RESEARCHARTICLE Novel Anthropometry Based on 3D- Bodyscans Applied to a Large Population Based Cohort HenryLöffler-Wirth1,2*,EdithWillscher1,2,PeterAhnert2,3,KerstinWirkner2, ChristophEngel2,3,MarkusLoeffler1,2,3‡,HansBinder1,2‡ 1 InterdisciplinaryCentreforBioinformatics,LeipzigUniversity,Härtelstraße16–18,04107Leipzig, Germany,2 LIFE,LeipzigResearchCenterforCivilizationDiseases;LeipzigUniversity,Philipp-Rosenthal- Straße27,04103Leipzig,Germany,3 InstituteforMedicalInformatics,StatisticsandEpidemiology,Leipzig a11111 University,Härtelstraße16–18,04107Leipzig,Germany ‡Theseauthorsarejointseniorauthorsonthiswork. *[email protected] Abstract OPENACCESS Three-dimensional(3D)wholebodyscannersareincreasinglyusedasprecisemeasuring Citation:Löffler-WirthH,WillscherE,AhnertP, WirknerK,EngelC,LoefflerM,etal.(2016)Novel toolsfortherapidquantificationofanthropometricmeasuresinepidemiologicalstudies. AnthropometryBasedon3D-BodyscansAppliedtoa Weanalyzed3Dwholebodyscanningdataofnearly10,000participantsofacohortcol- LargePopulationBasedCohort.PLoSONE11(7): lectedfromtheadultpopulationofLeipzig,oneofthelargestcitiesinEasternGermany. e0159887.doi:10.1371/journal.pone.0159887 Wepresentanovelapproachforthesystematicanalysisofthisdatawhichaimsatidentify- Editor:DongHoonShin,SeoulNationalUniversity ingdistinguishableclustersofbodyshapescalledbodytypes.Inthefirststep,ourmethod CollegeofMedicine,REPUBLICOFKOREA aggregatesbodymeasuresprovidedbythescannerintometa-measures,eachrepresent- Received:February11,2016 ingonerelevantdimensionofthebodyshape.Inanextstep,westratifiedthecohortinto Accepted:July8,2016 bodytypesandassessedtheirstabilityanddependenceonthesizeoftheunderlying Published:July28,2016 cohort.Usingself-organizingmaps(SOM)weidentifiedthirteenrobustmeta-measures andfifteenbodytypescomprisingbetween1and18percentofthetotalcohortsize.Thir- Copyright:©2016Löffler-Wirthetal.Thisisanopen accessarticledistributedunderthetermsofthe teenofthemarevirtuallygenderspecific(sixforwomenandsevenformen)andthus CreativeCommonsAttributionLicense,whichpermits reflectmostabundantbodyshapesofwomenandmen.Twobodytypesincludeboth unrestricteduse,distribution,andreproductioninany womenandmen,anddescribeandrogynousbodyshapesthatlacktypicalgenderspecific medium,providedtheoriginalauthorandsourceare features.Thebodytypesdisentanglealargevariabilityofbodyshapesenablingdistinc- credited. tionswhichgobeyondthetraditionalindicessuchasbodymassindex,thewaist-to-height DataAvailabilityStatement:Processedbody ratio,thewaist-to-hipratioandthemortality-hazardABSI-index.Inanextstep,wewilllink scannerdataareprovidedalongwiththemanuscript (meta-measuresofallparticipants),whichwillenable theidentifiedbodytypeswithdiseasepredispositionstostudyhowsizeandshapeofthe interestedresearcherstoperformtheirownclass humanbodyimpacthealthanddisease. discovery.Rawdataarenotyetpubliclyavailabledue toconsortialanddatasafetyrestrictions,butthese datacanberequestedfromtheLIFEConsortium (www.life.uni-leipzig.de/en/). Funding:ThispublicationissupportedbyLIFE– LeipzigResearchCenterforCivilizationDiseases, Introduction LeipzigUniversity.LIFEisfundedbymeansofthe Anthropometricmeasuresareimportanttoassessdevelopmentalnormalityandpredisposi- EuropeanUnion,bytheEuropeanRegional DevelopmentFund(ERDF),bytheEuropeanSocial tionstodiseasesandtocalculatedrugandchemotherapydosages.Therelationshipbetween PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 1/20 NovelAnthropometryBasedon3D-Bodyscans Fund(ESF)andbymeansoftheFreeStateof thefatdistribution,theassociatedhumanbodyshapeandhealthrisk,e.g.forcardiovascular Saxonywithintheframeworkoftheexcellence diseases,metabolicsyndromeorcancer,areamajorissueinmanypopulationstudies[1–6] initiative.WeacknowledgesupportfromtheGerman wheresizeandshapeofthehumanbodyhavetraditionallymeasuredintermsofonlyafew ResearchFoundation(DFG)andUniversitätLeipzig anthropometricmeasures.Simplecombinationsofbasalmeasuressuchasheight,waistcir- withintheprogramofOpenAccessPublishing. cumference,andweightwerecombinedinto‘healthindices’tojudgethehealthstatusof CompetingInterests:Theauthorshavedeclared humanindividuals.TheimpactandsuitabilityofhealthindicessuchastheBMI(body-mass thatnocompetinginterestsexist. index[7]),WHtR(waistcircumferencetoheightratio[1]),WHR(waisttohipcircumference Abbreviations:Bodysurfaceimage,Imageshowing ratio[8,9])andABSI(abodysizeindex[3])wereunderdiscussioninthecontextofthe“obe- the3dbodysurfacescan;Bodyscannermeasure, sity-mortalityparadox”[10],showingthatmoderateoverweightdoesnotimplyshorter Bodymeasurederivedfrom3dsurfacescan;Body lifetime.Theseresultscallforarethinkingofhowmetabolichealthisassessedintermsofalter- measure,Singleanthropometricmeasure; Normalizedbodymeasure,Bodymeasuredividedby nativeanthropometricmeasureswhichbettercharacterizetherelationshipbetweenthedimen- thebodyheight.Weusetheterms‘bodymeasure’ sionsofthehumanbodyandhealth. and‘normalizedbodymeasure’assynonymsinthe Currently,wholebodyscannersusingtriangulationarethemosteffectivemeasuringtools paper;Bodyscannerdata,Datasetcomprisingall fortherapid,accurate,preciseandreproduciblequantificationofthedimensionsofthehuman bodymeasuresobtainedbymeansofthe3dbody body[11–16].Thesedevicescapture3Dbodymodelsinafewsecondsofmeasurement.There- scanner;Featuremap,Self-organizingmapofbody fore,theparticipantisilluminatedbyfourlaserswhichprojecthorizontallinesaroundthe measures;Meta-measure,Representativemeasure characterizingaclusterofbodymeasuresdefinedin body.Thoselinesarecapturedbyeightcamerasondifferentheightsandutilizedtotriangulate thefeaturemap;Bodyshape,Anthropometric thebodysurface,whichisthentransformedintoaboutonehundredlengthandcircumference proportionsofthebody.Inourstudyitisdefinedby measuresbyappropriatesoftwaretoolsinafullyautomatedwaywithhighreproducibility,pre- thesetofmeta-measuresperparticipant;Bodymap, cisionandaccuracy[16–18].Thesenewandamendeddataareexpectedtoimprovethediag- Secondlevelself-organizingmapthatclusters nosticsofmanydiseases,replacingthecurrentrelianceonsimplebodyindices[15,16]. participantsaccordingtosimilarbodyshapes;Body type,Meanbodyshapeaveragedoverthebody Bodyscanningproducesnewtypesofdatawhich,inturn,neednewalgorithmsand shapesineachcluster;Bodygram,polardiagramof approachesfor3Dshapeanalysisincludingdimensionreductionandnormalization[19].They themeta-measurescharacterizingthebodyshapeor alsochallengenewconceptsforanthropometricphenotypingtogetfinermorphologicaldis- bodytype;Relevantdimensions,Independent tinctionsforwhole-bodycharacteristics[20].Thefirstand,toourbestknowledge,so-far coordinatesrequiredtocharacterizevariabilityof uniquestudyof‘body-‘typing(i.e.thequantificationandclusteringofhumanbodyshapes) bodyshapes. withinputsfrom3Danthropometrywaspublishedonlyrecently[21].Thisfirstattemptto clusterbodyscannerdataishoweverbasedonarelativelysmallcohortofabout300adultpeo- ple.Itprovidedasimpleclassificationintoendomorphic(highfatness),ectomorphic(highlin- earity),andendo-mesomorphic(amixtureoffatnessandmuscularity)bodytypes.Other studiesbasedon3Dbodyscanningusedonlyafewsinglemeasurestoderivecombinedindices suchasBMIorWTHwithoutconsideringtheincreasedsetofbodymeasurespotentiallyavail- able[13,14]. 3Dbodyscanningisidealforscreeninglargepopulationsofsubjectsinlarge-scaleepidemi- ologicalsurveysduetodetailedacquisitionofbodydimensions,andeasyandefficientuse[13]. Itisappliedtogenerateadatabaseofhumanphysicaldimensionsformenandwomenofvari- ousweights,betweentheagesof18and65yearsofatotalof2,500peopleintheUnitedStates and2,500inEurope(TheNetherlandsandItaly)intheframeoftheCAESAR(CivilianAmeri- canandEuropeanSurfaceAnthropometryResourceProject)project[22],whichpromotedto tackleaseriesofmethodicalissuesof3Dscanningtechnology[17–19]. 3DbodyscanswereappliedintheLeipzigResearchCenterforCivilizationDiseases (LIFE).LIFE-ADULT(seereference[23]foradescriptionofthestudydesign)sofarcon- ductedthelargestpopulationbasedstudywithanextensivephenotypingofurbanindividuals inGermany.Ithasrecentlycompletedthebaselineexaminationof10,000randomlyselected adultparticipantsfromLeipzig,acityineasternGermanywith550,000inhabitants.Thegen- eralobjectiveistoinvestigateprevalences,earlyonsetmarkers,andtheroleoflifestylefactors ofmajorcivilizationdiseases.Allparticipantsunderwentanextensivecoreassessmentpro- gramincludingbesidesanthropometrystructuredinterviews,questionnaires,physicalexami- nationsandbiospecimencollection.Thestudycoversamainagerangefrom40–79yearsand PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 2/20 NovelAnthropometryBasedon3D-Bodyscans predominantlycollectspeopleofmiddleEuropeanethnicity.Afollow-upinvestigationis plannedtostartfrom2016,re-assessingthesameparticipantsandallowinglongitudinal comparisons. Inthispublicationwesystematicallyanalyzedthecompletesetofbodymeasuresprovided by3Dbodyscanningof8,499adultparticipantsoftheLIFEstudytodefinenovelanthropo- metricphenotypeswithpossiblerelevanceforlifestylefactorsandcivilizationdiseases.This dataconstitutes,toourbestknowledge,oneofthelargestsetsofsuchdatapresentlyavailable. Wepursueseveralobjectives:Howmanyandparticularlywhatkindsofdimensionsofbody shapearerelevant?Aretherecharacteristic‘bodytypes’?Howtodetermine,todefineandto describesuchbodytypesinarobustfashion?Forthiswepresentamethodicalframeworkof dataanalysisusingmachinelearningasthebasalclusteringtechnique.Wedemonstratethat ourapproachallowsforrepresentationofhumanbodyshapeswithhigh-resolution.Itprovides robustbodytypesasanimportantprerequisiteforidentifyingnewanthropometricfactorsof healthriskinsubsequent,presentlyongoinganalyses. MaterialandMethods Ethicsapprovalandconsenttoparticipate Asaprerequisitetoenrolment,writteninformedconsentwasobtainedfromallparticipants. ThestudywasapprovedbytheresponsibleinstitutionalethicsboardoftheMedicalFacultyof theUniversityofLeipzig.Thedataprivacyandsafetyconceptofthestudywasapprovedbythe responsibledataprotectionofficer. 3DbodyscanningoftheLIFEadultcohort Inthispublicationweanalyzedanthropometric3DbodyscannerdatacollectedintheLIFE-A- DULTcohortbetween8/2011and11/2014.Acomprehensivedescriptionofthestudydesignis givenin[23].Thestudycomprisedinteraliainterviews,questionnaires,classicalanthropome- try,laboratoryinvestigations,biobanking,endocrinological,cardiovascularandcognitive assessments,MRIofthebrain,and3Dbodyscanning.Basicanthropometriccharacteristicsof thecohortaresummarizedinTable1. 3Dbodyscanningwasperformedbymeansofacommercial‘VitusSmartXXL’3Dlaser scanner(HumanSolutionsGmbH,Kaiserslautern,Germany)whichprovidesanimageofthe bodysurfaceofeachparticipant.BodymeasureswereextractedfromthisimageusingAnthro- Scan2.9.9software(HumanSolutionsGmbH)andstoredintheLIFEresearchdatabase.Mea- surementanddatagenerationareinagreementwithISO20685,theinternationalstandardfor 3-Dscanningmethodologiesforinternationallycompatibleanthropometricdatabases.About Table1. BasiccharacteristicsoftheLIFE-ADULTcohort(meanvalues±standarddeviation). Distribu- tionfunctionscanbefoundinS1File. Gender Male Female Numberofparticipants 4,117 4,363 Age(y) 57±13 56±12 Height(cm) 176±7 165±7 Weight(kg) 86±14 71±14 Waistcircumference(cm) 101±12 91±13 BMI(kg/m2) 28±4 26±5 WHR 0.96±0.08 0.84±0.08 WHtR 0.57±0.07 0.55±0.09 doi:10.1371/journal.pone.0159887.t001 PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 3/20 NovelAnthropometryBasedon3D-Bodyscans 20–30participantspassedthestudyprogramofLIFEperdayincluding3Dbodyscanning.The scannerwascalibratedeverymorningbeforedatacollectionusingastandardcalibrationbody. Measurementsofallparticipants(standingposition)wererealizedinastandardizedwayby applyingin-housestandardoperatingprocedures(SOP)basedonmanufacturer’sinstructions. SOPdefinethepositioningoftheparticipants,scannersettings,andtheprotocolthroughout thescanningprocess.Bodymeasureswereextractedautomaticallybythescannersoftware usingdefaultparametersettingsasimplementedbythemanufacturerwhichincludesLand- markidentificationandgapfillingalgorithms.Thedataofallparticipantsweregenerated usingthesamescannerdeviceandthesamesoftwareasdescribedabove.Wevalidatedthe resultsofdifferentsoftwareversions(v2.9.9–3.0.7),showingidenticalresults(unpublisheddata generatedintheNaKolevelIIIstudy).Surfacecalculationwasvalidatedusinganin-house MathCadprogramconfirmingoutcomeofthebodyscannersoftware. Foreachparticipant140measureswerecollectedandstoredintheLIFEresearchdatabase. Thesemeasuresinclude97(linear)lengthsanddistances,36(curved)girths,2angles,weight, andthefouraggregatedcharacteristics‘bodymassindex’(BMI[7]),‘waisttohipcircumfer- enceratio’(WHR[24]),‘waistcircumferencetoheightratio’(WHtR[1])and‘abodyshape index’(ABSI[3]). Preprocessing TheP=140bodymeasuresofN=9,892participantconstitutethePxNmatrixofrawdata (seeFig1).Theirpreprocessingincludesthreesteps:i)removalofmissingvalues;ii)normali- zationwithrespecttobodyheight;andiii)Z-normalizationofeachbodymeasure: 1. Thematrixcontained17,721(≙1.4%)missingvaluesfor1,868participantswhichcould notbeestimatedbythescannersoftware.Inafirststep,46participantswereremoved whichshowmissingvaluesformorethan50%ofthebodymeasures.Inthesecondstep,6 bodymeasureswereremovedwhichweremissedinmorethan5%oftheparticipants(fora listseeS1Table).Inthelaststep,theremaining1,347participants(≙13.6%),whichstill havemissingvalues,wereremoved.Theresultingdatamatrixwithoutmissingvaluescom- prisesP=134bodymeasuresofN=8,499participants. 2. Thebodymeasuresofeachparticipantwerethendividedbythebodyheight.Thisnormali- zationstepadjustsmeasuresforbodyheightandassumesthatbodyshapelinearlyscales withbodyheight. 3. Finally,eachmeasurewasZ-normalized,i.e.centralizedwithrespecttoitsmeanvalueaver- agedoverallparticipantsanddividedbyitsstandarddeviation.Z-normalizationmakesthe differentmeasurescomparablebyprovidingacommonscaleinunitsofthestandarddevia- tionofeachmeasureinthecohort. SOMclusteringofbodymeasures—‘featuremap’andbodygrams Weappliedself-organizingmap(SOM)machinelearningforboth,clusteringofthe134body measuresinto13meta-measuresaswellasforclusteringofparticipantsintobodytypesusing thesemeta-measures.SOMclusteringintobodytypesisdescribedinthenextsubsection. SOMmachinelearningprojectsthemultidimensionalfeatureslandscape,givenbythebody measures,intoatwo-dimensionalmapspace[25].Wedevelopedacomprehensiveanalysis workflowbasedontheSOMmethod.Thissocalled‘high-dimensionaldataportraying’was previouslyappliedtodifferentdatatypesinmolecularproteome,genomeand,firstofall,tran- scriptomestudies[26–30].WeappliedSOMlearningtothepreprocessedbodyscannerdata PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 4/20 NovelAnthropometryBasedon3D-Bodyscans Fig1.WorkflowofSOM-basedanalysisof3Dbodyscannerdata. doi:10.1371/journal.pone.0159887.g001 usingstandardparametersettingsoftheR-package‘som’[31].ASOMsizeof50x50unitswas chosenafterthoroughadjustmentofmapresolutiontooptimallyresolvetheclusterstructure inherentinthedata(seeS1File).AlargerSOMsizedoesnotchangeclusteringresults.Clusters ofbodymeasuresweredeterminedinthissocalled‘featuremap’basedonthepatternsofthe distancemapwhichvisualizesthemeanEuclideandistanceofeachSOMunittoitsadjacent neighbors(fordetailssee[32]).Aclusteristhendefinedasanareasurroundedbyunitsof (local)maximumdistances(seeS1File).ThisSOM-basedclusteringoutperformsalternative approachessuchasprincipalcomponentanalysisandhierarchicalclusteringwhenappliedto bodyscannerdataasshowninS1File.Intotalwedetected13clustersofbodymeasurestermed ‘meta-measures’.Thesemeta-measurescollectbetween2and27singlemeasures(seeS1 Table).Theirvalueswerecalculatedasmeanvaluesaveragedovertherespectivesinglemea- suresineachoftheclusters.Elevensingletonmeasuresarenotincludedintheclustersand excludedfromdownstreamanalyses.Theresultingsetofthirteenmeta-measuresanthropome- tricallycharacterizeseachparticipantofthestudy.WeZ-normalizedthemeta-measuresof eachparticipanttoremoveadditive‘offsets’. SOMclusteringofparticipants—‘bodymap’ ThesecondSOMcalled‘bodymap’wasgeneratedtoclusterparticipantswithsimilarbody measures.ForinputdataweutilizedthethirteenZ-normalizedmeta-measuresofall8,499par- ticipantsofthestudy.WedeterminedtheminimumSOMsizerequiredtoseparatedistinct bodytypesbyprogressivelyincreasingSOMsizeuntiltheasymptoticrangewasreachedand PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 5/20 NovelAnthropometryBasedon3D-Bodyscans nonewbodytypesemerged(seeS1File).Asizeof130x130unitswasfinallychosen.Each unitinthebodytypemapcollectsoneormoreparticipantswithsimilarbodyshape,orit remainsemptyotherwise.Bodytypesweredefinedbyseparatedclustersinthebodymap whichcontainatleast85participants(≙1%ofthecohort)tofocusonrobustandrelevant clusters. Avisualdescriptionofbodytypesandtheirmutualrelationsisachievedbystainingthe bodymapaccordingtomeancharacteristicsoftheparticipantsineachofthetilessuchasage, gender,BMI,WHtR,WHR,andABSI. Availabilityofdata Preprocessedmeta-measuresofallparticipantsusedinthisstudytogetherwiththeassignment ofgender,age,BMIandbodytypeareprovidedasS2Table.Rawdatacanberequestedfrom theLIFEConsortium(www.life.uni-leipzig.de/en/). Results SOM-basedanalysisworkflowforbodyscannerdata Wedevelopedacomprehensiveworkflowtoprocessbodyscannerdatainlargeepidemiologi- calcohorts(seemethodssectionandFig1).Inthefirststep,rawdataofbodymeasureswere preprocessedwhichincludestheremovalofmissingvalues,bodyheight-andZ-normaliza- tions.Heightnormalizationissupposedtominimizebodysize-scalingeffectstofocusouranal- ysisonthevarietyofbodyshapes.Z-normalizationisappliedtomakethedifferentmeasures comparableintermsofacommonscale. Afterpreprocessing,ourdatasetcomprises134bodymeasurescollectedwithintheadult cohortoftheLIFEstudyfrom8,499participants.Weadditionallyincludedfourclassicalbody indicesintothedataset,namely‘bodymassindex’(BMI[7]),‘waisttohipcircumferenceratio’ (WHR[24]),‘waistcircumferencetoheightratio’(WHtR[1])and‘abodyshapeindex’(ABSI [3]).InthenextstepsweappliedSOMmachinelearningeithertoclusterthebodymeasuresor theparticipants,respectively.Detailsaredescribedbelowandinthemethodssection. 134bodyscannermeasuresaggregateinto13meta-measures AfeaturemapofpreprocessedbodyscannerdataisgeneratedusingSOMmachinelearning [25].Agridsizeof50x50waschosentoachievestableclusteringofthe134bodyscannermea- suresintothirteenclusters(seeS1File).TheSOMalgorithmorganizescontinuousfeatures, herebodymeasures,withinatwo-dimensionalgridsuchthatfeatureswithsimilarprofiles acrossthecohortlocateatthesameoratclosepositions,whereasfeatureswithdissimilarpro- filesarefoundindifferentregionsofthemap.Fig2ashowsthelocalizationofeachbodymea- sureinthefeaturemap.Eachdotrepresentsatleastoneindividualmeasure.Ifmultiple measuresarelocatedatthesameposition,theirnumberisindicatedbythecolorscalegiven withinthefigure:bluedotsrepresentpositionswith1singlemeasure,darkredrepresentsa positionwith16measures.Importantly,thedistancesbetweenthebodymeasuresinSOM spacearescalednon-linearly,i.e.theyexpandinregionshighlypopulatedwithfeaturesand decreaseinsparselypopulatedregions.Wemakeuseofthispropertyfortheunsupervised determinationofclustersoffeatureswithsimilarprofiles.Weobtainedthirteenclusterstermed meta-measureswhichcontainfrom2to27individualbodymeasures(Fig2b).Themeta-mea- sureswerelabeledwithcapitallettersfollowingclockwiseorderinthefeaturemap.Thisway themeta-measuresweresortedaccordingtothemutualsimilarityoftheirprofileswhichonly partlyagreeswiththeiranatomicalassignment.Meta-measuresinthetopleftregionofthe PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 6/20 NovelAnthropometryBasedon3D-Bodyscans Fig2.SOMclusteranalysisofbodymeasures.(a)Thepopulationmapshowsthelocalizationofall134 bodymeasuresinSOMspace.Thecolorcodeassignsthenumberofmeasuresineachofthe50x50SOM units,emptyunitsarewhite.Singletonbodymeasuresnotincludedinthemeta-measureclustersare highlighted.(b)Thesamemapasinpanel(a),wherethirteenclustersweredetectedandassignedwitha ‘nickname’characterizingthemeasuresinthecluster.Theirnumberperclusterisgiveninparenthesis.(c) Consensusclustermapofthefeatures.Lighttodeepbluecoloringindicatestheincreasingfrequencyof pairwiseappearanceofdifferentfeaturesinthesameclustersasdeterminedin100-foldbootstrappedSOM trainingandclustering.(d)Meanintra-clusterconsensusasafunctionofthenumberofparticipantsusedin consensusclustering. doi:10.1371/journal.pone.0159887.g002 featuremapmainlyrefertogirthmeasures,whereasthoseinthebottomrightregiontolength measures.Forexample,cluster‘I’,calledmeta-measure‘armlength’,containssixrelatedmea- sures,namely‘armlengthsleft&right’,‘armlengthstoneckleft&right’,and‘uparmlengths left&right’(seeS1Tableforthecompletelistofmeta-measureassignments).Thelocalization oflengthandgirthmeasuresinoppositeareasofthemapreflectsanti-correlatedbehavior,i.e. largergirthsonaverageassociatewithsmallerlengthsandviceversa.Anothermeta-measure ‘G’,whichwastermed‘Inseamandlowerbodylengths’,isaclusterof18featuresmainly relatedtoheightsdrawingonthelowerbodysuchas‘sideseamlengthsleft&right’,‘buttock height’,‘kneeheight’and‘distancenecktoknee’.Pleaseremindthatthemeta-measuresrefer toscaledbodymeasuresinrelationtobodyheight. Wejudgedthestabilityofourclusterassignmentswithregardtovariationofthecohort compositionusingconsensusclusteringonrandomlysampledsub-cohortsof4,000partici- pants((cid:1)50%ofthecohort)asdescribedinS1File.Theconsensusmaprevealsdeepblue squaresalongthediagonalwhichindicatestableclustersofbodymeasureswhichgrouped togetherinmostbootstrappingiterations(Fig2c).Lightblueoff-diagonalregionsindicatea residuallevelofuncertaintyofclusterassignment,e.g.betweenclustersGandH.Theconsen- susmapindicatesaclearandrobustclusterstructureinherentinthebodyscannerdata.Thisis PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 7/20 NovelAnthropometryBasedon3D-Bodyscans furthersupportedbythemeaninter-clusterconsensusvalueofhm(k)i=0.91,meaningthat featurepairsfromthesamecluster(asclassifiedusingthefullcohort)attaincommoncluster assignmentsin91%ofthebootstrappingiterations. Finallywestudiedclusterstabilityasafunctionofcohortsizeusingpartialinter-clustercon- nectivityforconsensusclusteringofrandomlysampledsub-cohortsofsizesrangingfrom100 to8,000participants(Fig2d).Itturnedoutthatthemeaninter-clusterconsensusvalueasymp- toticallylevelsoffatabout0.9forcohortsgreaterthan4,000,indicatingrobustclustering.For cohortssmallerthan1,000,clusteringoffeaturesbecomesratherunstable. Bodygrams Wevisualizethevaluesofthethirteenmeta-measuresusingapolardiagramrepresentation calledbodygramwheretheorderingofpolaraxeswaschosenaccordingtotheorderingof meta-measuresintheSOM(Fig3a).TheblackpolygonreferstoZ=0andthustothemean valueofeachmeasureaveragedoverthecohort.Inthefollowingtheterms‘big’,‘small’,‘long’ and‘short’relatetotheseaveragevalues. Fig3bshowsfourbodygramsofselectedparticipantstogetherwiththecorrespondingbody surfaceimages.Theyrevealthatrelativelytallandthickpeopleandalsoparticipantswithshort andlongextremitiescanbeeasilyidentifiedbysectionsofthebodygramlargelydeviatingfrom theZ=0baseline.Thebodygramenablesasimpleshape-basedperceptionofanthropometric phenotypes. Inthenextstepwegeneratedmeanbodygramsofsub-cohortsspecifiedbygender,ageand weight(Fig3c).Comparisonofthefemaleandmalebodygramsrevealstypicalgender-specific differencesbetweenbodyshapes:Menshowhighervaluesoftorsoandextremitieslengths, whereaswomenshowlargersideseamlengthsandthighgirths.Ingeneral,thesegenderspecif- icsaremorepronouncedforolderpeople(especiallywomen)whoseupperbodygirthsand shoulderanglemarkedlyincrease.Womenalsoshowlarger(relative)‘headcircumference’val- uesthanmen.Largerbodyheightsofmenthusdonotassociatewithaproportionalincreaseof theirheadcircumferences.Wefurtherstratifiedyoungerandolderwomenandmenwith respecttotheirbodyweight:Foryoungmenahighweightassociateswithlongerlengthmea- suresandgirths(upperbody,thigh),whereasforoldermenastrongincreaseofupperbody girthandshoulderwidthisobserved.Higherweightsaretriviallyfoundforobeseaswellas ‘strong’men.Interestingly,youngeroverweightwomenshowextraordinarilylargethighgirths, whereasolderwomenalsoshowarmandneckgirthsbeyondtheiraveragevalues. Thissimpleapproachclearlyshowsthatgender,age,weightandBMIreflectmultiplechar- acteristicsofthebodyshapeasseenbythemeta-measures,whereastheformer,virtuallyone- dimensionalparametersarenotabletocomprehensivelydescribethemultidimensionaldiver- sityofthebodyshape. TheLIFE-ADULTcohortsplitsintodistinctbodytypes AfterclusteringofbodymeasuresweclusteredtheparticipantsintobodytypesusingSOM machinelearning.WetrainedSOMsofincreasingsizeswiththemeta-measuredataofthe LIFEcohort.Wefoundthatthenumberofresolvedbody(type)clustersincreasesuntilaSOM sizeof130x130,andthenlevelsoffatanumberoffifteenclusters(seeS1File).Hence,aSOM sizeof130x130wasrequiredtoachievesufficientresolutionoftheclustersinherentinthe LIFEcohortofnearly8,500adultparticipants.Theseclusterseithercontainmainlywomen (labelledasF1...F6),men(M1...M7)orparticipantsofbothgenders(B1&B2)(seeFig4a).A fewparticipantscouldnotbeassignedtoanybodytypecluster(n=96,≙1.1%ofthecohort). PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 8/20 NovelAnthropometryBasedon3D-Bodyscans Fig3.Visualizationofbodyshapesusingbodygrams.(a)Bodygramsarepolardiagramswiththemeta- measuresinZ-unitsasaxes.TheblackpolygonreferstoZ=0.(b)Examplebodygramsandthe correspondingbodysurfacescanimagesofselectedparticipants.Thedotted‘cobweb’linesindicate deviationsfromthemeaninunitsof+/-1,2etc.standarddeviations.(c)Bodygramsaveragedoverallmen (leftbranch)andwomen(rightbranch).Thegender-specificgroupswerefurtherstratifiedintoyoungandold PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 9/20 NovelAnthropometryBasedon3D-Bodyscans men/womenandalsolightandheavypersons.Thenumbersindicatethesizeoftherespectivesub-cohort. Notethatdatawasnotcompleteforallparticipants. doi:10.1371/journal.pone.0159887.g003 Theywerelocatedinisolatedunitsofthebodymapandwillbeaddressedinfollow-up analyses. Wegeneratedaconsensusmatrixbyapplying100-foldbootstrappedclusteringusingsub- cohortsof8000participants.Thestabilityofbodytypeclusterswasthenevaluatedusingintra- andinter-clusterconsensusvalues:Bodytypeswithhighintra-clusterconsensus(F1-F4,M1) canberegardedascompactandstable,whileclusterswithlowervalues(B1,F5,M4,M7)are moreuncertain(Fig4b).Notethatintra-clusterconsensusandnumberofparticipantsinthe bodytypesarecorrelatedwithPearsoncorrelationcoefficientofr=0.5indicatingadirectrela- tionbetweenthesizeoftheclustersandtheirstability:Highlypopulatedbodytypescollecting prevalentbodyshapestendtobemorestablethanrareones. Fig4.SOMclusteranalysisoftheparticipants.(a)Thebodymapprojectsthe8,499participantsintoatwo- dimensionalgrid.Itreveals15distinctgroupsofparticipantswithsimilarbodyshapesdefinedbyseparatedcluster regions.Eachdotinthemaprepresentsoneparticipantandiscoloredaccordingtoitsgenderandagestratification asgiveninthelegendwithinthemap.(b)Intra-clusterconsensusvaluesforeachofthebodytypeclustersreflectthe degreeofreliabilityandstability.(c)Hierarchicalclusterdendrogramofbodytypeclusters.Inter-clusterconsensus valueswereusedassimilaritymeasuretodefinethebranchingheightsofthedendrogram. doi:10.1371/journal.pone.0159887.g004 PLOSONE|DOI:10.1371/journal.pone.0159887 July28,2016 10/20
Description: