polymers Article Novel Antibacterial Polyglycidols: Relationship between Structure and Properties FabianMarquardt,CorneliaStöcker,RitaGartzen,ElisabethHeine,HelmutKeul* andMartinMöller* InstituteofTechnicalandMacromolecularChemistry,RWTHAachenUniversityandDWILeibniz-Institutefor InteractiveMaterials,Forckenbeckstr.50,D-52056Aachen,Germany;[email protected](F.M.); [email protected](C.S.);[email protected](R.G.);[email protected](E.H.) * Correspondence:[email protected](H.K.);[email protected](M.M.) Received:4December2017;Accepted:18January2018;Published:20January2018 Abstract:Antimicrobialpolymersareanattractivealternativetolowmolecularweightbiocides,because theyarenon-volatile,chemicallystable,andcanbeusedasnon-releasingadditives. Polymerswith pendantquaternaryammoniumgroupsandhydrophobicchainsexhibitantimicrobialproperties duetotheelectrostaticinteractionbetweenpolymerandcellwall, andthemembranedisruptive capabilitiesofthehydrophobicmoiety. Herein,thesynthesisofcationic–hydrophobicpolyglycidols with varying structures by post-polymerization modification is presented. The antimicrobial propertiesofthepreparedpolyglycidolsagainstE.coliandS.aureusareexamined. Polyglycidol with statistically distributed cationic and hydrophobic groups (cationic–hydrophobic balance of 1:1) is compared to (i) polyglycidol with a hydrophilic modification at the cationic functionality;(ii)polyglycidolwithboth—cationicandhydrophobicgroups—ateveryrepeatingunit; and(iii)polyglycidolwithacationic–hydrophobicbalanceof1:2. Arelationshipbetweenstructure andpropertiesispresented. Keywords:antimicrobialpolymers;functionalpolyethers;structure-propertyrelationship;multifunctional polyglycidol;post-polymerizationfunctionalization 1. Introduction Contaminationbymicroorganismssuchasbacteria,fungi,andalgaeisakeyissueinmedicine[1], pharmaceutical production [2], water purification systems [3], food packaging [4], and various other fields [5,6]. Artificial materials lack defense against microbial growth, allowing microbes to attach to the surface and form a biofilm [7]. One way to prevent the biofilm formation is the usage of disinfectants to keep the surface sterile. Common disinfectants include low molecular weightsubstancessuchasalcohols,aldehydes,quaternaryammoniumcompounds,silvercompounds, peroxygens,andbisphenols[8]. However,theseclassesofantimicrobialsubstancesneedtobeapplied regularly,leadingtothedevelopmentofresistanceinthemicrobialstrains[9]. Anotherwaytoprevent microbialgrowthisthecoatingofsurfaceswithantimicrobialsubstancesthateitherkillmicroorganisms oncontactorrepeltheattachmentofmicrobes[10]. Nevertheless,theleachingofbiocidesfromthose coatingscausesthesamepreviouslymentionedproblems. Anattractivealternativetolowmolecular weightbiocidesareantimicrobialpolymers,becausetheyarenon-volatile,chemicallystable,andcan beusedasnon-releasingadditives[11]. Thesepolymersarepreparedeitherby(co-)polymerizationof functionalizedmonomersorbypost-polymerizationfunctionalization[12]. Though,theantimicrobial propertiesarederivedfromavarietyoffunctionalitiessuchasbiguanides[13,14], benzoateesters and benzaldehydes [15], or poly(acrylic acid) [16], the most common active moieties are based on a combination of quaternary ammonium, pyridinium, or phosphonium groups and hydrophobic functionalities[17–19]. Theproposedandcommonlyacceptedmechanismforthesetypesofpolymers Polymers2018,10,96;doi:10.3390/polym10010096 www.mdpi.com/journal/polymers Polymers2018,10,96 2of19 features the electrostatic interaction between the cationic moieties and the negatively charged bacterial cell membrane and the disruption of the cell membrane by the hydrophobic groups, leading to leakage and, subsequently, cell death [20,21]. However, due to the heterogeneity and bacterial strain specificity of the cell wall composition, the efficacy of antimicrobial polymers is species-dependent. TheouterpartofthecellwallofGram-positivebacteriaiscomposedofabout 90%peptidoglycan. InGram-negativebacteria,thepeptidoglycanlayeraccountsforapproximately 20%ofthecellenvelope,beinglocatedbetweentheoutermembraneandinnercellmembrane. Before reaching the inner cell membrane, polymers interact with the negatively charged components of the outer part of the bacterial cell envelope, e.g., teichoic acids in the thick peptidoglycan layers of Gram-positive bacteria, and phospholipids and lipopolysaccharides in the outer membrane of Gram-negativebacteria[22,23]. Theeffectivenessoftheantimicrobialcationic–hydrophobicpolymers isdependentonvariousfactors[24]. Onefactoristhemolecularweightofthepolymer. Ikedaetal. synthesized polymethacrylates with pendant biguanide units and various molecular weights and testedtheantimicrobialactivityagainstStaphylococcusaureus,reachinganoptimalactivityatmolecular weights between 50 and 100 kDa [25]. Kanazawa et al. showed an increase in biocidal activity ofpoly[tributyl(4-vinylbenzyl)phosphoniumchloride]againstS.aureuswithincreasingmolecular weight[26]. Basedonthedescribedmechanism, theyassumethatahighermolecularweightand aconsequentialhigherchargedensityenhancetheadsorptionofthepolymerstothecellmembrane. Astrongeradsorptionleadstoastrongerdisruptionofthecellmembraneand,thus,toahigheractivity ofthepolymer. However,Lienkampetal. foundthatwhenthemolecularweightreachesathreshold value, theefficacyofthepolymersdecreases[27]. Additionally, Lococketal. reportedthereverse effectonguanylatedpolymethacrylates[28]. Thepresentedpolymersshowedhigherantimicrobial activity at lower molecular weights, proving that the efficacy of antimicrobial polymers does not exclusivelydependontheirmolecularweight. Asecondfactorfortheantimicrobialbehavioristhe alkylchainlengthofthehydrophobicmoiety. However,theoptimalalkylchainlengthisdifferentfor differenttypesofpolymers. Pasquieretal. preparedbranchedpoly(ethyleneimine)swithpendant ammoniumandalkylfunctionalities,rangingfromC toC . Anincreaseinthealkylchainlength 6 16 leadtoanincreaseintheantimicrobialactivityagainstE.coli[29]. Theactivitywasfurtherenhanced by Heetal., attaching the hydrophobic chain directly to the ammonium group [30]. The opposite influenceofaliphaticsidechainswasreportedbyXuetal.oncomb-likeionenes[31]. Here,adecrease inthealkylchainlengthleadtoanincreaseintheantimicrobialactivityagainstE.coli. Ontheother hand,Chenetal.preparedpoly(propyleneimine)dendrimerswithalkylchainsrangingfromC to 8 C ,showingaparabolicdependencebetweenthebiocidaleffectandthealkylchainlength,withthe 16 highestactivityatC [32]. 10 In the current work, we present the preparation of various antimicrobial polymers based on polyglycidolwithquaternarytrimethylammoniumgroupsasthecationicmoietyanddodecylchains as the hydrophobic part. Polyglycidol is a highly functional polymer with a hydroxy group in every repeating unit, allowing various further modifications [33,34]. It is non-toxic, soluble in aqueous media, and licensed by the Food and Drug Administration (FDA) [35,36]. The cationic andhydrophobicsidechainfunctionalitiesweredistributedstatisticallyalongthepolymerbackbone (cationic–hydrophobicratioof1:1).Thisfunctionalizedpolyglycidolwascomparedto(i)apolyglycidol modified with hydrophilic hydroxyethyl functionalities at the cationic center; (ii) a polyglycidol with cationic and hydrophobic moieties at every repeating unit; and (iii) a polyglycidol with a cationic–hydrophobic balance of 1:2. All polymers were tested in regard to their antimicrobial propertiesagainstEscherichiacoliandStaphylococcusaureustoexamineapossiblerelationshipbetween thestructureandthebiocidaleffectofthepolymer. Polymers2018,10,96 3of19 2. MaterialsandMethods 2.1. Materials Potassiumtert-butoxide(1MsolutioninTHF,SigmaAldrichChemieGmbH,Steinheim,Germany), diglyme (≥99%, extra dry, over molecular sieves, Thermo Fisher Acros Organics, Geel, Belgium), pyridine(99.5%,extradry,overmolecularsieves,ThermoFisherAcrosOrganics,Geel,Belgium),phenyl chloroformate(>97%,SigmaAldrichChemieGmbH,Steinheim,Germany),4-nitrophenylchloroformate (>98%, TCI Deutschland GmbH, Eschborn, Germany), 3-(dimethylamino)-1-propylamine (99%, Thermo Fisher Acros Organics, Geel, Belgium), N-(3-aminopropyl)diethanolamine (>90%, TCIDeutschlandGmbH,Eschborn,Germany),dodecylamine(98%,SigmaAldrichChemieGmbH, Steinheim,Germany),4-dimethylaminopyridine(>98%,SigmaAldrichChemieGmbH,Steinheim, Germany), DL-homocysteine thiolactone hydrochloride (98%, abcr GmbH, Karlsruhe, Germany), triethylamine(≥99.5%, anhydrous, SigmaAldrichChemieGmbH,Steinheim, Germany), dodecyl acrylate(>98%,TCIDeutschlandGmbH,Eschborn,Germany),methyliodide(>99%,SigmaAldrich ChemieGmbH,Steinheim,Germany),tetrahydrofuran(99.8%,stabilizerfree,extradry,ThermoFisher AcrosOrganics,Geel,Belgium),chloroform(99.9%,extradry,overmolecularsieves,ThermoFisher AcrosOrganics,Geel,Belgium),N,N-dimethylformamide(99.8%,extradry,overmolecularsieves, ThermoFisherAcrosOrganics,Geel,Belgium),methanol(≥99.8%,p.a.,Th. GeyerCHEMSOLUTE®, Renningen, Germany), and dichloromethane (≥99.8%, anhydrous, Sigma Aldrich Chemie GmbH, Steinheim,Germany)wereusedasreceived. The3-phenyl-1-propanol(99%,SigmaAldrichChemieGmbH,Steinheim,Germany)wasstirred withcalciumhydridefor24handthendistilled. Ethoxyethylglycidylether(EEGE)wassynthesized from 2,3-epoxypropan-1-ol (glycidol, 96%, Sigma Aldrich Chemie GmbH, Steinheim, Germany) and ethyl vinyl ether (99%, Sigma Aldrich Chemie GmbH, Steinheim, Germany) according to Fittonetal.[37],purifiedbydistillation,andstoredunderanitrogenatmosphereoveramolecular sieve(3Å).Polyglycidol(PG)(1)wassynthesizedaccordingtoliterature[38]. Water-sensitivereactionswerecarriedoutinanitrogenatmosphere. Nitrogen(Linde5.0)was passedoveramolecularsieve(4Å)andfinelydistributedpotassiumonaluminumoxide. 2.2. Bacteria To determine the antibacterial activity, polymers were tested against the Gram-negative bacteriumEscherichiacoli(DSM498)andtheGram-positivebacteriumStaphylococcusaureus(ATCC6538). Overnight cultures of E. coli and S. aureus with defined bacterial count in Mueller–Hinton broth (SigmaAldrichChemieGmbH,Steinheim,Germany,pH=7.4±0.2)wereusedasinoculateinthe antibacterialtest. 2.3. AntibacterialTestsofPolymerSolutions Theantibacterialactivityofthepolymersinsolutionwasdeterminedbymeasuringtheminimal inhibitory concentration (MIC) using the test bacteria mentioned above. Suspensions of strains with known colony forming units (CFU; 1 × 106 -2 × 106 CFU·mL−1) were incubated at 37 ◦C in nutrientsolutions(Mueller–HintonBroth,MHB)withdifferentconcentrationsofthepolymersamples. Thepolymersamplesweresolubilizedinbidistilledwaterandaddedtothenutrientsolutionata constantratioof1:10. Thegrowthofthebacteriawasfollowedduringtheincubationover20hby measuringtheopticaldensityat612nmevery30min(with1400sofshakingat100rpmper30min cyclebyusingamicroplatereader/incubator(TECANInfinite200Pro,TecanTradingAG,Männedorf, Switzerland). The testing is performed with defined concentrations specifically for each polymer until, within the monitoring time of 20 h, no bacterial growth curve is recorded. All experiments were performed in triplicate duplicates and MIC determination was repeated on three different days. Thepolymerswerenotsterilized. Sterilecontrols(definedpolymerconcentrationsinnutrient solutionwithoutbacteria)wereassessedineverygrowthcurvemonitoringtestingseries. MICswere Polymers2018,10,96 4of19 determinedaccordingtobrothmicrodilutionin96-wellmicrotitreplates[39]. Antimicrobialpolymer testingreferencepolymers/controlsε-polylysineandpolyhexanide(poly(hexamethylenebiguanide)) wereused. Theminimalinhibitoryconcentration(MIC)correspondstotheconcentrationofthetestsubstance atwhichacompleteinhibitionofthegrowthoftheinoculatedbacteriawasobservedbycomparison withcontrolsampleswithouttestsubstance. 2.4. HemolyticActivity Hemolyticactivitywasassessedaccordingtoliterature[40]. Humanerythrocytes(fromhealthy donors, red blood cells (RBC), 0, Rh positive, citrate-stabilized) were obtained by centrifugation (3500rpm,12min)toremoveplasma,washedthreetimesinPBS(0.01Mphosphatebufferedsaline, SigmaAldrichChemieGmbH,Steinheim,Germany),anddilutedinPBStoobtainastocksolutionof 2.5×108–3.0×108/mLRBC.Solutionsofdefinedpolymerconcentration(250µL)werepipettedinto 250µLofthestocksolution;thefinalamountofRBCbeing1.2×108–1.5×108RBC/mL.TheRBC wereexposedfor60minat37◦Cunder3D-shaking;centrifugedthereafter(4000rpm,12min)and theabsorptionofthesupernatant(diluted10-foldinPBS)wasdeterminedat414nminamicroplate reader. Asreferencesolutions,(i)PBSfordeterminingspontaneoushemolysisand(ii)1%TritonX-100 for100%hemolysis(positivecontrol)wereused. Hemolysiswasplottedasafunctionofpolymer concentrationandthehemolyticactivitywasdefinedasthepolymerconcentrationthatcauses50% hemolysisofhumanRBCrelativetothepositivecontrol(HC ). 50 2.5. Measurements 1H NMR and 13C NMR were recorded on a Bruker DPX-400 FT-NMR spectrometer (Bruker Corporation,Billerica,MA,USA)at400and101MHz,respectively. Deuteratedchloroform(CDCl ), 3 deuterateddimethylsulfoxide(DMSO-d ),deuteratedacetone(acetone-d ),anddeuteratedmethanol 6 6 (MeOD)wereusedassolvents. Theresidualsolventsignalwasusedasinternalstandard. Coupling constantsJ aregiveninHz. xy Molecular weights (M ) and molecular weight distributions (Đ) were determined by size n,SEC exclusionchromatography(SEC).SECanalyseswerecarriedoutwithDMFaseluent. SECwithDMF (HPLCgrade,VWR)aseluentwasperformedusinganAgilent1100system(AgilentTechnologies, Santa Clara, CA, USA) equipped with a dual RI-/Visco detector (ETA-2020, WGE Dr. Bures GmbH & Co KG, Dallgow-Doeberitz, Germany). The eluent contained 1 g·L−1 LiBr (≥99%, Sigma Aldrich Chemie GmbH, Steinheim, Germany). The sample solvent contained traces of distilled water as internal standard. For cationic samples, the eluent contained 2 g·L−1 LiBr and 2g·L−1tris(hydroxymethyl)aminomethane(TRIS,ultrapuregrade,≥99.9%,SigmaAldrichChemie GmbH, Steinheim, Germany). One pre-column (8 mm × 50 mm) and four GRAM gel columns (8mm×300mm, Polymer Standards Service, Mainz, Germany) were applied at a flow rate of 1.0mL·min−1at40◦C.Thediameterofthegelparticlesmeasured10µm,thenominalporewidths were30, 100, 1000, and3000Å.Calibrationwasachievedusingnarrowlydistributedpoly(methyl methacrylate) standards (Polymer Standards Service, Mainz, Germany). Results were evaluated usingthePSSWinGPCUniChromsoftware(Version8.1.1, PSSPolymerStandardsServiceGmbH, Mainz,Germany). DialysiswasperformedinmethanolusingBiotechCETubing(MWCO:100–500D,3.1mL·cm−1, SpectrumLaboratories,Inc.,RanchoDominguez,CA,USA)andBiotechRCTubing(MWCO:1kD, 6.4mL·cm−1,SpectrumLaboratories,Inc.,RanchoDominguez,CA,USA),respectively.Themembrane waswashedfor15mininwaterbeforeusetoremovethesodiumazidesolution. 2.6. SynthesisofPoly(glycidylphenylcarbonate)(P(GPC) )(2) 27 PG (1) (2.018 g, 27.24 mmol OH) was dissolved in pyridine (18.87 mL), and a solution of 27 phenyl chloroformate (4.692 g, 29.97 mmol) in dichloromethane (17.5 mL) was added in 30 min Polymers2018,10,96 5of19 at 0 ◦C using a syringe pump. The reaction mixture was allowed to warm to room temperature and stirred for 20 h. The precipitate was removed by filtration. The solution was washed with water (15 mL), 1 M HCl solution (aq.) (3 × 15 mL), and saturated NaCl solution (aq.) (15 mL). The organic phase was dried over Na SO , filtrated, and the solvent removed under reduced 2 4 pressure. Polymer2wasobtainedasabrownviscousliquid(3.650g,69%). M =5243g·mol−1, n,NMR M = 4800 g·mol−1, Ð = 1.14. 1H NMR (400 MHz, CDCl ) (2): δ = 1.79 (m, ArCH CH ), n,SEC 3 2 2 2.57 (t, 3J = 7.8 Hz, ArCH CH ), 3.45–3.87 (m, ArCH CH CH , OCH CH(CH OC=OOPh)O), HH 2 2 2 2 2 2 2 4.08–4.42(m,OCH CH(CH OC=OOPh)O),6.98–7.29(m,ArCH CH ,(OC=OOPh)O)ppm. 13CNMR 2 2 2 2 (101 MHz, CDCl ) (2): δ = 31.2 (ArCH CH ), 32.3 (ArCH CH ), 67.7–69.4 (ArCH CH CH , 3 2 2 2 2 2 2 2 OCH CH(CH OC=OOPh)O),77.4(OCH CH(CH OC=OOPh)O),121.0(OC=OOPh)O),126.1(ArCH , 2 2 2 2 2 OC=OOPh)O),128.4(ArCH ),128.5(ArCH ),129.6(OC=OOPh)O),141.8(ArCH ),151.1(OC=OOPh)O), 2 2 2 153.6(OC=OOPh)O)ppm. 2.7. SynthesisofPoly(glycidyl3-dimethylaminopropylcarbamate-co-glycidyldodecylcarbamate) (P(GDMAPA -co-GDDA ))(3) 15 12 P(GPC) (2) (1.509 g, 7.77 mmol carbonate) was dissolved in tetrahydrofuran (15 mL) 27 and a solution of 3-(dimethylamino)-1-propylamine (0.397 g, 3.89 mmol) and dodecylamine (0.721 g, 3.89 mmol) in tetrahydrofuran (15 mL) was added in 1 h at 0 ◦C using a syringe pump. The reaction was allowed to warm to room temperature and stirred for 42 h. The solvent was removed under reduced pressure and the polymer purified by dialysis in methanol. Polymer 3 was obtained as a yellowish viscous liquid (1.153 g, 62%). M = 6459 g·mol−1, M = 7600 g·mol−1, Ð = 1.38. 1H NMR (400 MHz, CDCl ) n,NMR n,SEC 3 (3): δ = 0.84 (t, 3J = 7.0 Hz, NHCH CH (CH ) CH ), 1.21 (s, NHCH CH (CH ) CH ), HH 2 2 2 9 3 2 2 2 9 3 1.34–1.51 (m, NHCH CH (CH ) CH ), 1.54–1.68 (m, NHCH CH CH N(CH ) ), 1.77–1.89 (m, 2 2 2 9 3 2 2 2 3 2 ArCH CH ), 2.16 (s, NHCH CH CH N(CH ) ), 2.27 (t, 3J = 6.7 Hz, NHCH CH CH N(CH ) ), 2 2 2 2 2 3 2 HH 2 2 2 3 2 2.63 (t, 3J = 7.6 Hz, ArCH CH ), 3.01–3.11 (m, NHCH CH (CH ) CH ), 3.12–3.21 (m, 2H, HH 2 2 2 2 2 9 3 NHCH CH CH N(CH ) ), 3.45–3.79 (m, ArCH CH CH , OCH CH(CH OC=ONHR)O), 3.86–4.36 2 2 2 3 2 2 2 2 2 2 (m,OCH CH(CH OC=ONHR)O),5.88(br. s,NH),6.17(br. s,NH),7.09–7.25(m,ArCH CH )ppm. 2 2 2 2 13CNMR(101MHz,CDCl )(3): δ=14.2(NHCH CH (CH ) CH ),22.7(NHCH (CH ) CH ),27.0 3 2 2 2 9 3 2 2 10 3 (NHCH CH CH N(CH ) ,27.5–32.0(NHCH (CH ) CH ,ArCH CH ),39.9(NHCH (CH ) CH ), 2 2 2 3 2 2 2 10 3 2 2 2 2 10 3 41.2 (NHCH CH CH N(CH ) ), 45.5 (NHCH CH CH N(CH ) ), 57.6 (NHCH CH CH N(CH ) ), 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 64.2–70.0(ArCH CH CH ,OCH CH(CH OC=ONHR)O),78.0(OCH CH(CH OC=ONHR)O),125.8 2 2 2 2 2 2 2 (ArCH ),128.4(ArCH ),128.5(ArCH ),141.9(ArCH ),156.7(OCH CH(CH OC=ONHR)O)ppm. 2 2 2 2 2 2 2.8. SynthesisofPoly(glycidyl3-aminopropyldiethanolcarbamate-co-glycidyldodecylcarbamate) (P(GAPDEA -co-GDDA ))(4) 16 11 P(GPC) (2)(0.707g,3.51mmolcarbonate)wasdissolvedintetrahydrofuran(10mL)andasolution 27 ofN-(3-aminopropyl)diethanolamine(0.284g,1.75mmol),anddodecylamine(0.325g,1.75mmol)in tetrahydrofuran(5mL)wasaddedin1hat0◦Cusingasyringepump.Thereactionwasallowedto warmtoroomtemperatureandstirredfor42h. Thesolventwasremovedunderreducedpressure and the polymer purified by dialysis in methanol. Polymer 4 was obtained as a colorless viscous liquid(0.655g,66%).M =7337g·mol−1,M =14,100g·mol−1,Ð=3.56. 1HNMR(400MHz, n,NMR n,SEC MeOD) (4): δ = 0.92 (t, 3J = 7.0 Hz, NHCH CH (CH ) CH ), 1.31 (s, NHCH CH (CH ) CH ), HH 2 2 2 9 3 2 2 2 9 3 1.44–1.59(m,NHCH CH (CH ) CH ),1.62–1.76(m,NHCH CH CH N(CH CH OH) ),1.85–1.92(m, 2 2 2 9 3 2 2 2 2 2 2 ArCH CH ), 2.55–2.74 (m, CH N(CH CH OH) ), 3.06–3.14 (m, NHCH CH (CH ) CH ), 3.15–3.23 2 2 2 2 2 2 2 2 2 9 3 (m, NHCH CH CH N(CH CH OH) ), 3.62 (t, 3J = 5.4 Hz, CH N(CH CH OH) ), 3.66–3.81 (m, 2 2 2 2 2 2 HH 2 2 2 2 ArCH CH CH ,OCH CH(CH OC=ONHR)O),4.00–4.34(m,OCH CH(CH OC=ONHR)O),7.17–7.32 2 2 2 2 2 2 2 (m,ArCH CH )ppm. 13CNMR(101MHz,MeOD)(4): δ=14.6(NHCH CH (CH ) CH ),23.8–30.9 2 2 2 2 2 9 3 (NHCH CH (CH ) CH ),28.2(NHCH CH CH N(CH CH OH) ),33.1(NHCH CH (CH ) CH ),40.1 2 2 2 9 3 2 2 2 2 2 2 2 2 2 9 3 (NHCH CH CH N(CH CH OH) ), 42.0 (NHCH CH (CH ) CH ), 53.6 (CH N(CH CH OH) ), 2 2 2 2 2 2 2 2 2 9 3 2 2 2 2 Polymers2018,10,96 6of19 57.6 (CH N(CH CH OH) ), 60.8 (CH N(CH CH OH) ), 65.3–79.3 (ArCH CH CH , 2 2 2 2 2 2 2 2 2 2 2 OCH CH(CH OC=ONHR)O),129.4(ArCH ),129.6(ArCH ),158.7(OCH CH(CH OC=ONHR)O)ppm. 2 2 2 2 2 2 2.9. SynthesisofPoly(glycidyl3-trimethylaminopropylcarbamate-co-glycidyldodecylcarbamate) (P(GTMAPA -co-GDDA ))(5) 15 12 P(GDMAPA -co-GDDA ) (3) (0.147 g, 0.34 mmol –NMe ) was dissolved in THF (3.0 mL). 15 12 2 Methyl iodide (0.058 g, 0.41 mmol) was added and the solution was stirred for 20 h at room temperature. Excess methyl iodide and the solvent were removed under reduced pressure and the polymer purified by dialysis in methanol. Polymer 5 was obtained as a yellowish crystalline solid (0.205 g, 89%). M = 10,111 g·mol−1, M = 4400 g·mol−1, n,NMR n,SEC Ð = 1.18. 1H NMR (400 MHz, DMSO-d ) (5): δ = 0.74–0.90 (m, NHCH CH (CH ) CH ), 6 2 2 2 9 3 1.20 (s, NHCH CH (CH ) CH ), 1.30–1.44 (m, NHCH CH (CH ) CH ), 1.72–1.91 (m, 2 2 2 9 3 2 2 2 9 3 NHCH CH CH N+(CH ) , ArCH CH ), 2.55–2.62 (m, 3J = 7.6 Hz, ArCH CH ), 2.85–2.99 2 2 2 3 3 2 2 HH 2 2 (m,NHCH CH (CH ) CH ),3.00–3.17(m,NHCH CH CH N+(CH ) ,NHCH CH CH N+(CH ) ), 2 2 2 9 3 2 2 2 3 3 2 2 2 3 3 3.26–3.43(m,NHCH CH CH N+(CH ) ),3.44–3.74(m,ArCH CH CH ,OCH CH(CH OC=ONHR)O), 2 2 2 3 3 2 2 2 2 2 3.82–4.19 (m, OCH CH(CH OC=ONHR)O), 7.10–7.30 (m, ArCH CH ) ppm. 13C NMR (101 2 2 2 2 MHz, DMSO-d ) (5): δ = 13.8 (NHCH CH (CH ) CH ), 22.0–28.9 (NHCH (CH ) CH ), 26.2 6 2 2 2 9 3 2 2 10 3 (NHCH CH CH N+(CH ) ), 31.2 (NHCH (CH ) CH ), 37.3 (NHCH CH CH N+(CH ) ), 2 2 2 3 3 2 2 10 3 2 2 2 3 3 52.2 (NHCH CH CH N+(CH ) ), 63.2 (NHCH CH CH N+(CH ) ), 68.6–77.0 (ArCH CH CH , 2 2 2 3 3 2 2 2 3 3 2 2 2 OCH CH(CH OC=ONHR)O), OCH CH(CH OC=ONHR)O), 125.5 (ArCH ), 128.9 (ArCH ), 141.5 2 2 2 2 2 2 (ArCH ),156.0(OCH CH(CH OC=ONHR)O)ppm. 2 2 2 2.10. SynthesisofPoly(glycidyl3-aminopropyldiethanolmethylcarbamate-co-glycidyldodecylcarbamate) (P(GAPDEMA -co-GDDA ))(6) 16 11 P(GAPDEA -co-GDDA ) (4) (0.216 g, 0.47 mmol –NEtOH ) was dissolved in THF (2.5 mL). 16 11 2 Methyl iodide (0.081 g, 0.57 mmol) was added and the solution was stirred for 20 h at room temperature. Excess methyl iodide and the solvent were removed under reduced pressure and the polymer purified by dialysis in methanol. Polymer 6 was obtained as a slightly yellow solid (0.238 g, 84%). M = 9608 g·mol−1, M = not measurable. n,NMR n,SEC 1H NMR (400 MHz, MeOD) (6): δ = 0.96 (t, 3J = 6.3 Hz, NHCH CH (CH ) CH ), HH 2 2 2 9 3 1.35 (s, NHCH CH (CH ) CH ), 1.48–1.65 (m, NHCH CH (CH ) CH ), 1.88–1.99 (m, 2 2 2 9 3 2 2 2 9 3 ArCH CH ), 2.05–2.23 (m, NHCH CH CH N+(CH (CH CH OH) )), 2.70–2.78 (m, ArCH CH ), 2 2 2 2 2 3 2 2 2 2 2 3.09–3.20 (m, NHCH CH (CH ) CH ), 3.24–3.42 (m, NHCH CH CH N+(CH (CH CH OH) )), 2 2 2 9 3 2 2 2 3 2 2 2 3.51–3.96 (m, ArCH CH CH , OCH CH(CH OC=ONHR)O, CH N+(CH (CH CH OH) )), 2 2 2 2 2 2 3 2 2 2 4.02–4.42 (m, OCH CH(CH OC=ONHR)O, CH N+(CH (CH CH OH) )), 7.20–7.36 (m, 2 2 2 3 2 2 2 ArCH CH ) ppm. 13C NMR (101 MHz, MeOD) (6): δ = 14.5 (NHCH CH (CH ) CH ), 2 2 2 2 2 9 3 23.7–31.0 (NHCH CH (CH ) CH ), 28.0 (NHCH CH CH N+(CH (CH CH OH) ), 33.0 2 2 2 9 3 2 2 2 3 2 2 2 (NHCH CH (CH ) CH ),38.9(NHCH CH CH N+(CH (CH CH OH) )),42.0(NHCH CH (CH ) CH ), 2 2 2 9 3 2 2 2 3 2 2 2 2 2 2 9 3 50.9(NHCH CH CH N+(CH (CH CH OH) ),56.8(NHCH CH CH N+(CH (CH CH OH) ),62.8–79.1 2 2 2 3 2 2 2 2 2 2 3 2 2 2 (ArCH CH CH ,OCH CH(CH OC=ONHR)O),65.4(CH N+(CH (CH CH OH) ),129.4(ArCH ),129.6 2 2 2 2 2 2 3 2 2 2 2 (ArCH ),158.7(OCH CH(CH OC=ONHR)O)ppm. 2 2 2 2.11. SynthesisofPoly(glycidyl-4-nitrophenylcarbonate)(P(GNPC) )(7) 27 PG (1) (2.012 g, 27.16 mmol OH) was dissolved in pyridine (18.85 mL). The 4-nitrophenyl 27 chloroformate (6.023 g, 29.88 mmol) was dissolved in dichloromethane (20 mL) and added to the polymer solution via syringe pump in 30 min at 0 ◦C. The solution was stirred for 20 h at room temperature. The crude product was washed with water (30 mL), 1 M HCl (aq.) (3 × 30 mL), and saturated NaCl solution (aq.) (30 mL). The organic phase was separated, dried over Na SO 2 4 and precipitated in cold MeOH. The solvent was removed under reduced pressure and polymer 7 was obtained as a colorless solid (5.782 g, 89%). M = 6458 g·mol−1, M = 6600 g·mol−1, n,NMR n,SEC Polymers2018,10,96 7of19 Ð=1.41. 1HNMR(400MHz,DMSO-d )(7): δ=1.69–1.83(m,ArCH CH ),2.54–2.61(m,ArCH CH ), 6 2 2 2 2 3.54–3.95(m,ArCH CH CH ,OCH CH(CH OC=OOArNO )O),4.15–4.56(d,CH OC=OOArNO ), 2 2 2 2 2 2 2 2 7.08–7.25(m,ArCH CH ),7.42(s,CH OC=OOArNO ),8.18(s,CH OC=OOArNO )ppm. 13CNMR 2 2 2 2 2 2 (101MHz,DMSO-d )(7): δ=30.8(ArCH CH ),31.6(ArCH ),68.2(OCH CH(CH OC=OOArNO )O), 6 2 2 2 2 2 2 76.4(OCH CH(CH OC=OOArNO )O),76.5(ArCH CH CH ),76.6(OCH CH(CH OC=OOArNO )O), 2 2 2 2 2 2 2 2 2 122.3(CH OC=OOArNO ),125.2(CH OC=OOArNO ),125.7(ArCH ),128.2(ArCH ),128.3(ArCH ), 2 2 2 2 2 2 2 141.6(ArCH ),145.0(CH OC=OOArNO ),152.0(OC=OO),155.1(CH OC=OOArNO )ppm. 2 2 2 2 2 2.12. SynthesisofPoly(glycidylhomocysteinethiolactonylcarbamate)(P(GHCTL) )(8) 27 P(GNPC) (7) (1.020 g, 4.26 mmol carbonate) was dissolved in DMF (10 mL), and 27 4-(dimethylamino)pyridine (0.053 g, 0.43 mmol) and DL-homocysteine thiolactone hydrochloride (0.655 g, 4.26 mmol) were added. The mixture was cooled to 0 ◦C and triethylamine (0.862 g, 8.52 mmol) was added over 1 h via syringe pump. The solution was stirred for 20 h at room temperature. DMF was removed under reduced pressure at 50 ◦C and the crude product was precipitated in MeOH. Drying under reduced pressure at 50 ◦C gave polymer 8 as a slightly yellow solid (0.694 g, 75%). M = 5865 g·mol−1, M = 6900 g·mol−1, Ð = 1.44. 1H NMR n,NMR n,SEC (400 MHz, DMSO-d ) (8): δ = 1.74–1.83 (m, ArCH CH ), 2.00–2.48 (m, C=OSCH CH CHR), 2.60 6 2 2 2 2 (t, 3J = 7.5 Hz, ArCH CH ), 3.17–3.45 (m, C=OSCH CH CHR), 3.47–3.75 (m, ArCH CH CH , H,H 2 2 2 2 2 2 2 OCH CH(CH OC=ONHR)O), 3.86–4.23 (m, CH OC=ONHR), 4.26–4.42 (m, C=OSCH CH CHR), 2 2 2 2 2 7.14–7.29(Ar),7.55(brs,NH)ppm. 13CNMR(101MHz,DMSO-d )(8): δ=26.5(C=OSCH CH CHR), 6 2 2 29.8 (C=OSCH CH CHR), 30.9 (ArCH CH ), 31.6 (ArCH ), 59.9 (CH OC=ONHR), 63.7, 68.7, 77.2 2 2 2 2 2 2 (ArCH CH CH , OCH CH(CH OC=ONHR)O), 79.2 (C=OSCH CH CHR), 128.3 (ArCH ), 128.4 2 2 2 2 2 2 2 2 (ArCH ),156.0(OC=ONHR),205.7(C=OSCH CH CHR)ppm. 2 2 2 2.13. SynthesisofP(GDDAc) (9) 27 To a mixture of P(GHCTL) (8) (0.301 g, 1.386 mmol HCTL) and dodecyl acrylate (0.833 g, 27 3.464 mmol) in chloroform (3.0 mL), 3-(dimethylamino)-1-propylamine (0.353 g, 3.464 mmol) was addedin30minviasyringepumpatroomtemperature. Themixturewasstirredfor20hatroom temperature. Chloroform was removed under reduced pressure. Dialysis in acetone gave 9 as a colorless, viscous liquid (0.628 g, 81%). M = 15,115 g·mol−1, M = 15,300 g·mol−1, n,NMR n,SEC Ð = 1.36. 1H NMR (400 MHz, CDCl ) (9): δ = 0.82 (t, 3J = 6.8 Hz, CH CH (CH ) CH ), 3 H,H 2 2 2 9 3 1.20 (s, CH CH (CH ) CH ), 1.48–1.69 (m, CH CH N(CH ) , CH CH (CH ) CH , ArCH CH ), 2 2 2 9 3 2 2 3 2 2 2 2 9 3 2 2 1.76–2.08 (m, CHCH CH SCH ), 2.15 (s, CH N(CH ) ), 2.22–2.37 (m, CH N(CH ) ), 2.43–2.61 (m, 2 2 2 2 3 2 2 3 2 CHCH CH SCH CH ),2.64–2.78(m,CHCH CH SCH CH ),3.07–3.37(m,NHCH CH CH N(CH ) ), 2 2 2 2 2 2 2 2 2 2 2 3 2 3.41–3.75 (m, ArCH CH CH , OCH CH(CH OC=ONHR)O), 3.77–4.07 (m, CH OC=ONHCH), 2 2 2 2 2 2 4.10–4.41 (m, O=COCH CH ), 7.09–7.23 (m, Ar), 7.76 (br. s, NH) ppm. 13C NMR (101 MHz, 2 2 CDCl ) (9): δ = 14.1 (CH CH (CH ) CH ), 22.7–31.9 (CH CH (CH ) CH , CHCH CH SCH , 3 2 2 2 9 3 2 2 2 9 3 2 2 2 ArCH CH ),26.8(CHCH CH SCH CH ),28.2(CH CH N(CH ) ),28.6(CHCH CH SCH CH ),34.7 2 2 2 2 2 2 2 2 3 2 2 2 2 2 (CHCH CH SCH CH ), 38.7 (NHCH CH CH N(CH ) ), 45.5 (CH N(CH ) ), 54.1 (NHCH), 57.9 2 2 2 2 2 2 2 3 2 2 3 2 (CH N(CH ) ),64.9(O=COCH CH ),125.9(ArCH ),128.3(ArCH ),128.5(ArCH ),140.0(ArCH ), 2 3 2 2 2 2 2 2 2 156.4(OC=ONH),171.5(CHC=ONH),172.0(CH C=OO)ppm. 2 2.14. SynthesisofP(GDDAc,q) (10) 27 P(GDDAc) (9)(0.431g,0.770mmol–NMe )wasdissolvedinTHF(9.0mL),andmethyliodide 27 2 (0.131g,0.923mmol)wasadded. Thesolutionwasstirredatroomtemperaturefor20h. Removalof THFandexcessmethyliodideunderreducedpressureanddialysisinmethanolgavepolymer10as aslightlyyellowsolid(0.475g,88%). M =18,947g·mol−1,M =11,800g·mol−1,Ð=1.36. n,NMR n,SEC 1H NMR (400 MHz, CDCl ) (10): δ = 0.81 (t, 3J = 6.5 Hz, CH CH (CH ) CH ), 1.05–1.32 (m, 3 H,H 2 2 2 9 3 CH CH (CH ) CH ),1.46–1.62(m,CH CH (CH ) CH ),1.85–2.25(m,CH CH N+(CH ) ,ArCH CH , 2 2 2 9 3 2 2 2 9 3 2 2 3 3 2 2 Polymers2018,10,96 8of19 CHCH CH SCH ), 2.39–2.64 (m, CHCH CH SCH CH ), 2.66–2.82 (m, CHCH CH SCH CH ), 2 2 2 2 2 2 2 2 2 2 2 3.05–3.50(m,NHCH CH CH N+(CH ) ),3.51–3.83(m,ArCH CH CH ,OCH CH(CH OC=ONHR)O), 2 2 2 3 3 2 2 2 2 2 3.84–4.50(m,CH OC=ONHCH,O=COCH CH ),7.08–7.24(m,Ar),7.77(br.s,NH)ppm.13CNMR(101 2 2 2 MHz,CDCl )(10): δ=14.1(CH CH (CH ) CH ),22.6–31.9(CH CH (CH ) CH ,CHCH CH SCH , 3 2 2 2 9 3 2 2 2 9 3 2 2 2 ArCH CH ), 26.7 (CHCH CH SCH CH ), 28.3 (CH CH N+(CH ) ), 28.6 (CHCH CH SCH CH ), 2 2 2 2 2 2 2 2 3 3 2 2 2 2 34.8 (CHCH CH SCH CH ), 40.1 (NHCH CH CH N+(CH ) ), 53.8 (CH N+(CH ) , NHCH), 64.9 2 2 2 2 2 2 2 3 3 2 3 3 (CH N+(CH ) ,O=COCH CH ),156.5(OC=ONH),172.1(CHC=ONH),172.8(CH C=OO)ppm. 2 3 3 2 2 2 2.15. SynthesisofP(GDMAPA -co-GDDADDAc )(11) 14 13 P(GNPC) (7) (0.541 g, 2.26 mmol carbonate) was dissolved in DMF (11 mL) and 27 3-(dimethylamino)-1-propylamine (0.115 g, 1.13 mmol) was added in 30 min via syringe pump. Themixturewasstirredfor20hatroomtemperature. DL-homocysteinethiolactonehydrochloride (0.174g,1.13mmol)and4-(dimethylamino)pyridine(0.013g,0.11mmol)wereadded. Themixture wascooledto0 ◦C,andtriethylamine(0.229g, 2.26mmol)wasaddedover1hviasyringepump. Thesolutionwasstirredfor20hatroomtemperature. DMFwasremovedunderreducedpressure atroomtemperature. Thecrudeproductwasdissolvedinchloroform,anddodecylacrylate(0.680g, 2.83mmol)wasadded. Themixturewascooledto0◦C,anddodecylamine(0.525g,2.83mmol)was addedin30minusingasyringepump. Afterstirringfor20hatroomtemperature,thesolventwas removedandthecrudeproductwaspurifiedbydialysisinacetone. Polymer11wasreceivedasa slightlyyellow, viscousliquid(0.469g, 48%). M =11,631g·mol−1, M =10,800g· mol−1, n,NMR n,SEC Ð = 1.36. 1H NMR (400 MHz, CDCl /acetone-d (6:4)) (11): δ = 0.81 (t, 3J = 6.6 Hz 3 6 H,H CH CH (CH ) CH ),1.20(s,CH CH (CH ) CH ),1.38–1.50(m,NHCH CH (CH ) CH ),1.51–1.64 2 2 2 9 3 2 2 2 9 3 2 2 2 9 3 (m, OCH CH (CH ) CH ), 1.70–1.86 (m, CH CH N(CH ) ), 1.88–2.01 (m, CHCH CH SCH ), 2 2 2 9 3 2 2 3 2 2 2 2 2.29–2.77 (m, CH N(CH ) , CHCH CH SCH CH ), 2.97–3.30 (m, NHCH CH CH N(CH ) , 2 3 2 2 2 2 2 2 2 2 3 2 NHCH CH (CH ) CH ), 3.44–3.79 (m, ArCH CH CH , OCH CH(CH OC=ONHR)O), 3.90–4.34 2 2 2 9 3 2 2 2 2 2 (m, CH OC=ONHR, CH OC=ONHCH, O=COCH CH ), 7.07–7.24 (m, Ar) ppm. 13C 2 2 2 2 NMR (101 MHz, CDCl /acetone-d (6:4)) (11): δ = 13.5 (CH CH (CH ) CH ), 22.1–31.4 3 6 2 2 2 9 3 (CH CH (CH ) CH ,CHCH CH SCH ,ArCH CH ,CH CH N(CH ) ),34.2(CHCH CH SCH CH ), 2 2 2 9 3 2 2 2 2 2 2 2 3 2 2 2 2 2 38.4 (NHCH CH CH N(CH ) ), 39.0 (NHCH CH (CH ) CH ), 43.7 (CH N(CH ) ), 53.3 (NHCH), 2 2 2 3 2 2 2 2 9 3 2 3 2 56.0 (CH N(CH ) ), 64.2 (O=COCH CH ), 127.8 (ArCH ), 127.9 (ArCH ), 155.9 (OC=ONH), 156.2 2 3 2 2 2 2 2 (OC=ONH),171.4(CHC=ONH),172.1(CH C=OO)ppm. 2 2.16. SynthesisofP(GTMAPA -co-GDDADDAc )(12) 14 13 P(GDMAPA -co-GDDADDAc )(11)(0.179g,0.20mmol–NMe )wasdissolvedinTHF(2.0mL),and 14 13 2 methyliodide(0.036g,0.25mmol)wasadded. Thesolutionwasstirredatroomtemperaturefor20 h. RemovalofTHFandexcessmethyliodideunderreducedpressureanddialysisinmethanolgave polymer12asaslightlyyellowsolid(0.203g,quant.).M =13,476g·mol−1,M =9400g·mol−1, n,NMR n,SEC Ð = 1.41. 1H-NMR (400 MHz, CDCl /acetone-d (6:4)) (12): δ = 0.80 (t, 3J = 6.8 Hz 3 6 H,H CH CH (CH ) CH ),1.18(s,CH CH (CH ) CH ),1.36–1.48(m,NHCH CH (CH ) CH ),1.50–1.66 2 2 2 9 3 2 2 2 9 3 2 2 2 9 3 (m, OCH CH (CH ) CH ), 1.74–2.01 (m, CH CH N+(CH ) , CHCH CH SCH ), 2.42–2.89 2 2 2 9 3 2 2 3 3 2 2 2 (m, CHCH CH SCH CH ), 2.94–3.45 (m, NHCH CH CH N+(CH ) , NHCH CH (CH ) CH ), 2 2 2 2 2 2 2 3 3 2 2 2 9 3 3.49–3.81 (m, ArCH CH CH , OCH CH(CH OC=ONHR)O), 3.87–4.38 (m, CH OC=ONHR, 2 2 2 2 2 2 CH OC=ONHCH,O=COCH CH ),7.03–7.23(m,Ar)ppm. 13CNMR(101MHz,CDCl /acetone-d 2 2 2 3 6 (6:4)) (12): δ = 13.4 (CH CH (CH ) CH ), 22.1–31.3 (CH CH (CH ) CH , CHCH CH SCH , 2 2 2 9 3 2 2 2 9 3 2 2 2 ArCH CH , CH CH N(CH ) ), 34.2 (CHCH CH SCH CH ), 38.9 (NHCH CH (CH ) CH ), 43.0 2 2 2 2 3 2 2 2 2 2 2 2 2 9 3 (NHCH CH CH N+(CH ) ),53.0(CH N+(CH ) ),53.8(NHCH),64.1(CH N(CH ) ,2O=COCH CH ), 2 2 2 3 2 2 3 3 2 3 2 2 2 127.8(ArCH ),127.9(ArCH ),141.3(ArCH ),155.9(OC=ONH),156.4(OC=ONH),171.3(CHC=ONH), 2 2 2 171.4(CH C=OO)ppm. 2 Polymers2018,10,96 9of19 3. ResultsandDiscussion In the current work, we present the synthesis and characterization of various novel cationic–hydrophobicfunctionalizedpolyglycidols. Thefunctionalpolyethersareevaluatedinregard totheirantibacterialactivityagainstE.coliandS.aureus,inducedbydifferentmicrostructures. Thereto, a polyglycidol with statistically distributed cationic and hydrophobic groups (cationic–hydrophobicratioof1:1)wascomparedto(a)apolyglycidolwithahydrophilicmodification at the cationic moieties; (b) a polyglycidol with cationic and hydrophobic functionalities at every repeatingunit;and(c)apolyglycidolwithacationic–hydrophobicbalanceof1:2(Figure1). Linear polyglycidol was synthesized by anionic ring-opening polymerization of ethoxyethyl glycidyl ether with 3-phenyl-1-propanol as initiator, followed by removal of the acetal protecting groups under acidic conditions [38]. Polyglycidol with 27 repeating units (PG (1)) and Polymers 2018, 10, 96 27 9 of 18 M = 2900 g· mol−1 was obtained with a narrow molecular weight distribution (Ð = 1.13). n,SEC T29h0e01 gH·m,1o3Cl−1 NwMasR osbptaeicnterad awnidthS aE Cnaarnroawly smisoolefcPuGla2r7 w(1e)icgahnt dbiestfroiubnudtioinn (thÐe =s u1.p1p3)o. rTtihneg 1iHn,f o13rCm NatMioRn (sFpiegcutrreas aSn1d– SS3E)C. analysis of PG27 (1) can be found in the supporting information (Figures S1–S3). FFiigguurree 11.. CCoommppaarriissoonn ooff vvaarriioouuss ccaattiioonniicc––hhyyddrroopphhoobbiicc ffuunnccttiioonnaalliizzeedd ppoollyyggllyycciiddoollss iinn rreeggaarrdd ttoo tthheeiirr aannttiibbaacctteerriiaall aaccttiivviittyy aaggaaiinnsstt EE.. ccoollii aanndd SS.. aauurreeuuss ttoo eexxaammiinnee tthhee ssttrruuccttuurree––pprrooppeerrttyyr reellaattiioonnsshhiipp.. 33..11.. SSyynntthheessiiss ooff PP((GGTTMMAAPPAA15-c-oc-oG-GDDDAD12A) (5)) (a5n)da nPd(GPA(PGDEAMPAD1E6-McoA-G-DcDoA-1G1)D (D6)A )(6) 15 12 16 11 The general approach for the functionalization of linear polyglycidol with cationic and The general approach for the functionalization of linear polyglycidol with cationic and hydrophobic groups starts with the introduction of active ester functionalities to the polymer hydrophobicgroupsstartswiththeintroductionofactiveesterfunctionalitiestothepolymerbackbone. backbone. The active esters allow the reaction with primary amines under the selective formation of Theactiveestersallowthereactionwithprimaryaminesundertheselectiveformationofcarbamate carbamate moieties. Quaternization of introduced tertiary amines gave the cationic component. moieties. Quaternizationofintroducedtertiaryaminesgavethecationiccomponent. PG27 (1) was reacted with phenyl chloroformate in pyridine/dichloromethane at room temperature (Scheme 1a). For purification, poly(glycidyl phenyl carbonate)27 (2) was washed with water, 1 M HCl solution (aq.), and saturated NaCl solution (aq.) to remove pyridine hydrochloride and excess pyridine. The successful functionalization was confirmed by 1H NMR, 13C NMR spectroscopy, and SEC analysis (Figures S4–S6). The introduced phenyl carbonate groups are excellent electrophiles for the substitution reaction with non-functionalized, primary amines. P(GPC)27 (2) was subsequently reacted with dodecylamine (DDA) and 3-(dimethylamino)-1-propylamine (DMAPA) or N-(3- aminopropyl)diethanolamine (APDEA) in THF at room temperature in a 1:1 ratio (Scheme 1b). The prepared poly(glycidyl 3-dimethylaminopropylcarbamate-co-glycidyl dodecylcarbamate) (P(GDMAPA15-co- GDDA12)) (3) and poly(glycidyl 3-aminopropyldiethanolcarbamate-co-glycidyl dodecylcarbamate) (P(GAPDEA16-co-GDDA11)) (4) were purified by dialysis in methanol and characterized by 1H NMR, 13C NMR spectroscopy, and SEC analysis (Figures S7–S12). In both cases, the different functional groups are statistically distributed along the polyglycidol backbone. However, the higher reactivity of DMAPA and APDEA in comparison to DDA leads to a slightly uneven ratio of functionalities. P(GDMAPA15-co-GDDA12) (3) Polymers2018,10,96 10of19 PG (1) was reacted with phenyl chloroformate in pyridine/dichloromethane at room 27 temperature(Scheme1a). Forpurification,poly(glycidylphenylcarbonate) (2)waswashedwith 27 water,1MHClsolution(aq.),andsaturatedNaClsolution(aq.) toremovepyridinehydrochloride and excess pyridine. The successful functionalization was confirmed by 1H NMR, 13C NMR spectroscopy,andSECanalysis(FiguresS4–S6). Theintroducedphenylcarbonategroupsareexcellent electrophilesforthesubstitutionreactionwithnon-functionalized,primaryamines. P(GPC) (2)was 27 subsequentlyreactedwithdodecylamine(DDA)and3-(dimethylamino)-1-propylamine(DMAPA)or N-(3-aminopropyl)diethanolamine(APDEA)inTHFatroomtemperatureina1:1ratio(Scheme1b). The prepared poly(glycidyl 3-dimethylaminopropylcarbamate-co-glycidyl dodecylcarbamate) (P(GDMAPA -co-GDDA )) (3) and poly(glycidyl 3-aminopropyldiethanolcarbamate-co-glycidyl 15 12 dodecylcarbamate) (P(GAPDEA -co-GDDA )) (4) were purified by dialysis in methanol and 16 11 characterized by 1H NMR, 13C NMR spectroscopy, and SEC analysis (Figures S7–S12). In both cases, the different functional groups are statistically distributed along the polyglycidol backbone. However, the higher reactivity of DMAPA and APDEA in comparison to DDA leads to a slightly uneven ratio of functionalities. P(GDMAPA -co-GDDA ) (3) Polymers 2018, 10, 96 15 1210 of 18 and P(GAPDEA -co-GDDA ) (4) were further reacted with an excess of methyl iodide 16 11 iannd TPH(GFAPDaEtA16-rcooo-GmDDAt1e1)m (p4e) rwateurree futrotheqr uraetaecrtnediz ewitthh ean teerxtcieasrsy ofa mmientheyl mioodieidtiee sin (TSHchFe mate ro1ocm). Ttehmepseyranttuhrees itzoe dqupatoelryn(igzley cthidey tler3t-iatrriym aemthiynlea mmionieotpierso p(Syclhcaemrbea m1ca)t. eT-choe- gslyynctihdeyslizdeodd peocylyl(cgalrybcaidmyal t3e-) (tPri(mGeTtMhyAlPaAm15i-ncoop-GroDpDyAlc1a2r))ba(5m)aatned-cop-ogllyy(cgidlyycl idydlo3d-aemcyilncoarpbraompyaltde)i eth(aPn(oGlTmMAePtAh1y5-lccoa-rGbDaDmA1a2)t)e -co(-5g)l yciadnydl dpooldye(cgylylccaidrbyal m3-aatme)in(Po(pGrAopPDyEldMiAet1h6a-cnoo-lGmDeDthAy11lc)a)r(b6a)mwaetree-cpou-grilfiyceiddybly ddoiadleycsyislcianrbmamethataen) o(lPa(nGdAPaDnEMaAly16z-ceod- bGyDD1AH11)N) (M6) Rw,e1r3eC pNurMifiRe,da bnyd dSiEalCysaisn ainly msiest.hanol and analyzed by 1H NMR, 13C NMR, and SEC analysis. SScchheemmee 11.. SSyynntthheettiicc ppaatthhwwaayy ttoo PP(G(GTTMMAAPPAA15-c-coo-G-GDDDAD1A2) ()5)( 5)anadn dPP(G(GAPADPEDMEAM16-Aco--GcoD-DGA1D1)D A(6).) ((6a)). 15 12 16 11 (Fau)nFcutinocntiaolinzaaltiizoanti oonf oPfGP27G (1)( 1w)iwthi tphhpehneynl yclhclholroorfoofromrmataet,e p,pyryirdidinien/eD/CDMCM, r,t,r t2,02 0hh; ;((bb)) RReeaaccttiioonn ooff 27 PP((GGPPCC))27 (2(2) )wwitihth DDDDAA aanndd DDMMAAPPAA//AAPPDDEEAA, ,TTHHFF, ,rrtt, ,4422 hh;; ((cc)) QQuuaatteerrnniizzaattiioonn ooff tteerrttiiaarryy aammiinneess wwiitthh 27 methyl iodide, THF, rt, 20 h. methyliodide,THF,rt,20h. 11HH aanndd 1133CC NNMMRR ssppeeccttrraa ooff PP((GGTTMMAAPPAA15-co-c-oG-GDDDAD12A) (5)) (i5n) DinMDSMOS-dO6 -sdhoswho cwhacrhaacrtaecritsetriics tsiicgsniaglnsa olsf the dodecyl and trimethylpropylammonium15 groups ad12jacent to the carb6amate moieties, proving the ofthedodecylandtrimethylpropylammoniumgroupsadjacenttothecarbamatemoieties,provingthe ssuucccceessssffuull ffuunnccttiioonnaalliizzaattiioonno offP PGG27 ((11)).. IInn tthhee 11HH NNMMRR ssppeeccttrruumm ((FFiigguurree 22aa)),, tthhee cchhaarraacctteerriissttiicc ssiiggnnaallss of the dodecyl functionality appea2r7 as three multiplets at δ = 0.74–0.90 (Signal 20), δ = 1.30–1.44 (Signal of the dodecyl functionality appear as three multiplets at δ = 0.74–0.90 (Signal 20), δ = 1.30–1.44 18), and δ = 2.85–2.99 ppm (Signal 17), and a singlet at δ = 1.20 ppm (Signal 19). The (Signal 18), and δ = 2.85–2.99 ppm (Signal 17), and a singlet at δ = 1.20 ppm (Signal 19). trimethylpropylammonium groups are shown as three multiplets δ = 1.72–1.91 (Signal 11), δ = 3.00– The trimethylpropylammonium groups are shown as three multiplets δ = 1.72–1.91 (Signal 11), 3.17 (Signal 10/13), and δ = 3.26–3.43 ppm (Signal 12). A multiplet at δ = 3.82–4.19 ppm (Signal 9/16) δ = 3.00–3.17 (Signal 10/13), and δ = 3.26–3.43 ppm (Signal 12). A multiplet at δ = 3.82–4.19 ppm shows the methylene group of the glycidol repeating unit. In the 13C NMR spectrum (Figure S13), the (Signal9/16)showsthemethylenegroupoftheglycidolrepeatingunit. Inthe13CNMRspectrum distinctive signals of the dodecyl groups are found at δ = 13.8 (Signal 23), δ = 22.0–28.9 (Signal 22), (FigureS13),thedistinctivesignalsofthedodecylgroupsarefoundatδ=13.8(Signal23),δ=22.0–28.9 and δ = 31.2 ppm (Signal 21). The representative signals of the trimethylpropylammonium (Signal22),andδ=31.2ppm(Signal21). Therepresentativesignalsofthetrimethylpropylammonium functionality are shown at δ = 26.2 (Signal 13), δ = 37.3 (Signal 12), δ = 52.2 (Signal 15), and δ = functionalityareshownatδ=26.2(Signal13),δ=37.3(Signal12),δ=52.2(Signal15),andδ=63.2ppm 63.2 ppm (Signal 14). Further, the signal of the carbamate groups can be found at δ = 156.0 ppm (Signal14). Further,thesignalofthecarbamategroupscanbefoundatδ=156.0ppm(Signal11/19). (Signal 11/19). Figure 2. 1H NMR spectra of P(GTMAPA15-co-GDDA12) (5) measured in DMSO-d6 (a) and P(GAPDEMA16-co- GDDA11) (6) measured in MeOD (b).
Description: