loaded modulated aper- ture probe, and VNA are thoroughly investigated and their e¢ cacy for microwave and millimeter wave imaging is demonstrated. iv ACKNOWLEDGMENT First and foremost thanks to ALLAH for all that I am and all that I have ac- complished. Thereafter, themostelegantgratitudeisalwayspertainedtomymother, father, brothers, and sisters to whom I am devoted. This dissertation is dedicated to my parents: Abduallah(cid:146)s daughter and Ahmed son of Ghanem. I would like to convey my sincere appreciation to my supervisor; Dr. Reza Zoughi who guided me through this endeavor with endless support, encouragement, and patience. Many thanks are also due to Dr. Richard E. Dubro⁄, Dr. David Pommerenke, Dr. R. Joe Stanley, and Dr. Barbara N. Hale for their professional advice as well as for the time and e⁄orts they spent serving on my PhD committee. Many thanks go to Dr. D. Pommerenke and Dr. J. Drewniak of the EMC Laboratory at MST for facilitating some of the measurements needed in this study by providing the use of their laboratory equipments.. It is also my delight to thank Dr. S. Kharkovsky, Mr. M. T. Ghasr, Ms. K. Donnellandmycolleaguesattheappliedmicrowavenondestructivetestinglaboratory (amntl) for their valuable comments and help. Many special thanks are also related to Dr. N. Qaddomui and Dr. W. Saleh for their continuous support. Some of the work presented in this dissertation was supported in part by NASA Marshall Space Flight Center (MSFC), Huntsville, AL, and Texas Research Institute/Austin (TRI), Austin, TX, through Phase I and II SBIRs sponsored by U.S. Air Force under Contracts No FA8103-06-C-0258 and FA8103-07-C-0193. Any opinions, (cid:133)ndings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily re(cid:135)ect the views of the U.S. Air Force. v TABLE OF CONTENTS Page ABSTRACT ........................................................................... iii ACKNOWLEDGMENT .............................................................. iv LIST OF ILLUSTRATIONS ......................................................... viii LIST OF TABLES .................................................................... xiv SECTION 1. INTRODUCTION............................................................... 1 1.1. MICROWAVE AND MILLIMETER WAVE IMAGING ................ 1 1.1.1. Measurement of Electric Field Distribution....................... 1 1.1.2. Near-Field Imaging ................................................. 5 1.1.3. Focused Far-Field Imaging ......................................... 5 1.2. QUANTITATIVE INSPECTION ......................................... 6 1.3. SCOPE AND MAJOR CONTRIBUTIONS.............................. 7 2. LOADED ANTENNAS AND SCATTERERS ............................ 10 2.1. PRELIMINARY THEORY................................................ 10 2.1.1. Pocklington(cid:146)s Integrodi⁄erential Equation (IE)................... 10 2.1.2. Method-of-Moment (MoM) Solution............................... 14 2.1.3. Analysis of Loaded Antennas and Scatterers...................... 15 2.2. MAXWELLIAN CIRCUIT (MC) BASED ANALYSIS.................. 20 2.2.1. MC Model ........................................................... 20 2.2.2. MC Parameter Extraction.......................................... 21 2.2.3. Finite Element Method (FEM) Formulation...................... 22 2.2.4. MC Analysis of Loaded Antennas and Scatterers ................ 28 2.3. SUMMARY................................................................. 30 3. MULTIPLE LOADED SCATTERER METHOD ............................. 32 3.1. THE MST PROBE......................................................... 33 3.1.1. Basic Concept ....................................................... 33 3.1.2. Modulation Characteristics......................................... 36 3.1.3. Sensitivity Analysis ................................................. 38 3.1.4. Practical Limitations ............................................... 43 3.2. MST ARRAYS ............................................................. 45 3.3. MULTIPLE LOADED SCATTERER (MLS) METHOD................ 47 vi 3.4. NUMERICAL RESULTS AND DISCUSSION........................... 54 3.4.1. Short-Circuit Current Estimation.................................. 56 3.4.2. Electric Field Mapping ............................................. 58 3.4.3. Comparison with Conventional MST.............................. 59 3.5. SUMMARY................................................................. 63 4. MODULATED ELLIPTICAL SLOT........................................... 65 4.1. MODULATED SLOT DESIGN........................................... 67 4.1.1. Field Distributions.................................................. 70 4.1.2. Far-Field Radiation Pattern........................................ 74 4.2. K-BAND SLOT ............................................................ 76 4.2.1. Slot Design .......................................................... 76 4.2.2. Re(cid:135)ection Measurements ........................................... 77 4.2.3. Transmission Measurements........................................ 78 4.2.4. Modulation Response............................................... 79 4.2.5. Design Enhancement................................................ 81 4.3. SUMMARY................................................................. 83 5. MODULATED APERTURE PROBE.......................................... 84 5.1. DUAL-LOADED APERTURE CONCEPT .............................. 86 5.2. SIMULATION RESULTS ................................................. 88 5.2.1. Near-Field Distributions............................................ 89 5.2.2. Aperture Re(cid:135)ection ................................................. 89 5.2.3. Di⁄erential Response ............................................... 92 5.2.4. Probe Resolution.................................................... 94 5.3. MEASUREMENT RESULTS AND DISCUSSION ...................... 97 5.3.1. Prototype Probe Construction ..................................... 97 5.3.2. Modulated Response................................................ 98 5.3.3. Response to Stando⁄Distance Variations.........................100 5.3.4. 1D Scans.............................................................101 5.3.5. 2D Scans.............................................................102 5.4. SUMMARY.................................................................103 6. NOVEL AND SIMPLE VECTOR NETWORK ANALYZER (VNA) .......107 6.1. BACKGROUND............................................................110 6.2. PROPOSED VNA DESIGN...............................................112 6.2.1. System Concept.....................................................112 6.2.2. Calibration ..........................................................115 6.2.3. Features..............................................................116 vii 6.3. SIMULATION RESULTS .................................................117 6.3.1. Phase Shift Interspacing............................................117 6.3.2. Number of Phase Shifts.............................................119 6.3.3. DUT Re(cid:135)ection Coe¢ cient.........................................120 6.3.4. Phase Shifter Quality...............................................121 6.4. X-BAND VNA PROTOTYPE ...........................................123 6.5. KA-BAND VNA PROTOTYPE ..........................................128 6.5.1. Phase Shifter Design................................................128 6.5.2. Re(cid:135)ection Measurements ...........................................134 6.5.3. Imaging Results .....................................................138 6.6. SUMMARY.................................................................141 7. CONCLUDING REMARKS ...................................................144 BIBLIOGRAPHY .....................................................................149 VITA ...................................................................................156 viii LIST OF ILLUSTRATIONS Figure Page 1.1 Schematic of an MST based electric (cid:133)eld distribution measurement system. 3 2.1 Geometry of a cylindrical wire scatterer. ..................................... 11 2.2 Scattering from impedance-loaded wire scatterer. ........................... 16 2.3 Loaded scatterer problem as superposition of two sub-problems. .......... 16 2.4 Magnitude and phase distributions of the current induced on a wire scat- terer of length L = (cid:21) and radius a = 0:001(cid:21) due to an incident broadside uniform plane wave............................................................. 18 2.5 Normalized radar cross-section of a center loaded (cid:21)-long wire scatterer as a function of its normalized length for di⁄erent loads. ................... 19 2.6 Magnitude and phase of the current distribution on a dipole antenna of length L = (cid:21) and radius 0:001(cid:21) fed at z = (cid:21)=4. ............................. 28 2.7 The MC parameters of (cid:21)-long wire of radius 0:001(cid:21) fed at z = (cid:21)=4........ 29 2.8 The current distribution on a dipole of length L = (cid:21) and L=2a = 74:2 fed at z = L=4 and loaded at the center with Z = . ..................... 30 L 1 2.9 Backscattering RCS of wire scatterer loaded at the center with di⁄erent loads............................................................................. 31 3.1 (a)MSTconceptinmonostaticsetup, and(b)actualmodulatedresponse measurement of PIN-loaded dipole scatterer of length L = (cid:21)=4; at 24 GHz. 35 3.2 PIN-diode modulating sequence and magnitude and phase of the corre- sponding physical modulating signal for a quarter-wave long loaded dipole. 37 3.3 Measured normalized spectrum of the received signal in bistatic MST setup using a (cid:21)=4 modulated dipole, f = 24 GHz........................... 42 c 3.4 Measured normalized spectrum of the received signal in bistatic MST setup using a (cid:21)=2 modulated dipole, f = 24 GHz........................... 43 c 3.5 Typical MSTbistatic electric (cid:133)eldmeasurement con(cid:133)gurationusinga1D array of PIN diode-loaded short dipoles. ..................................... 46 3.6 MLS-based electric (cid:133)eld distribution measurement con(cid:133)guration........... 49 3.7 Measured normalized spectrum of the received signal in bistatic MST setup using a (cid:21)=4 modulated dipole placed 30 cm (12 in) from the trans- mitting antenna, f = 3 GHz. ................................................. 54 c
Description: