ebook img

Novel Anthropometry Based on 3D-Bodyscans Applied to a Large Population Based Cohort PDF

20 Pages·2016·3.78 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Novel Anthropometry Based on 3D-Bodyscans Applied to a Large Population Based Cohort

RESEARCHARTICLE Novel Anthropometry Based on 3D- Bodyscans Applied to a Large Population Based Cohort HenryLöffler-Wirth1,2*,EdithWillscher1,2,PeterAhnert2,3,KerstinWirkner2, ChristophEngel2,3,MarkusLoeffler1,2,3‡,HansBinder1,2‡ 1 InterdisciplinaryCentreforBioinformatics,LeipzigUniversity,Härtelstraße16–18,04107Leipzig, Germany,2 LIFE,LeipzigResearchCenterforCivilizationDiseases;LeipzigUniversity,Philipp-Rosenthal- Straße27,04103Leipzig,Germany,3 InstituteforMedicalInformatics,StatisticsandEpidemiology,Leipzig a11111 University,Härtelstraße16–18,04107Leipzig,Germany ‡Theseauthorsarejointseniorauthorsonthiswork. *[email protected] Abstract OPENACCESS Three-dimensional(3D)wholebodyscannersareincreasinglyusedasprecisemeasuring Citation:Löffler-WirthH,WillscherE,AhnertP, WirknerK,EngelC,LoefflerM,etal.(2016)Novel toolsfortherapidquantificationofanthropometricmeasuresinepidemiologicalstudies. AnthropometryBasedon3D-BodyscansAppliedtoa Weanalyzed3Dwholebodyscanningdataofnearly10,000participantsofacohortcol- LargePopulationBasedCohort.PLoSONE11(7): lectedfromtheadultpopulationofLeipzig,oneofthelargestcitiesinEasternGermany. e0159887.doi:10.1371/journal.pone.0159887 Wepresentanovelapproachforthesystematicanalysisofthisdatawhichaimsatidentify- Editor:DongHoonShin,SeoulNationalUniversity ingdistinguishableclustersofbodyshapescalledbodytypes.Inthefirststep,ourmethod CollegeofMedicine,REPUBLICOFKOREA aggregatesbodymeasuresprovidedbythescannerintometa-measures,eachrepresent- Received:February11,2016 ingonerelevantdimensionofthebodyshape.Inanextstep,westratifiedthecohortinto Accepted:July8,2016 bodytypesandassessedtheirstabilityanddependenceonthesizeoftheunderlying Published:July28,2016 cohort.Usingself-organizingmaps(SOM)weidentifiedthirteenrobustmeta-measures andfifteenbodytypescomprisingbetween1and18percentofthetotalcohortsize.Thir- Copyright:©2016Löffler-Wirthetal.Thisisanopen accessarticledistributedunderthetermsofthe teenofthemarevirtuallygenderspecific(sixforwomenandsevenformen)andthus CreativeCommonsAttributionLicense,whichpermits reflectmostabundantbodyshapesofwomenandmen.Twobodytypesincludeboth unrestricteduse,distribution,andreproductioninany womenandmen,anddescribeandrogynousbodyshapesthatlacktypicalgenderspecific medium,providedtheoriginalauthorandsourceare features.Thebodytypesdisentanglealargevariabilityofbodyshapesenablingdistinc- credited. tionswhichgobeyondthetraditionalindicessuchasbodymassindex,thewaist-to-height DataAvailabilityStatement:Processedbody ratio,thewaist-to-hipratioandthemortality-hazardABSI-index.Inanextstep,wewilllink scannerdataareprovidedalongwiththemanuscript (meta-measuresofallparticipants),whichwillenable theidentifiedbodytypeswithdiseasepredispositionstostudyhowsizeandshapeofthe interestedresearcherstoperformtheirownclass humanbodyimpacthealthanddisease. discovery.Rawdataarenotyetpubliclyavailabledue toconsortialanddatasafetyrestrictions,butthese datacanberequestedfromtheLIFEConsortium (www.life.uni-leipzig.de/en/). Funding:ThispublicationissupportedbyLIFE– LeipzigResearchCenterforCivilizationDiseases, Introduction LeipzigUniversity.LIFEisfundedbymeansofthe Anthropometricmeasuresareimportanttoassessdevelopmentalnormalityandpredisposi- EuropeanUnion,bytheEuropeanRegional DevelopmentFund(ERDF),bytheEuropeanSocial tionstodiseasesandtocalculatedrugandchemotherapydosages.Therelationshipbetween PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 1/20 NovelAnthropometryBasedon3D-Bodyscans Fund(ESF)andbymeansoftheFreeStateof thefatdistribution,theassociatedhumanbodyshapeandhealthrisk,e.g.forcardiovascular Saxonywithintheframeworkoftheexcellence diseases,metabolicsyndromeorcancer,areamajorissueinmanypopulationstudies[1–6] initiative.WeacknowledgesupportfromtheGerman wheresizeandshapeofthehumanbodyhavetraditionallymeasuredintermsofonlyafew ResearchFoundation(DFG)andUniversitätLeipzig anthropometricmeasures.Simplecombinationsofbasalmeasuressuchasheight,waistcir- withintheprogramofOpenAccessPublishing. cumference,andweightwerecombinedinto‘healthindices’tojudgethehealthstatusof CompetingInterests:Theauthorshavedeclared humanindividuals.TheimpactandsuitabilityofhealthindicessuchastheBMI(body-mass thatnocompetinginterestsexist. index[7]),WHtR(waistcircumferencetoheightratio[1]),WHR(waisttohipcircumference Abbreviations:Bodysurfaceimage,Imageshowing ratio[8,9])andABSI(abodysizeindex[3])wereunderdiscussioninthecontextofthe“obe- the3dbodysurfacescan;Bodyscannermeasure, sity-mortalityparadox”[10],showingthatmoderateoverweightdoesnotimplyshorter Bodymeasurederivedfrom3dsurfacescan;Body lifetime.Theseresultscallforarethinkingofhowmetabolichealthisassessedintermsofalter- measure,Singleanthropometricmeasure; Normalizedbodymeasure,Bodymeasuredividedby nativeanthropometricmeasureswhichbettercharacterizetherelationshipbetweenthedimen- thebodyheight.Weusetheterms‘bodymeasure’ sionsofthehumanbodyandhealth. and‘normalizedbodymeasure’assynonymsinthe Currently,wholebodyscannersusingtriangulationarethemosteffectivemeasuringtools paper;Bodyscannerdata,Datasetcomprisingall fortherapid,accurate,preciseandreproduciblequantificationofthedimensionsofthehuman bodymeasuresobtainedbymeansofthe3dbody body[11–16].Thesedevicescapture3Dbodymodelsinafewsecondsofmeasurement.There- scanner;Featuremap,Self-organizingmapofbody fore,theparticipantisilluminatedbyfourlaserswhichprojecthorizontallinesaroundthe measures;Meta-measure,Representativemeasure characterizingaclusterofbodymeasuresdefinedin body.Thoselinesarecapturedbyeightcamerasondifferentheightsandutilizedtotriangulate thefeaturemap;Bodyshape,Anthropometric thebodysurface,whichisthentransformedintoaboutonehundredlengthandcircumference proportionsofthebody.Inourstudyitisdefinedby measuresbyappropriatesoftwaretoolsinafullyautomatedwaywithhighreproducibility,pre- thesetofmeta-measuresperparticipant;Bodymap, cisionandaccuracy[16–18].Thesenewandamendeddataareexpectedtoimprovethediag- Secondlevelself-organizingmapthatclusters nosticsofmanydiseases,replacingthecurrentrelianceonsimplebodyindices[15,16]. participantsaccordingtosimilarbodyshapes;Body type,Meanbodyshapeaveragedoverthebody Bodyscanningproducesnewtypesofdatawhich,inturn,neednewalgorithmsand shapesineachcluster;Bodygram,polardiagramof approachesfor3Dshapeanalysisincludingdimensionreductionandnormalization[19].They themeta-measurescharacterizingthebodyshapeor alsochallengenewconceptsforanthropometricphenotypingtogetfinermorphologicaldis- bodytype;Relevantdimensions,Independent tinctionsforwhole-bodycharacteristics[20].Thefirstand,toourbestknowledge,so-far coordinatesrequiredtocharacterizevariabilityof uniquestudyof‘body-‘typing(i.e.thequantificationandclusteringofhumanbodyshapes) bodyshapes. withinputsfrom3Danthropometrywaspublishedonlyrecently[21].Thisfirstattemptto clusterbodyscannerdataishoweverbasedonarelativelysmallcohortofabout300adultpeo- ple.Itprovidedasimpleclassificationintoendomorphic(highfatness),ectomorphic(highlin- earity),andendo-mesomorphic(amixtureoffatnessandmuscularity)bodytypes.Other studiesbasedon3Dbodyscanningusedonlyafewsinglemeasurestoderivecombinedindices suchasBMIorWTHwithoutconsideringtheincreasedsetofbodymeasurespotentiallyavail- able[13,14]. 3Dbodyscanningisidealforscreeninglargepopulationsofsubjectsinlarge-scaleepidemi- ologicalsurveysduetodetailedacquisitionofbodydimensions,andeasyandefficientuse[13]. Itisappliedtogenerateadatabaseofhumanphysicaldimensionsformenandwomenofvari- ousweights,betweentheagesof18and65yearsofatotalof2,500peopleintheUnitedStates and2,500inEurope(TheNetherlandsandItaly)intheframeoftheCAESAR(CivilianAmeri- canandEuropeanSurfaceAnthropometryResourceProject)project[22],whichpromotedto tackleaseriesofmethodicalissuesof3Dscanningtechnology[17–19]. 3DbodyscanswereappliedintheLeipzigResearchCenterforCivilizationDiseases (LIFE).LIFE-ADULT(seereference[23]foradescriptionofthestudydesign)sofarcon- ductedthelargestpopulationbasedstudywithanextensivephenotypingofurbanindividuals inGermany.Ithasrecentlycompletedthebaselineexaminationof10,000randomlyselected adultparticipantsfromLeipzig,acityineasternGermanywith550,000inhabitants.Thegen- eralobjectiveistoinvestigateprevalences,earlyonsetmarkers,andtheroleoflifestylefactors ofmajorcivilizationdiseases.Allparticipantsunderwentanextensivecoreassessmentpro- gramincludingbesidesanthropometrystructuredinterviews,questionnaires,physicalexami- nationsandbiospecimencollection.Thestudycoversamainagerangefrom40–79yearsand PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 2/20 NovelAnthropometryBasedon3D-Bodyscans predominantlycollectspeopleofmiddleEuropeanethnicity.Afollow-upinvestigationis plannedtostartfrom2016,re-assessingthesameparticipantsandallowinglongitudinal comparisons. Inthispublicationwesystematicallyanalyzedthecompletesetofbodymeasuresprovided by3Dbodyscanningof8,499adultparticipantsoftheLIFEstudytodefinenovelanthropo- metricphenotypeswithpossiblerelevanceforlifestylefactorsandcivilizationdiseases.This dataconstitutes,toourbestknowledge,oneofthelargestsetsofsuchdatapresentlyavailable. Wepursueseveralobjectives:Howmanyandparticularlywhatkindsofdimensionsofbody shapearerelevant?Aretherecharacteristic‘bodytypes’?Howtodetermine,todefineandto describesuchbodytypesinarobustfashion?Forthiswepresentamethodicalframeworkof dataanalysisusingmachinelearningasthebasalclusteringtechnique.Wedemonstratethat ourapproachallowsforrepresentationofhumanbodyshapeswithhigh-resolution.Itprovides robustbodytypesasanimportantprerequisiteforidentifyingnewanthropometricfactorsof healthriskinsubsequent,presentlyongoinganalyses. MaterialandMethods Ethicsapprovalandconsenttoparticipate Asaprerequisitetoenrolment,writteninformedconsentwasobtainedfromallparticipants. ThestudywasapprovedbytheresponsibleinstitutionalethicsboardoftheMedicalFacultyof theUniversityofLeipzig.Thedataprivacyandsafetyconceptofthestudywasapprovedbythe responsibledataprotectionofficer. 3DbodyscanningoftheLIFEadultcohort Inthispublicationweanalyzedanthropometric3DbodyscannerdatacollectedintheLIFE-A- DULTcohortbetween8/2011and11/2014.Acomprehensivedescriptionofthestudydesignis givenin[23].Thestudycomprisedinteraliainterviews,questionnaires,classicalanthropome- try,laboratoryinvestigations,biobanking,endocrinological,cardiovascularandcognitive assessments,MRIofthebrain,and3Dbodyscanning.Basicanthropometriccharacteristicsof thecohortaresummarizedinTable1. 3Dbodyscanningwasperformedbymeansofacommercial‘VitusSmartXXL’3Dlaser scanner(HumanSolutionsGmbH,Kaiserslautern,Germany)whichprovidesanimageofthe bodysurfaceofeachparticipant.BodymeasureswereextractedfromthisimageusingAnthro- Scan2.9.9software(HumanSolutionsGmbH)andstoredintheLIFEresearchdatabase.Mea- surementanddatagenerationareinagreementwithISO20685,theinternationalstandardfor 3-Dscanningmethodologiesforinternationallycompatibleanthropometricdatabases.About Table1. BasiccharacteristicsoftheLIFE-ADULTcohort(meanvalues±standarddeviation). Distribu- tionfunctionscanbefoundinS1File. Gender Male Female Numberofparticipants 4,117 4,363 Age(y) 57±13 56±12 Height(cm) 176±7 165±7 Weight(kg) 86±14 71±14 Waistcircumference(cm) 101±12 91±13 BMI(kg/m2) 28±4 26±5 WHR 0.96±0.08 0.84±0.08 WHtR 0.57±0.07 0.55±0.09 doi:10.1371/journal.pone.0159887.t001 PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 3/20 NovelAnthropometryBasedon3D-Bodyscans 20–30participantspassedthestudyprogramofLIFEperdayincluding3Dbodyscanning.The scannerwascalibratedeverymorningbeforedatacollectionusingastandardcalibrationbody. Measurementsofallparticipants(standingposition)wererealizedinastandardizedwayby applyingin-housestandardoperatingprocedures(SOP)basedonmanufacturer’sinstructions. SOPdefinethepositioningoftheparticipants,scannersettings,andtheprotocolthroughout thescanningprocess.Bodymeasureswereextractedautomaticallybythescannersoftware usingdefaultparametersettingsasimplementedbythemanufacturerwhichincludesLand- markidentificationandgapfillingalgorithms.Thedataofallparticipantsweregenerated usingthesamescannerdeviceandthesamesoftwareasdescribedabove.Wevalidatedthe resultsofdifferentsoftwareversions(v2.9.9–3.0.7),showingidenticalresults(unpublisheddata generatedintheNaKolevelIIIstudy).Surfacecalculationwasvalidatedusinganin-house MathCadprogramconfirmingoutcomeofthebodyscannersoftware. Foreachparticipant140measureswerecollectedandstoredintheLIFEresearchdatabase. Thesemeasuresinclude97(linear)lengthsanddistances,36(curved)girths,2angles,weight, andthefouraggregatedcharacteristics‘bodymassindex’(BMI[7]),‘waisttohipcircumfer- enceratio’(WHR[24]),‘waistcircumferencetoheightratio’(WHtR[1])and‘abodyshape index’(ABSI[3]). Preprocessing TheP=140bodymeasuresofN=9,892participantconstitutethePxNmatrixofrawdata (seeFig1).Theirpreprocessingincludesthreesteps:i)removalofmissingvalues;ii)normali- zationwithrespecttobodyheight;andiii)Z-normalizationofeachbodymeasure: 1. Thematrixcontained17,721(≙1.4%)missingvaluesfor1,868participantswhichcould notbeestimatedbythescannersoftware.Inafirststep,46participantswereremoved whichshowmissingvaluesformorethan50%ofthebodymeasures.Inthesecondstep,6 bodymeasureswereremovedwhichweremissedinmorethan5%oftheparticipants(fora listseeS1Table).Inthelaststep,theremaining1,347participants(≙13.6%),whichstill havemissingvalues,wereremoved.Theresultingdatamatrixwithoutmissingvaluescom- prisesP=134bodymeasuresofN=8,499participants. 2. Thebodymeasuresofeachparticipantwerethendividedbythebodyheight.Thisnormali- zationstepadjustsmeasuresforbodyheightandassumesthatbodyshapelinearlyscales withbodyheight. 3. Finally,eachmeasurewasZ-normalized,i.e.centralizedwithrespecttoitsmeanvalueaver- agedoverallparticipantsanddividedbyitsstandarddeviation.Z-normalizationmakesthe differentmeasurescomparablebyprovidingacommonscaleinunitsofthestandarddevia- tionofeachmeasureinthecohort. SOMclusteringofbodymeasures—‘featuremap’andbodygrams Weappliedself-organizingmap(SOM)machinelearningforboth,clusteringofthe134body measuresinto13meta-measuresaswellasforclusteringofparticipantsintobodytypesusing thesemeta-measures.SOMclusteringintobodytypesisdescribedinthenextsubsection. SOMmachinelearningprojectsthemultidimensionalfeatureslandscape,givenbythebody measures,intoatwo-dimensionalmapspace[25].Wedevelopedacomprehensiveanalysis workflowbasedontheSOMmethod.Thissocalled‘high-dimensionaldataportraying’was previouslyappliedtodifferentdatatypesinmolecularproteome,genomeand,firstofall,tran- scriptomestudies[26–30].WeappliedSOMlearningtothepreprocessedbodyscannerdata PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 4/20 NovelAnthropometryBasedon3D-Bodyscans Fig1.WorkflowofSOM-basedanalysisof3Dbodyscannerdata. doi:10.1371/journal.pone.0159887.g001 usingstandardparametersettingsoftheR-package‘som’[31].ASOMsizeof50x50unitswas chosenafterthoroughadjustmentofmapresolutiontooptimallyresolvetheclusterstructure inherentinthedata(seeS1File).AlargerSOMsizedoesnotchangeclusteringresults.Clusters ofbodymeasuresweredeterminedinthissocalled‘featuremap’basedonthepatternsofthe distancemapwhichvisualizesthemeanEuclideandistanceofeachSOMunittoitsadjacent neighbors(fordetailssee[32]).Aclusteristhendefinedasanareasurroundedbyunitsof (local)maximumdistances(seeS1File).ThisSOM-basedclusteringoutperformsalternative approachessuchasprincipalcomponentanalysisandhierarchicalclusteringwhenappliedto bodyscannerdataasshowninS1File.Intotalwedetected13clustersofbodymeasurestermed ‘meta-measures’.Thesemeta-measurescollectbetween2and27singlemeasures(seeS1 Table).Theirvalueswerecalculatedasmeanvaluesaveragedovertherespectivesinglemea- suresineachoftheclusters.Elevensingletonmeasuresarenotincludedintheclustersand excludedfromdownstreamanalyses.Theresultingsetofthirteenmeta-measuresanthropome- tricallycharacterizeseachparticipantofthestudy.WeZ-normalizedthemeta-measuresof eachparticipanttoremoveadditive‘offsets’. SOMclusteringofparticipants—‘bodymap’ ThesecondSOMcalled‘bodymap’wasgeneratedtoclusterparticipantswithsimilarbody measures.ForinputdataweutilizedthethirteenZ-normalizedmeta-measuresofall8,499par- ticipantsofthestudy.WedeterminedtheminimumSOMsizerequiredtoseparatedistinct bodytypesbyprogressivelyincreasingSOMsizeuntiltheasymptoticrangewasreachedand PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 5/20 NovelAnthropometryBasedon3D-Bodyscans nonewbodytypesemerged(seeS1File).Asizeof130x130unitswasfinallychosen.Each unitinthebodytypemapcollectsoneormoreparticipantswithsimilarbodyshape,orit remainsemptyotherwise.Bodytypesweredefinedbyseparatedclustersinthebodymap whichcontainatleast85participants(≙1%ofthecohort)tofocusonrobustandrelevant clusters. Avisualdescriptionofbodytypesandtheirmutualrelationsisachievedbystainingthe bodymapaccordingtomeancharacteristicsoftheparticipantsineachofthetilessuchasage, gender,BMI,WHtR,WHR,andABSI. Availabilityofdata Preprocessedmeta-measuresofallparticipantsusedinthisstudytogetherwiththeassignment ofgender,age,BMIandbodytypeareprovidedasS2Table.Rawdatacanberequestedfrom theLIFEConsortium(www.life.uni-leipzig.de/en/). Results SOM-basedanalysisworkflowforbodyscannerdata Wedevelopedacomprehensiveworkflowtoprocessbodyscannerdatainlargeepidemiologi- calcohorts(seemethodssectionandFig1).Inthefirststep,rawdataofbodymeasureswere preprocessedwhichincludestheremovalofmissingvalues,bodyheight-andZ-normaliza- tions.Heightnormalizationissupposedtominimizebodysize-scalingeffectstofocusouranal- ysisonthevarietyofbodyshapes.Z-normalizationisappliedtomakethedifferentmeasures comparableintermsofacommonscale. Afterpreprocessing,ourdatasetcomprises134bodymeasurescollectedwithintheadult cohortoftheLIFEstudyfrom8,499participants.Weadditionallyincludedfourclassicalbody indicesintothedataset,namely‘bodymassindex’(BMI[7]),‘waisttohipcircumferenceratio’ (WHR[24]),‘waistcircumferencetoheightratio’(WHtR[1])and‘abodyshapeindex’(ABSI [3]).InthenextstepsweappliedSOMmachinelearningeithertoclusterthebodymeasuresor theparticipants,respectively.Detailsaredescribedbelowandinthemethodssection. 134bodyscannermeasuresaggregateinto13meta-measures AfeaturemapofpreprocessedbodyscannerdataisgeneratedusingSOMmachinelearning [25].Agridsizeof50x50waschosentoachievestableclusteringofthe134bodyscannermea- suresintothirteenclusters(seeS1File).TheSOMalgorithmorganizescontinuousfeatures, herebodymeasures,withinatwo-dimensionalgridsuchthatfeatureswithsimilarprofiles acrossthecohortlocateatthesameoratclosepositions,whereasfeatureswithdissimilarpro- filesarefoundindifferentregionsofthemap.Fig2ashowsthelocalizationofeachbodymea- sureinthefeaturemap.Eachdotrepresentsatleastoneindividualmeasure.Ifmultiple measuresarelocatedatthesameposition,theirnumberisindicatedbythecolorscalegiven withinthefigure:bluedotsrepresentpositionswith1singlemeasure,darkredrepresentsa positionwith16measures.Importantly,thedistancesbetweenthebodymeasuresinSOM spacearescalednon-linearly,i.e.theyexpandinregionshighlypopulatedwithfeaturesand decreaseinsparselypopulatedregions.Wemakeuseofthispropertyfortheunsupervised determinationofclustersoffeatureswithsimilarprofiles.Weobtainedthirteenclusterstermed meta-measureswhichcontainfrom2to27individualbodymeasures(Fig2b).Themeta-mea- sureswerelabeledwithcapitallettersfollowingclockwiseorderinthefeaturemap.Thisway themeta-measuresweresortedaccordingtothemutualsimilarityoftheirprofileswhichonly partlyagreeswiththeiranatomicalassignment.Meta-measuresinthetopleftregionofthe PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 6/20 NovelAnthropometryBasedon3D-Bodyscans Fig2.SOMclusteranalysisofbodymeasures.(a)Thepopulationmapshowsthelocalizationofall134 bodymeasuresinSOMspace.Thecolorcodeassignsthenumberofmeasuresineachofthe50x50SOM units,emptyunitsarewhite.Singletonbodymeasuresnotincludedinthemeta-measureclustersare highlighted.(b)Thesamemapasinpanel(a),wherethirteenclustersweredetectedandassignedwitha ‘nickname’characterizingthemeasuresinthecluster.Theirnumberperclusterisgiveninparenthesis.(c) Consensusclustermapofthefeatures.Lighttodeepbluecoloringindicatestheincreasingfrequencyof pairwiseappearanceofdifferentfeaturesinthesameclustersasdeterminedin100-foldbootstrappedSOM trainingandclustering.(d)Meanintra-clusterconsensusasafunctionofthenumberofparticipantsusedin consensusclustering. doi:10.1371/journal.pone.0159887.g002 featuremapmainlyrefertogirthmeasures,whereasthoseinthebottomrightregiontolength measures.Forexample,cluster‘I’,calledmeta-measure‘armlength’,containssixrelatedmea- sures,namely‘armlengthsleft&right’,‘armlengthstoneckleft&right’,and‘uparmlengths left&right’(seeS1Tableforthecompletelistofmeta-measureassignments).Thelocalization oflengthandgirthmeasuresinoppositeareasofthemapreflectsanti-correlatedbehavior,i.e. largergirthsonaverageassociatewithsmallerlengthsandviceversa.Anothermeta-measure ‘G’,whichwastermed‘Inseamandlowerbodylengths’,isaclusterof18featuresmainly relatedtoheightsdrawingonthelowerbodysuchas‘sideseamlengthsleft&right’,‘buttock height’,‘kneeheight’and‘distancenecktoknee’.Pleaseremindthatthemeta-measuresrefer toscaledbodymeasuresinrelationtobodyheight. Wejudgedthestabilityofourclusterassignmentswithregardtovariationofthecohort compositionusingconsensusclusteringonrandomlysampledsub-cohortsof4,000partici- pants((cid:1)50%ofthecohort)asdescribedinS1File.Theconsensusmaprevealsdeepblue squaresalongthediagonalwhichindicatestableclustersofbodymeasureswhichgrouped togetherinmostbootstrappingiterations(Fig2c).Lightblueoff-diagonalregionsindicatea residuallevelofuncertaintyofclusterassignment,e.g.betweenclustersGandH.Theconsen- susmapindicatesaclearandrobustclusterstructureinherentinthebodyscannerdata.Thisis PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 7/20 NovelAnthropometryBasedon3D-Bodyscans furthersupportedbythemeaninter-clusterconsensusvalueofhm(k)i=0.91,meaningthat featurepairsfromthesamecluster(asclassifiedusingthefullcohort)attaincommoncluster assignmentsin91%ofthebootstrappingiterations. Finallywestudiedclusterstabilityasafunctionofcohortsizeusingpartialinter-clustercon- nectivityforconsensusclusteringofrandomlysampledsub-cohortsofsizesrangingfrom100 to8,000participants(Fig2d).Itturnedoutthatthemeaninter-clusterconsensusvalueasymp- toticallylevelsoffatabout0.9forcohortsgreaterthan4,000,indicatingrobustclustering.For cohortssmallerthan1,000,clusteringoffeaturesbecomesratherunstable. Bodygrams Wevisualizethevaluesofthethirteenmeta-measuresusingapolardiagramrepresentation calledbodygramwheretheorderingofpolaraxeswaschosenaccordingtotheorderingof meta-measuresintheSOM(Fig3a).TheblackpolygonreferstoZ=0andthustothemean valueofeachmeasureaveragedoverthecohort.Inthefollowingtheterms‘big’,‘small’,‘long’ and‘short’relatetotheseaveragevalues. Fig3bshowsfourbodygramsofselectedparticipantstogetherwiththecorrespondingbody surfaceimages.Theyrevealthatrelativelytallandthickpeopleandalsoparticipantswithshort andlongextremitiescanbeeasilyidentifiedbysectionsofthebodygramlargelydeviatingfrom theZ=0baseline.Thebodygramenablesasimpleshape-basedperceptionofanthropometric phenotypes. Inthenextstepwegeneratedmeanbodygramsofsub-cohortsspecifiedbygender,ageand weight(Fig3c).Comparisonofthefemaleandmalebodygramsrevealstypicalgender-specific differencesbetweenbodyshapes:Menshowhighervaluesoftorsoandextremitieslengths, whereaswomenshowlargersideseamlengthsandthighgirths.Ingeneral,thesegenderspecif- icsaremorepronouncedforolderpeople(especiallywomen)whoseupperbodygirthsand shoulderanglemarkedlyincrease.Womenalsoshowlarger(relative)‘headcircumference’val- uesthanmen.Largerbodyheightsofmenthusdonotassociatewithaproportionalincreaseof theirheadcircumferences.Wefurtherstratifiedyoungerandolderwomenandmenwith respecttotheirbodyweight:Foryoungmenahighweightassociateswithlongerlengthmea- suresandgirths(upperbody,thigh),whereasforoldermenastrongincreaseofupperbody girthandshoulderwidthisobserved.Higherweightsaretriviallyfoundforobeseaswellas ‘strong’men.Interestingly,youngeroverweightwomenshowextraordinarilylargethighgirths, whereasolderwomenalsoshowarmandneckgirthsbeyondtheiraveragevalues. Thissimpleapproachclearlyshowsthatgender,age,weightandBMIreflectmultiplechar- acteristicsofthebodyshapeasseenbythemeta-measures,whereastheformer,virtuallyone- dimensionalparametersarenotabletocomprehensivelydescribethemultidimensionaldiver- sityofthebodyshape. TheLIFE-ADULTcohortsplitsintodistinctbodytypes AfterclusteringofbodymeasuresweclusteredtheparticipantsintobodytypesusingSOM machinelearning.WetrainedSOMsofincreasingsizeswiththemeta-measuredataofthe LIFEcohort.Wefoundthatthenumberofresolvedbody(type)clustersincreasesuntilaSOM sizeof130x130,andthenlevelsoffatanumberoffifteenclusters(seeS1File).Hence,aSOM sizeof130x130wasrequiredtoachievesufficientresolutionoftheclustersinherentinthe LIFEcohortofnearly8,500adultparticipants.Theseclusterseithercontainmainlywomen (labelledasF1...F6),men(M1...M7)orparticipantsofbothgenders(B1&B2)(seeFig4a).A fewparticipantscouldnotbeassignedtoanybodytypecluster(n=96,≙1.1%ofthecohort). PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 8/20 NovelAnthropometryBasedon3D-Bodyscans Fig3.Visualizationofbodyshapesusingbodygrams.(a)Bodygramsarepolardiagramswiththemeta- measuresinZ-unitsasaxes.TheblackpolygonreferstoZ=0.(b)Examplebodygramsandthe correspondingbodysurfacescanimagesofselectedparticipants.Thedotted‘cobweb’linesindicate deviationsfromthemeaninunitsof+/-1,2etc.standarddeviations.(c)Bodygramsaveragedoverallmen (leftbranch)andwomen(rightbranch).Thegender-specificgroupswerefurtherstratifiedintoyoungandold PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 9/20 NovelAnthropometryBasedon3D-Bodyscans men/womenandalsolightandheavypersons.Thenumbersindicatethesizeoftherespectivesub-cohort. Notethatdatawasnotcompleteforallparticipants. doi:10.1371/journal.pone.0159887.g003 Theywerelocatedinisolatedunitsofthebodymapandwillbeaddressedinfollow-up analyses. Wegeneratedaconsensusmatrixbyapplying100-foldbootstrappedclusteringusingsub- cohortsof8000participants.Thestabilityofbodytypeclusterswasthenevaluatedusingintra- andinter-clusterconsensusvalues:Bodytypeswithhighintra-clusterconsensus(F1-F4,M1) canberegardedascompactandstable,whileclusterswithlowervalues(B1,F5,M4,M7)are moreuncertain(Fig4b).Notethatintra-clusterconsensusandnumberofparticipantsinthe bodytypesarecorrelatedwithPearsoncorrelationcoefficientofr=0.5indicatingadirectrela- tionbetweenthesizeoftheclustersandtheirstability:Highlypopulatedbodytypescollecting prevalentbodyshapestendtobemorestablethanrareones. Fig4.SOMclusteranalysisoftheparticipants.(a)Thebodymapprojectsthe8,499participantsintoatwo- dimensionalgrid.Itreveals15distinctgroupsofparticipantswithsimilarbodyshapesdefinedbyseparatedcluster regions.Eachdotinthemaprepresentsoneparticipantandiscoloredaccordingtoitsgenderandagestratification asgiveninthelegendwithinthemap.(b)Intra-clusterconsensusvaluesforeachofthebodytypeclustersreflectthe degreeofreliabilityandstability.(c)Hierarchicalclusterdendrogramofbodytypeclusters.Inter-clusterconsensus valueswereusedassimilaritymeasuretodefinethebranchingheightsofthedendrogram. doi:10.1371/journal.pone.0159887.g004 PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 10/20

Description:
Development Fund (ERDF), by the European Social . try, laboratory investigations, biobanking, endocrinological, cardiovascular and SOP define the positioning of the participants, scanner settings, and the . sures were labeled with capital letters following clockwise order in the feature map.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.