Physics 1 1 0 Novel magnetic order in pseudogap state of high Tc copper oxides 2 superconductors n a J Philippe Bourgesa, Yvan Sidisa 9 aLaboratoireL´eonBrillouin-Orph´ee,CEA-Saclay,91191Gif-sur-Yvette,FRANCE 1 Received*****;acceptedafterrevision+++++ ] n o c - r Abstract p u One of the leading issues in high-Tc copper oxide superconductors is the origin of the pseudogap phase in the s underdoped regime of their phase diagram. Using polarized neutron diffraction, a novel magnetic order has been . t identified as an hidden order parameter of the pseudogap as the transition temperature corresponds to what is a expectedforthepseudogap.Theobservedmagneticorderpreservestranslationalsymmetryaspredictedfororbital m momentsinthecirculatingcurrenttheory.Beingnowreportedinthreedifferentcupratesfamilles,itappearsasa - universalphenomenonwhateverthecrystalstructure(withsingleCuO layerorbilayerperunitcell).Todate,it d 2 isthefirstdirectevidenceofanhiddenorderparametercharacterizingthepseudogapphaseofhigh-T cuprates. n c To cite this article: P. Bourges and Y. Sidis, C. R. Physique xx (2010). o c R´esum´e [ Ordremagn´etiquedel’´etatpseudogapdesoxydesdecuivresupraconducteurs`ahautetemp´erature 2 critique Un des probl`emes majeurs des oxydes de cuivre supraconducteurs a` haute temp´erature critique est v l’originedelaphasepseudogapdansl’´etatsous-dop´e.Enutilisantdesmesuresdediffractiondeneutronspolaris´es, 6 nousavonsidentifi´eunordremagn´etiquecach´equiapparaˆıta`latemp´eratureattenduedecet´etatdepseudogap. 8 7 Cet ordre magn´etique respecte la sym´etrie de translation du r´eseau comme cela a ´et´e pr´edit dans la th´eorie des 1 boucles de courants circulants. Nous avons g´en´eralis´e cette d´ecouverte dans trois familles distinctes de cuprates. . Cettemesureestlapremi`erepreuveexp´erimentaledirected’unparam`etred’ordreuniverseldel’´etatdepseudogap 1 des oxydes de cuivre supraconducteurs. 0 Pour citer cet article : P. Bourges et Y. Sidis, C. R. Physique xx (2010). 1 1 : v Keywords: Neutrondiffraction,high-Tc superconductors,pseudogapphase i X Mots-cl´es:diffractiondeNeutron,supraconducteurs hautetemp´eraturecritique,phasedepseudogap r a Emailaddresses: [email protected](PhilippeBourges),[email protected](YvanSidis). PreprintsubmittedtoElsevierScience January20,2011 1. Introduction Theoriginofhigh-T superconductivityincopperoxidematerialsisstillhotlydebatedmorethantwentyyears c after its discovery. On the one hand, conventional phonon-mediated superconductivity has been advocated to explainanomaliesinelectronicspectroscopiesalthoughtheelectron-phononcouplingseemsinsufficienttoexplain the high value of the critical temperature. On the other hand, the antiferromagnetic (AF) spin fluctuations observed in these strongly electronic correlated materials could also lead to an unconventional superconducting (SC) pairing mechanism, where the conventional electron-phonon coupling would be replaced by a spin-fermion coupling. For instance, unconventional AF excitations, the so-called resonance modes, have been reported in the SCstateofmostofcupratesfamilies[1].Assumingaratherlargespin-fermioncoupling(∼1eV),thesecollective AF excitations may account for several anomalies in charge excitation spectra and for the angular momentum dependenceoftheSCgap(seeforinstanceRef.[2]).However,thespinfluctuationmediatedpairingscenariohas to face a serious problem: high-T superconductivity survives even when the AF spin fluctuation spectral weight c becomes strongly reduced. If certain aspects of the physics of cuprates can be understood using either phonons or AF spin fluctuations, the mystery of high-T superconductivity in cuprates remains unsolved. c Allthehigh-T SCcupratesshareacommoncrystallographicstructure:Theyarelayeredmaterialscharacterized c by the stacking of CuO planes. These planes are paved with squared CuO plaquettes. The charge density in 2 2 CuO planes can be tuned using either electron or hole doping. All the hole doped high-T SC cuprates exhibit 2 c the same remarkable phase diagram (Fig. 1). These compounds are AF Mott insulators at zero doping. The AF state is quickly destroyed once a small amount of doped holes is introduced in the CuO planes. Increasing the 2 hole doping, the system becomes metallic and superconducting below the critical temperature T . At optimal c doping (p∼0.16 holes /Cu), T reaches its maximum value. Two distinct regimes develop on both sides of the c optimaldoping.Intheoverdopedregimewhenincreasingtheholedoping,theelectronicpropertiesinthenormal statecanbedescribedusingamoderatelycorrelatedFermiliquidpicture.Atvariance,intheunderdopedregime when reducing the hole doping, the materials behave as a strongly correlated metals and the standard Fermi liquidpicturefailstoaccountfortheirunconventionalelectronicproperties.Inparticular,theunderdopedregime is dominated by a phase with highly unusual physical properties where magnetic, transport and thermodynamic measurements point towards a diminution of the electronic density of states below a temperature T* [3,4,5] although the system remains metallic. As the density of states remains non-zero at the lowest temperature, this phasehasbeennamedasapseudogapphasesinceitsfirstevidence[6].However,belowT*,aq-dependentgapopens 500 Underdoped Overdoped 400 T N e T* r u t 300 strange metal Tempera 120000 AF psTecudogap SC (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)c(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)F(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)r(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)eo(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)rs(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)ms(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)oi(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)vl(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)i(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)eq(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)ru(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) id 0 0 0.05 0.1 0.15 0.2 0.25 0.3 hole doping p Figure1.Genericphasediagramofhightemperaturesuperconductingcopperoxidesasafunctionofholedoping(p).IntheMott insulationstate,theantiferromagneticphasedevelopsbelowtheN´eeltemperature(TN).Upondoping,thesystembecomesmetallic andsuperconducting(SC)belowthesuperconductingcriticaltemperature(Tc).Inthenormalstate,thelostofspectralweighton certainportionsoftheFermisurfacehighlightstheopeningofthemysteriouspseudogapphasebelowthetemperatureT*. 2 inthesingle-particleexcitationspectrummeasuredinangle-resolvedphotoemission(ARPES)experimentswitha maximumatthewavevectorM=(π,0)andsymmetryrelatedpointsoftheBrillouinzone.Otherspectroscopies[4] spanning from scanning tunneling microscopy (STM), electronic Raman spectroscopy and optical conductivity reportedanomaliesatsimilarenergy.Theunderstandingofthemicroscopicoriginofthepseudogapphaseandof its interplay with unconventional d-wave superconductivity has become one of the major challenges to overcome in order to crack the mystery of superconducting cuprates. Two major classes of theoretical models attempt to explain the pseudogap state. It has been at first proposed thatthepseudogapphenomenoncanbedescribedasaprecursorofthesuperconductingd-wavegap,butwithno phase coherence, which would occur only below T [7]. This preformed pairs scenario has largely been favoured c over the years in relation to the doping dependence of the SC gap which does not follow T (as it is expected c in the conventional BCS theory of superconductivity) but rather T*. This has been discussed in conjunction of manyexperimentaltechniquessuchasARPES,STM,electronicRamanscatteringexperiments.However,dueto lacking experimental evidence of such preformed pairs[8], this approach is questioned. Many other theories attribute the pseudogap origin to the proximity of a competing state, but there is a wide disagreement about the nature of this state. In certain theoretical models, the pseudogap state is a long range ordered phase, with a well defined order parameter and a related broken symmetry [9,10,11,12]. In this scenario,theorderingtemperatureT*andtheorderparametershouldvanishataquantumcriticalpoint(QCP) locatedbehindtheSCdome,closetooptimaldoping(seedashedlineinFig.1).Alargenumberofexperimental properties ranging between transport, thermodynamic and magnetic [5] point towards the existence of a QCP for a doping level of p=0.19. The order parameter may involve charge and spin density waves or charge currents flowingaroundorinsideCuO plaquettes[9,10,11,12].Interestingly,whilethelow-dopingphasemaycompetewith 2 superconductivity,thefluctuationsassociatedwiththebrokensymmetryareexpectedtoberatherstrongaround the QCP and could play the role of pairing glue leading to high temperature superconductivity. This appealing scenario has nevertheless to face two major experimental facts: there is no clear jump of the specific heat at T*, as expected for many phase transitions (but not all) and there is no indication that the translation symmetry of the lattice (TSL) is broken in the pseudogap state. Alternatively, other theoretical approaches have been developed still on the basis of a competing electronic instabilityresultingfromstrongelectronicinteraction,butintheseapproachesthepseudogapstateisnolongeran orderedphase[13,14,15,16,17].Itisadisorderedphasedominatedbythefluctuationsassociatedwithacompeting electronic instability and T* is only a crossover of dynamical properties. Nevertheless, a true ordered state could be stabilized at low temperature at the expense of superconductivity when applying an external perturbation (externalmagneticfield,disorder,structuraldistortion,etc...).Suchanapproachiswellillustratedbythestripes modelwherechargesself-organizetoformlines,separatedAFdomainsinanti-phase[13].When1Dchargestripes appear,butstillfluctuate,theC4rotationalsymmetryisfirstbroken.Whenfluctuatingstripesarepinneddown onthelatticeordefects,theybecomestaticandtheresultingchargeandspinorderultimatelybreakstheTSL.In La Sr CuO (LSCO),incommensuratespinfluctuationsareusuallyinterpretedintermsoffluctuatingstripes, 2−x x 4 that can be pinned down at low temperature by disorder or stabilized under an external magnetic field [18]. A static stripe phase has been further reported in La Ba CuO or in (La,Nd) Sr CuO around the critical 2−x x 4 2−x x 4 hole doping p=1/8. In addition, in strongly underdoped YBa Cu O (p=0.085) [19] as well as for similar 2 3 6.45 dopings [20], anisotropic incommensurate spin excitations are observed at low temperature, suggesting that the C4rotationalinvarianceofthesystemisspontaneouslybrokenbelow∼150K.Thesefluctuationsfurtherfreezeat verylowtemperature,yieldingaglassyshortrangespindensitywave(SDW)state.ThisSDWstateisenhancedby applyingaweakexternalmagneticfield[21],butstillremainsatshortrange.Meanwhile,smallFermipocketshave beendetectedinquantumoscillationmeasurementscarriedoutathighmagneticfield[22,23,24]inYBa Cu O 2 3 6+x system (only for x≥0.5, i.e, p≥0.09). The most simple explanation for these Fermi pockets is a Fermi surface reconstruction[23,25],triggeredbyaspinand/orchargedensitywaveorderbreakingtheTSL.Thereconstruction oftheFermisurfaceinferredfromquantumoscillationmeasurementscouldbelinkedtotheSDWorderingreported in YBCO with and without magnetic field [19,21,20], but for a lower hole doping (x<0.5, i.e, p<0.09). However, one should be rather careful since the correlation length associated with the glassy SDW state are too short to account for the observed quantum oscillation and no quantum oscillation have been reported so far at the small hole doping at which the SDW is observed. Infollowingsections,wewillpresentcompellingevidenceofanorderedmagneticphaseinthepseudogapstate. We will show that this order phase displays strong similarities with the circulating current (CC) phase proposed byC.M.Varma[10,11].TheCC-phaseisassociatedwithaQ=0electronicinstabilityandthereforepreservesthe TSL.Furthermore,itsgeneralizedIsing(Ashkin-Teller)phasetransitiondoesnotproduceanystrongjumpinthe specific heat for a large range of parameters. While a 3D long range Q=0 magnetic order is clearly visible in the 3 pseudogapstateofsystemsuchYBa Cu O (YBCO)orHgBa CuO (Hg1201),wewillshowthatthisorder 2 3 6+x 2 4+δ is frustrated in LSCO and is likely to be in competition with a stripe instability. 2. Evidencing circulating currents 2.1. Loop current order Beyondusualchargeorspininstabilities,moreexoticelectronicphases,spanningvariousCCstates[9,10,11,12], havebeenproposedtoaccountforahiddenorderparameterassociatedwiththepseudogap.Onemayhaveasingle chargecurrentperCuO plaquettestaggeredintheneighbouringcell,referredtoasaD-densitywave(DDW)[12]. 2 TheDDWstateimpliesadoublingoftheunitcell.Theinterestforsuchastatehasbeenrecentlyrevived[26,27] owing to the observation of small Fermi pockets in quantum oscillation measurements at high field. In the DDW state,chargeloopsgiverisetoorbital-likemagneticmomentperpendiculartoCuO planes.TheAFarrangement 2 of such orbital-like moments should be directly probed by neutron scattering diffraction. However, to date, the neutron detection a DDW state is rather scarce [28]. OtherCCstateshavebeenpredicted[9,10,11]fromthe3-bandHubbardmodelinvolvingbothcopperd-orbitals and in-plane oxygen p-orbitals. As a result of the Cu-O repulsion term, a loop-current state is stabilized yielding patterns with two (CC−Θ phase), or four (CC−Θ phase) current loops per unit cell. The phase CC−Θ II I II correspondingtotwooppositecurrentloopsisdepictedinFig.2.A,itbelongstotheE irreductiblerepresentation u of the D point group [30,31]. A current flows from the Cu atom through the nearest oxygen atoms, then back 4h to Cu. By principle, these phases break the time-reversal symmetry (TRS). The broken TRS has been indeed observed byARPESin Bi Sr CaCu O (Bi2212)througha spontaneous dichroismbelowT* [29].Assketched 2 2 2 8+δ inFig.2.B,eachclosedcurrentloopproducesanorbitalmagneticmomentwhichshouldbemeasurablebyneutron diffraction. A sizeable orbital magnetic moment of 0.1 µ is typically expected [9], pointing perpendicularly to B the CuO planes. In contrast to the DDW state, these phases preserve the TSL, as the same pattern is exactly 2 reproducedineveryneighbouringcells.Becausetheloopsarestaggeredwithineachunitcell(fig.2.B),thereisno netmagnetizationcontrarytoaferromagneticphase.Therefore,themagneticstatecorrespondstoaQ=0orbital AF order(Q=0, AFO). Motivatedbythisapproach,wedevelopedaneutrondiffractionexperimenttoevidencesuchamagneticorder. Fig.2.CrepresentsthemagneticintensityinthereciprocalspaceofaquadraticCuO planetakingthemagnetic 2 structure given in Fig. 2.B. As the state preserves the TSL, the magnetic scattering is only expected on top of nuclear Bragg peaks for integer values of H and K. Importantly, due to the existence of two staggered moments in each unit cell, no intensity is predicted for H=K=0. In CC−Θ state, 4 classical domains can exist [11]. II One CC state is shown in Fig. 2.A. The three other states can be obtained by reversing the current flow or by rotating Fig. 2.A by 90o [32]. Two domains should produce the neutron scattering pattern given in Fig. 2.C and thetwoothersshouldproduceasimilarscatteringpatternbutrotatedat90o.ThescatteringpatterninFig.2.Dis obtainedbyassumingthesamepopulationdistributionforeachdomain,restoringthequadraticC symmetryin 4 thetotalscatteringpattern.Oneseesthatthemostintensemagneticpeakwouldbefor(H,K)=(±1,0)≡(0,±1). 2.2. Polarized neutron technique Toseparatethenuclearandmagneticscatterings-superimposedatthesameBraggposition-requirespolarized neutron diffraction experiments. As shown in Fig. 2.E, the nuclear scattering interaction conserves the neutron spin whereas the magnetic scattering interaction can flip the neutron spin. In a polarized neutron diffraction measurement, the incoming neutrons are in the same spin state and one analyses the spin state of the scattered neutrons. On can then distinguish the spin-flip (SF) scattered intensity from the non-spin-flip (NSF) one. This techniqueisextremelypowerful.Unfortunately,the(NSF)nuclearintensityismuchlargerthanthe(SF)magnetic intensity, typically one thousand time larger. The difficulty of the experiment then resides in the capability of producingahighpolarizedneutronbeam,reliableandstableintimeandinposition.Inthecasewherethemagnetic orderisshortrange,themagneticintensityisredistributedinmomentumspace.Inthislimit,thetechnicalissue is related to the weakness of the magnetic signal/background ratio, but the polarization stability is no more relevant. These experimental constraints are the best satisfied using the polarized neutron diffraction on the 4F1 triple-axis spectrometer around the reactor Orph´ee at the Laboratoire L´eon Brillouin (LLB), Saclay (France) 4 Cu O A B Phase ordonnée supra C mmaaggnneettiicc SF NSF y t si D tén nsinte nuclear e ti n I E Wvecatveuer vde'ocndtoer Figure2.A)SchematicdescriptionofthecirculationcurrentsflowinginsideaCuO2 plaquettes.IntheCC−ΘII phase,thereare twocurrentsloopsturningclockwiseandanti-clockwise.Reversingthecurrentloopsand/orrotatingthefigureby90o allowsone to build the 4 classical domains of the CC−ΘII phase. B) The current loops generate staggered orbital-like magnetic moments, perpendicular to the CuO2 planes. C-D) Neutron scattering patterns for a C) single- and D) a multi-domain CC−ΘII phase, respectively. In these two figures, a typical magnetic form factor has been used to compute the magnetic structure factor. E) TheCC−ΘII phaseis aQ=0 AFphase (whichbelongsto theEu irreductible representationof theD4h pointgroup [30,31]):it breakstimereversalsymmetry,butpreserveslatticetranslationinvariance.Asaconsequence,thenuclearandmagneticintensity aresuperimposedonBraggreflections.Thepolarizedneutronscatteringtechniqueallowsonetodisentanglenuclearandmagnetic scatterings,whichappearselectivelyinthenon-spin-flip(NSF)orspin-flip(SF)channels. [33,34,35,36]. The observation of a magnetic scattering whatever the experimental difficulties is a significant sign of the universality of the phenomenon. As discussed in [33,34,35,36], the polarized neutron diffraction setup is similar to that originally described in [37] with longitudinal polarization analysis (see also refs. [38,39] in the context of high-T cuprates). A polarized c incidentneutronbeamisobtainedwithapolarizingmirror(bender),theneutronenergyisfixedatE =13.7meV. i The polarization analysis is performed with an Heusler analyser. A radio-frequency Mezei flipper is put between the bender and the sample in order to reverse the incident neutron polarisation. A pyrolythic graphite filter has been put before the bender to remove higher order neutrons. The direction of the neutron spin polarization, P, at the sample position is selected by a small guide field H of the order of 10 G. In polarized neutron scattering technique, one can define the inverse of the flipping ratio (R−1) as R−1 = I /I where I and I stand for the SF and NSF neutron intensities, respectively. For a perfectly SF NSF SF NSF polarized neutron beam, R−1 should be equal to 0 in absence of any magnetic scattering. In real experiments, this is not the case. As a results of the unperfect neutron beam polarization, there is a leakage of the NSF intensity into the SF channel. At the spectrometer 4F1, a highly polarized neutron beam is routinely obtained withR−1rangingbetween1/40and1/100.Inabsenceofamagneticorder,R−1 exhibitsasmoothbehaviourwith temperature,ideallyconstantbutinrealityonetypicallyobservesaslightdriftofR−1 uponcooling.Theoriginof 5 thistemperaturedependenceisunclearandvariesfromoneexperimenttoanother.Itislikelyduetoimperfections intheneutronpolarizationandthedisplacementofthesampleintheneutronbeamwhenchangingtemperature. For a better data analysis, one needs to care about this change of the flipping ratio with temperature. R(T) is measured from the evolution of flipping ratios at Bragg peaks where the magnetic order is not present. In the presence of an additional magnetic scattering, an upturn at low temperature in R−1 shows up. We prove that method to be efficient enough to see weak magnetic moments (∼0.05µ ) on top of nuclear Bragg peaks, see e.g. B the determination of the A-type antiferromagnetism in Na cobaltate systems [40]. In an unpolarized neutron diffraction measurement and for a magnetism associated with unpaired electrons, the interaction between the neutron spin and the magnetic moments in the sample is of dipolar type [41]. As a consequence, only the components of the order moment M which are perpendicular to Q the transferred momentum contribute to the magnetic scattering |F |2 [41]: |F |2 ∝|M |2 with M =M−(M.Qˆ)Qˆ with Qˆ M M ⊥ ⊥ theunitvectoralongQ(|Qˆ|=1).Inapolarizedneutrondiffraction,theamountofmagneticscatteringintheNSF channel is proportional to |M .P|2, theneutron polarization vectorbeing normalized (|P|2 =1). The restof the ⊥ magnetic scattering (i.e |M |2−|M .P|2) appears in the SF channel. Thus, for the neutron spin polarization ⊥ ⊥ P//Q, the full magnetic scattering appears in the SF channel. 2.3. Samples Experiments were performed on about a dozen samples of either the YBCO system [33,34], or the Hg1201 system[35].Thesesystems,whosecrystalstructuresaregiveninFig.4,allowustocoveralargerangeofdoping, especially in the underdoped regime where the pseudogap occurs. In both systems, it is worth pointing out that the experimental results are very consistent with each other and with the expected phase diagram, whatever the origin of samples, excluding extrinsic effects caused by impurity phases as it has recently argued from a single sample[42].InHg1201system,thisstudyhasbeenmadepossibleduetotherecentbreakthroughinsinglecrystal synthesis of samples with mass ∼ 1 g [43]. ThescatteringBraggwavevectorQ=(H,K,L)isgiveninunitsofthereciprocallatticevectors,a∗ ∼b∗ =2π/a and c∗ =2π/c. Most of the data have been obtained in a scattering plane where all Bragg peaks like Q=(H,0,L) were accessible. In the YBCO, the crystal structure is orthorhombic and plain samples are twinned such that (H,0,L)≡(0,K,L). However, by applying an uniaxial pressure at high temperature (see e.g. [19]), it is possible to detwin YBCO single crystals. In such a case, one can distinguish scattering along a* and b*. 3. Magnetic order in the pseudogap phase 3.1. Magnetic order in YBCO and Hg1201 As discussed above, the magnetic scattering is expected to be the largest at in-plane Bragg indices (H,K)= (±1,0) ≡ (0,±1) for any integer L value along c*. To evidence the magnetic signal, we need to look for Bragg peakswherethestructuralnuclearintensityisreduced.Inallcuprates,thissituationisbetterrealizedforL=1.The BraggpeakintensitiesinbothNSFandSFchannelsareshowninFig.3.AforadetwinnedYBCO sample[33]. 6.6 TheNSFintensityslightlyincreaseswithdecreasingtemperatureasitisexpectedatsmall|Q|duetotheDebye- Wallerfactor.Incontrast,theSFintensitydepartsfromthisbehaviourbelowT =220Kevidencingamagnetic mag scattering |F |2 developing on top of a smooth background in the SF channel, given by the polarization leakage M fromthenuclearintensity|F |2/R.From bothintensities,onecanestimatearatio|F |2/|F |2 of∼400forthis N N M detwinnedYBCO sample.Typically,thisratioislargerintwinnedYBCOandHg1201samples.Convertingthe 6.6 relationsgiveninFig.3,onecandeducethemagneticscatteringcross-sectionasithasbeenperformedformany samples (Fig. 3.B) corresponding to different doping levels ranging from an underdoped YBCO sample to an 6.5 overdoped (Y,Ca)BCO sample [33]. These data were calibrated in absolute units by scaling the Bragg intensity to the strong nuclear Bragg peak Q=(0,0,4). One sees in Fig. 3.B that the magnetic scattering appears below a temperature, T . Both T and the magnitude of the magnetic scattering increase with decreasing hole mag mag doping as expected for the pseudogap phenomenon. At variance, similar analysis at Q=(0,0,2) (empty symbols on Fig. 3.B) show no additional magnetic scattering below T in agreement with the expected null magnetic mag structure factor for orbital moments (Fig. 2.D) related to a CC order[9,10,11]. At large |Q|, the magnetic form 6 Figure3.A)YBCO6.6:TemperaturedependenceoftheSFintensity(red)andtheNSFintensity(blue)measuredatQ=(0,1,1)for apolarizationP//Q.Theformulagivetheexpectedscatteringinbothchannelswhere|FN|2 and|FM|2 arethenuclearandthe magneticscatteringrespectively.BothcurvesinAwererescaledathightemperaturebydividingtheNSFintensitybyR=40(the flippingratioforthatexperiment).B)(Y,Ca)BCO6+x:TemperaturedependenceofthemagneticintensityforP//QatQ=(0,1,1) (≡(1,0,1))(fullsymbols)andQ=(0,0,2)(opensymbols).Fromtoptobottom,theholedopingincreasesthroughthegradualchange oftheoxygenstoichiometryorextrasubstitutionofCaforY.(adaptedfrom[33]). factorisexpectedtoconsiderablyreducethesignal.Accordingly,measurementsattheQ=(2,0,1)reflectionshow no magnetic scattering [34]. 3.1.1. Magnetic moment Next,from|F |2(Fig.3.B),onecanestimatethemagnitudeoftheorderedmagneticmoment|M|definedusing M the magnetic neutron cross section for the CC−Θ phase. Keeping in mind that there are 2 opposite orbital II moments per CuO plaquette, the neutron cross section of the magnetic order given in Fig. 2.B and for a Bragg 2 position Q=(H,0,L) simply reads |F |2 =r2f(Q)2β(L)24sin2(2πx H)|M |2 (1) M 0 0 ⊥ where r =-0.54 10−12 cm (i.e. r2 = 290 mbarns) is the neutron magnetic scattering length. x = 0.146 is the 0 0 0 position of the magnetic moment within the unit cell (i.e. the center of the triangle in Fig. 2.A). f(Q) stands for the magnetic form factor comprised by principle between 0 and 1. The calculation of the magnetic form factor necessitates in principle a detailed knowledge of the real space extension of the orbital moments, involving the Cu-d and O-p orbitals. So far, such a calculation has not been performed for the x2−y2 x,y observedmagneticorder.Wetakeanarbitraryestimateoff(Q)2 =0.5aroundQ=(1,0,1).Thiscrudeassumption has been previously made for YBCO and Hg1201 [33,34,35] to be able to make a first estimate of the magnetic moment. β(L)isthemagneticstructurefactoralongc*relatedtothemagneticstructurewithinthe(CuO ) bilayer(in 2 2 thecaseoftheYBCOsystem).AsshownfromtheL-dependenceonthreedifferentpeaks[28,33,34],thecoupling alongc*betweenthemagneticmomentshastobeferromagneticasthelargestmagneticintensityisobservedfor L=0.Accordingly,anaturalformforβ(L)isthen2cos(πzL)withz=0.29isthereduceddistancebetweenCuO 2 layers in YBCO[28]. Considering, on the one hand, a magnetic moment M with the 3 components (M ,M ,M ) along the main a b c crystallographic directions and, on the other hand, the existence of 4 domains in the CC−Θ phase (built from II Fig. 2.A), the square of the magnetic components perpendicular to Q reads: 7 YBa Cu O HgBa CuO 2 3 6+x 2 4+x C A B Figure4.A)CrystalstructureofYBa2Cu3O6+x(a=3.85˚A,c=11.7˚A).Itcontains2CuO2planesperunitcellandisorthorhombic. CusitesareembeddedintooxygenpyramidsandthereisadimplingofCuO2planes.B)CrystalstructureofHgBa2CuO4+δ(a=3.87 ˚A,c=9.5˚A).ThereisonlyoneCuO2planeperunitcellandthesystemistetragonal.Cusitesarelocatedinsideoxygenoctahedra. Copperandplanaroxygenslieexactlyinthesameplane.C)Holedopingdependenceofthesuperconductingcriticaltemperature Tc (stars)andtheorderingtemperatureTmag ofthe(Q=0,AFO)magneticstate(bullet).Redandlightbluesymbolscorrespond to YBa2Cu3O6+x (YBCO) and HgBa2CuO4+δ (Hg1201) systems. The relationship between p and Tc has been established by a systematic study of the c lattice parameter in YBCO where the true doping can be simply estimated in the oxygen-ordered orthorhombic phases[44]. Unfortunately, the exact doping level in Hg1201 cannot be determined with accuracy. However, the Tc curveexhibitsthesameshapeindopingasYBCOgivingconfidencethatthesamerelationshipbetweenpandTccanbeused.The sizeofsymbolsisproportionaltothemagnitudeoftheorderedmagneticmoment.(adaptedfrom[35]). 1 c∗L c∗L |M |2 = [1+( )2]M2 +[1−( )2]M2 (2) ⊥ 2 Q a,b Q c with M = (cid:112)M2+M2 the magnitude of the in-plane magnetic component. At Q=(1,0,1), (c∗L)2 is equal to a,b a b Q 0.1. If M were perpendicular to the CuO plane, then |M |2 would be ∼ |M|2. As will be shown in the next 2 ⊥ section,Misnotsimplyalongthecaxis,butrathertiltedat∼45o.Onegetsaroughestimate|M |2 ∼ 3|M|2. ⊥ 4 Finally,usingthesevariousapproximations,oneobtainsamagneticmomentof∼0.1µ when|F |2 ∼1mbarn B M inFig.3.B.Thisvaluedecreaseswhenincreasingholedoping.Itshouldbeemphasizedthatthismomentisgiven pertriangularcurrentloopintheCC−Θ modelofFig.2.Aandcorrespondstotheorderofmagnitudeexpected II theoretically[9]. Of course, the precise value M would change depending on both the model and the accuracy of the different parameters appearing in Eq. 1. However, the order of magnitude of the ordered moment is actually quite robust whenever other assumptions are made. In Hg1201[35], the same expression Eq. 1 can be used with β(L)=1asthereisasinglelayerperunitcell.Usingsimilarassumptions,themagneticmomentpertrianglecan reach ∼0.2 µ in the strongly underdoped state[35]. B 3.1.2. A true phase transition We then identify this magnetic order to the hidden order parameter of the pseudogap phase in YBCO[33,34]. Similar measurements in Hg1201[35] display the same doping dependence which can be summarized in Fig. 4.C where the doping level is determined for both YBCO and Hg1201 using the same updated relationship between thedopingandT [44].ItshouldbeemphasizedthatthetemperatureT matchesthepseudogaptemperature c mag T* deduced from resistivity measurements[33,35]. For both systems, the magnetic ordering temperature T mag extrapolates to zero at p=0.19, which matches the expected end point of the pseudogap phase as deduced from various physical properties such as magnetic susceptibility, entropy or resistivity [5]. This points towards the existence of a quantum critical point at p=0.19. Clearly, the neutron data provides a strong support in favor of a true phase transition at T* [3,45]. In addition, high resolution magneto-optic (Kerr effect) measurements consolidate this conclusion as it also evidences a time reversal breaking symmetry in the pseudogap phase of YBCO [46]. The pseudogap affects all physical properties. However, the value of T* for a given doping varies through the literaturedependingonthedataanalysisoroneachexperimentaltechnique.ThatisactuallythereasonwhyT* 8 Polarization analysis A B C AAnnggllee ((MM,,cc**)) ~~ 4455°° D E F Figure5.A)Schematicdescriptionofthethreeorthogonalneutronpolarizations(seetext).Theshadedarearepresentsthescattering planedefinedbythedirections(100)and(001).B-E)TemperaturedependenciesoftheintensitiesintheSFchannel(magenta):B) forP//QatQ=(1,0,1)and(C)atQ=(2,0,1),(D)forP//zand(E)P⊥QatQ=(1,0,1).Forallpanels,bluesymbolsindicate the polarization leakage, given by the NSF intensity divided by the temperature dependence of the flipping ratio, R(T). R(T) is foundbyafitinpanelCoftheratioNSF/SFoftheBraggpeakQ=(2,0,1)asR(T)=R(300K){1+0.02(1-T/300)F)Orientationof themagneticmomentwithrespecttothecaxis(greenarrow),asdeducedfromthepolarizationanalysis(adaptedfrom[34]). hasbeenlargelyconsideredasacrossoverphenomenon.Inordertocomparetheeffectofthepseudogaponagiven physical properties, one needs to know how this quantity can couple to the order parameter of the pseudogap phase. For instance, it has been argued[47] that the CC−Θ theory could be mapped onto the Ashkin-Teller II model(amodelwithapairofIsingspinsateachsitewhichinteractwithneighboringspinsthroughpair-wiseand four-spin interactions). Monte Carlo simulations[45] of the Ashkin-Teller model show no sharp thermodynamic anomalyatthephasetransitionforalargesetofparameters.Thatmaycorrespondstothatobservedincuprates at T*[5]. Furthermore, the order parameter exponent β =0.18 [34] that one can extract from the neutron data falls into the proper range for such an Ising type model. Another example of a thermodynamic signature of the existence of a phase transition in the pseudogap state of underdoped YBCO is given by recent high-precision magnetization measurements[48]. The temperature derivative of the uniform susceptibility indicates a singular point at a temperature corresponding to T . This can be understood[45,48] as a biquadratic coupling of the mag magnetic order parameter with the uniform magnetization in a way similar to what happens in antiferromagnet. 3.1.3. Polarization analysis Polarized neutron diffraction technique allows us to determine the direction of the magnetic moment through apolarizationanalysis[37].Astheinteractionoftheneutronspinwithmagneticmomentsisofdipolartype,only the magnetic components perpendicular to the wavevector Q are measurable[41]. Furthermore, only a magnetic component perpendicular to the neutron spin polarization P is spin-flip whereas a component along P is non- 9 Figure6.YBCO6.6:A)[100]/[001]scatteringplaneandschematicdescriptionofascanalongthe[001]directionacrossQ=(1,0,1). B)DifferencebetweenL-scansat70Kand300KintheSFchannelandforpolarisationP//Q(magenta).Themagneticsignal, centered at Q=(1,0,1), is resolution limited. The blue symbols stand for the resolution limited nuclear Bragg scattering at Q =(1,0,1)intheNSFchannel(adaptedfrom[34]). spin-flip[41]. The amount of magnetic scattering in the SF channel therefore depends on the choice of P. For a polarized neutron analysis, one usually introduces a set of three orthogonal directions: The xˆ axis is parallel to Q, the yˆ axis is perpendicular to Q in the scattering plane and the ˆz axis is perpendicular to the scattering plane. For a neutron spin polarization along xˆ (P//Q ≡ H ), the full magnetic intensity appears in x theSFchannel:I ∝M2 +M2 ,M andM arethecomponentsofM alongyˆ andˆzrespectively.For P//Q ⊥y ⊥z ⊥y ⊥z ⊥ aneutronspinpolarizationappliedalongyˆ (P⊥Q≡H ),onlyonepartofthemagneticintensityappearsinthe y SFchannel:I ∝M2 .ThecomplementarymagneticintensityI ∝M2 showsupintheSFchannelwhen P⊥Q ⊥z P//z ⊥y the neutron spin polarization is applied along ˆz (P//z ≡ H ). As a result, in the SF channel, one can deduce z a specific polarization sum rule for the neutron intensity: I = I +I . It is worth noticing that this P//Q P⊥Q P//z polarization sum rule is only fulfilled for a magnetic scattering in the absence of chirality in the system. ThepolarizationanalysishasbeenperformedinYBCO[33,34]fortheBraggpeakQ=(1,0,1)intwinnedsamples as shown in Fig. 5. In first approximation, the flipping ratio is constant in temperature[33,35]. To improve the data analysis, one needs further to fit it empirically by a straight line [34,49] as it has been done in Fig. 5.C. First,themagneticscatteringislargerforP//Qasitshouldbe.Next,thepolarizationsum-ruleaboveisfulfilled provingthemagneticnatureofthesignalobservedbelowT .Thesameconclusionhasbeenalsodemonstrated mag in another YBCO sample [33] as well in recent data obtained in Hg1201 [49]. 6.6 The data reported in Fig. 5 were measured in the scattering plane given by the directions (100) and (001): the ˆz axis therefore corresponds to the (010) direction. The orbital magnetic moment in a CC-phase is then expected to be parallel to c (Fig. 2.B). Thus, one should expect I = I and I =0. At variance, one P//Q P//z P⊥Q observesamagneticcontributionforallneutronpolarizations(Fig.5.B,D,E).Morespecifically,I =1.4mbarn P//Q and I = I =0.7 mbarn in the YBCO sample[34] shown in Fig. 5. Qualitatively, the fact we observe a P⊥Q P//z 6.6 non-zeromagneticintensityforP//z(Fig.5.D)provesthatalargepartofthemagneticmomentispointingalong c.However,theintensityforP//zissmallerthantheoneforP//Qindicatingthatanin-planecomponentisalso present. Next, to discuss the magnetic moment direction, we use the same simple model used in previous sections to evaluate the order of magnitude of the ordered magnetic moment. We assume a model with collinear moments pointingalongagenericdirectiongivenby,M=(M ,M ,M )withnopreferentialin-planedirection(Fig.5.F).One a b c thenneedstocalculatetheneutronintensityfromEq.1andEq.2forQ=(1,0,1)andforeachneutronpolarization [41].ThatgivesI ∝[1M2 ],I ∝[0.05M2 +0.9M2]andthesumofbothtermsforP//Q.Onecandefine P⊥Q 2 a,b P//z a,b c (cid:113) the angle, φ between the magnetic moment and c (see Fig. 5.F) which can be written as tan(φ) = M2 /M2. a,b c 10