NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD by Daniel Bump 1. Indu ed representations of (cid:12)nite groups. Let G be a (cid:12)nite group, and H a subgroup. Let V be a (cid:12)nite-dimensional H-module. The indu ed module G V is by de(cid:12)nition the spa e of all fun tions F : G ! V whi h have the prop- erty that F(hg) = h:F(g) for all h 2 H. This is a G-module, with group a tion 0 0 (gF)(g ) = F(g g). On the other hand, if U is a G-module, let UH denote the H-module obtained by restri ting the a tion of G on U to the subgroup H. Thus the underlying spa e of UH is the same as that of U. If V is a G-module, we will o asionally denote by (cid:25)V : G ! GL(V) the representation of G asso iated with V. Thus if g 2 G, v 2 V, g:v and (cid:25)V(g)(v) are synonymous. The Frobenius re ipro ity law amounts to a natural isomorphism G (cid:24) (1.1) HomG(U;V ) = HomH(UH;V): G 0 This is the orresponden e between (cid:30) 2 HomG(U;V ) and (cid:30) 2 HomH(UH;V), 0 0 where (cid:30) (w) = (cid:30)(w)(1), and onversely, (cid:30)(w)(g) = (cid:30) (gw). There is also a natural isomorphism G (cid:24) (1.2) HomG(V ;U) = HomH(V;UH): This may be des ribed as follows. Given an element (cid:30) 2 HomH(V;UH), we may 0 G asso iate an element (cid:30) 2 HomG(V ;U), de(cid:12)ned by X 0 (cid:0)1 (cid:30) (f) = (cid:13)(cid:30)(f((cid:13) )): (cid:13)2G=H Thus indu tion and restri tion are adjoint fun tors between the ategories of H-modules and G-modules. It is also worth noting that they are exa t fun tors. Another important property of indu tion is transitivity. Thus if H (cid:18) K (cid:18) G, where H and K are subgroups of G, and if V is an H-module, then K G (cid:24) G (1.3) (V ) = V : K G K The isomorphism is as follows. Suppose that F 2 (V ) . Thus F : G ! V . G We asso iate with this the element f of V de(cid:12)ned by f(g) = F(g)(1). It is easily K G G he ked that this F ! f is an isomorphism (V ) ! V . The problem of lassifying intertwining operators between indu ed representa- tions was onsidered by Ma key [Ma ℄ who proved the following Theorem. Typeset by AMS-TEX 1 2 BY DANIEL BUMP Theorem 1.1. Suppose that G is a (cid:12)nite group, that H1 and H2 are subgroups of G G G, and that V1, V2 are H1- and H2-modules, respe tively. Then HomG(V1 ;V2 ) is naturally isomorphi to the spa e of all fun tions (cid:1) : G ! HomC(V1;V2) whi h satisfy (1.4) (cid:1)(h2gh1) = (cid:25)V2(h2)Æ(cid:1)(g)Æ(cid:25)V1(h1): We may exhibit the orresponden e expli itly as follows. Firstly, let us de(cid:12)ne a G olle tion fg;v1 of elements of V1 indexed by g 2 G, v1 2 V1. Indeed, we de(cid:12)ne (cid:26) 0 (cid:0)1 0 (cid:0)1 0 g g v1 if g g 2 H1; fg;v1(g ) = 0 otherwise. 0 It is easily veri(cid:12)ed that if g, g 2 G, h1 2 H1, v1 2 V1, then 0 fh1g;h1v1 = fg;v1; g fgg0;v1 = fg;v1; G and if F 2 V1 , X F = f(cid:13);F((cid:13)): (cid:13)2H1nG From these relations, the existen e of a orresponden e as in the theorem is easily G G dedu ed, where if L 2 HomG(V1 ;V2 ) orresponds to the fun tion (cid:1) : V1 ! V2, then (cid:1)(g)v1 = (Lfg(cid:0)1;v1)(1); G and, for F 2 V1 , X (cid:0)1 (1.5) (LF)(g) = (cid:1)((cid:13) )F((cid:13)g): (cid:13)2H1nG This ompletes the proof of Theorem 1.1. G G An intertwining operator L : V1 ! V2 therefore determines a fun tion (cid:1) on G. We say that L is supported on a double oset H2ng=H1 if the fun tion (cid:1) vanishes o(cid:11) this double oset. The situation is parti ularly simple if V1 and V2 are one G dimensional. If (cid:31) is a hara ter of a subgroup H of G, we will denote by (cid:31) the G representation V , where V is a one-dimensional representation of H a(cid:11)ording the g g (cid:0)1 hara ter (cid:31). Also, if g 2 G, we will denote by (cid:31) the hara ter (cid:31)(h) = (cid:31)(g hg) (cid:0)1 of the group gHg . Corollary 1.2. If (cid:31)1 and (cid:31)2 are hara ters of the subgroups H1 and H2 of G, the G G dimension of HomG((cid:31)1 ;(cid:31)2 ) is equal to the number of double osets in H2ng=H1 G G whi h support intertwining operators (cid:31)1 ! (cid:31)2 . Moreover, a double oset H2ng=H1 g supports an intertwining operator if and only if the hara ters (cid:31)2 and (cid:31)1 agree on (cid:0)1 the group H1 \g H2g. The omposition of intertwining operators orresponds to the onvolution of the fun tions (cid:1) satisfying (1.4). More pre isely, NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 3 Corollary 1.3. Let V1, V2 and V3 be modules of the subgroups H1, H2 and H3 G G G G respe tively, and suppose that L1 2 HomG(V1 ;V2 ) and L2 2 HomG(V2 ;V3 ) orrespond by Theorem 1.1 to fun tions (cid:1)1 : G ! HomC(V1;V2) and (cid:1)2 : G ! HomC(V2;V3). Then the omposition L2L1 orresponds to the onvolution X (cid:0)1 (1.6) (cid:1)(g) = (cid:1)2(g(cid:13) )Æ(cid:1)1((cid:13)): (cid:13)2H2nG This is easily he ked. An important spe ial ase: Corollary 1.4. If V is a module of the subgroup H of G, the endomorphism ring G EndG(V ) is isomorphi to the onvolution algebra of fun tions (cid:1) : G ! EndC(V) whi h satisfy (cid:1)(h2gh1) = (cid:25)V(h2)Æ(cid:1)(g)Æ(cid:25)V(h1) for h1, h2 2 H. 2. The Bruhat De omposition. Let F = Fq be a (cid:12)nite (cid:12)eld with q elements, and let G = GL(r;F). By an ordered partition of r, we mean a sequen e J = fj1;::: ;jkg of positive integers whose sum is r. If J is su h a ordered partition, then P = PJ will denote the subgroup of elements of G of the form 0 1 G11 G12 (cid:1)(cid:1)(cid:1) G1k B 0 G22 (cid:1)(cid:1)(cid:1) G2k C B .. .. .. CA; . . . 0 (cid:1)(cid:1)(cid:1) 0 Gkk where Guv is a ju(cid:2)jv blo k. The subgroups of the form PJ are alled the standard paraboli subgroups of G. More generally, a paraboli subgroup of G is any subgroup onjugate to a standard paraboli subgroup. The term maximal paraboli subgroup refers to a subgroup whi h is maximal among the proper paraboli subgroups of G. Thus PJ is maximal if the ardinality of J is two. We have PJ = MJ NJ where M = MJ is the subgroup hara terized by Guv = 0 if u 6= v, and N = NJ is the subgroup hara terized by Guu = Iju (the ju (cid:2) ju (cid:24) identity matrix). Evidently M = GL(j1;F)(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)GL(jk;F). The subgroup M is alled the Levi fa tor of P, and the subgroup N is alled the unipotent radi al. We wish to extend the de(cid:12)nitions of paraboli subgroups to subgroups of groups (cid:24) of the form G = G1 (cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Gk, where Gj = GL(jk;F). By a paraboli subgroup of su h a group G, we mean a subgroup of the form P = P1 (cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Pk, where Pj is a paraboli subgroup of Gj. We will all su h a P a maximal paraboli subgroup if exa tly one of the Pj is a proper subgroup, and that subgroup is a maximal paraboli subgroup. If Mj and Nj are the Levi fa tors and unipotent radi als of the Pj, then M = M1 (cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Mk and N = N1 (cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Nk will be alled the Levi fa tor and unipotent radi al respe tively of P. A permutation matrix is by de(cid:12)nition a square matrix whi h has exa tly one nonzero entry in ea h row and olumn, ea h nonzero entry being equal to one. We will also use the term subpermutation matrix to denote a matrix, not ne essarily square, whi h has at most one nonzero entry in ea h row and olumn, ea h nonzero entry being equal to one. Thus a permutation matrix is a subpermutation matrix, and ea h minorin a subpermutation matrixis equal to one. Let W be the subgroup of G onsisting of permutation matri es. If M is the Levi fa tor of a standard paraboli subgroup, let WM = W \M. If M = MJ, we will also denote WM = WJ. If M is the Levi fa tor of P, then in fa t WM = W \P. 4 BY DANIEL BUMP 0 Proposition 2.1. Let M and M be the Levi fa tors of standard paraboli sub- 0 groups P and P , respe tively, of G. The in lusion of W in G indu es a bije tion 0 between the double osets WM0nW=WM and P nG=P. 0 First let us prove that the natural map W ! P nG=P is surje tive. Indeed, we will 0 0 show that if g = (guv) 2 G, then there exists b 2 B su h that b g has the form wb, 0 0 for b 2 B. Sin e B (cid:18) P, P this will show that w 2 P ng=P. We will re ursively de(cid:12)ne a sequen e of integers (cid:21)(r), (cid:21)(r (cid:0)1);(cid:1)(cid:1)(cid:1) ;(cid:21)(1) as follows. (cid:21)(r) is to be the (cid:12)rst positive integer su h that gr;(cid:21)(r) 6= 0. Assuming (cid:21)(r), (cid:21)(r (cid:0)1);(cid:1)(cid:1)(cid:1) ;(cid:21)(u+1) to be de(cid:12)ned, we will let (cid:21)(u) be the (cid:12)rst positive integer su h that the minor 0 1 gu;(cid:21)(r) gu;(cid:21)(r(cid:0)1) (cid:1)(cid:1)(cid:1) gu;(cid:21)(u) BBgu+1;(cid:21)(r) gu+1;(cid:21)(r(cid:0)1) (cid:1)(cid:1)(cid:1) gu+1;(cid:21)(u)CC detB . . C 6= 0: . . A . . gr;(cid:21)(r) gr;(cid:21)(r(cid:0)1) (cid:1)(cid:1)(cid:1) gr;(cid:21)(u) 0 0 Now the olumns of b are to be spe i(cid:12)ed as follows. The last olumn of b is to be 0 determined by the requirement that the (cid:21)(r)-th olumn of b g is to have 1 in the 0 r; (cid:21)(r) position, and zeros above. Assuming that the last u(cid:0)1 olumns of b have 0 been spe i(cid:12)ed, we spe ify the u-th olumn from the right of b by requiring that the 0 r(cid:0)u;(cid:21)(r(cid:0)u) entry of b g equal 1, while if v < r(cid:0)u, then the v;(cid:21)(r(cid:0)u) entry of 0 b g equals zero. Now let w be the permutation matrix with has ones in the u;(cid:21)(u) (cid:0)1 0 positions, zeros elsewhere. Then b = w b g is upper triangular. This shows that 0 the natural map W ! P nG=P is surje tive. 0 Now let us show that the indu ed map WM0nW=WM ! P nG=P is inje tive. 0 0 0 0 Suppose that P = PJ, P = PJ0, J = fj1;(cid:1)(cid:1)(cid:1) ;jkg, J = fj1;(cid:1)(cid:1)(cid:1) ;jlg. Suppose that 0 0 0 0 0 0 w, w 2 W, p, p 2 P su h that p wp = w . We must show that w and w lie in the same double oset of WM0nW=WM. Let us write 0 1 0 1 0 0 W11 (cid:1)(cid:1)(cid:1) W1k W11 (cid:1)(cid:1)(cid:1) W1k w = ... ... A w0 = B ... ... CA; 0 0 Wl1 (cid:1)(cid:1)(cid:1) Wlk; Wl1 (cid:1)(cid:1)(cid:1) Wlk 0 1 0 0 0 0 1 P11 P12 (cid:1)(cid:1)(cid:1) P1l P11 P12 (cid:1)(cid:1)(cid:1) P1k 0 0 p = BB 0... P22 (cid:1).(cid:1).(cid:1). P...2lCCA; p0 = BB 0... P22 (cid:1).(cid:1).(cid:1). P...2k CCA; 0 0 0 (cid:1)(cid:1)(cid:1) Pll 0 0 (cid:1)(cid:1)(cid:1) Pkk 0 0 0 where ea h matrix Wuv or Wuv is a ju (cid:2)jv blo k, Puv is a ju (cid:2)jv blo k, and Puv 0 0 is a ju (cid:2)jv blo k. Let us also denote 0 1 0 1 0 0 Wt1 (cid:1)(cid:1)(cid:1) Wtv Wt1 (cid:1)(cid:1)(cid:1) Wtv Wftv = ... ... A; Wft0v = B ... ... CA; 0 0 Wlv (cid:1)(cid:1)(cid:1) Wlv Wlv (cid:1)(cid:1)(cid:1) Wlv 0 1 0 0 0 1 Ptt (cid:1)(cid:1)(cid:1) Ptl P11 (cid:1)(cid:1)(cid:1) P1v Pet0;= B ... ... CA; Pet;= ... ... A: 0 0 (cid:1)(cid:1)(cid:1) Pll 0 (cid:1)(cid:1)(cid:1) Pvv NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 5 Evidently Wfu0v = Peu0 WftvPev, so Wt0v and Wtv have the same rank. Now the rank of a subpermutation matrix is simply equal to the number of nonzero entries, and so rank(Wtv) = rank(Wftv)(cid:0)rank(Wft(cid:0)1;v)(cid:0)rank(Wft;v+1)+rank(Wft(cid:0)1;v+1): Thus rank(Wfuv) = rank(Wfu0v). Sin e this is true for every u, v it is apparent that we an (cid:12)nd elements multiply w on the left by elements of wM 2 WM and 0 wM0 2 WM0 su h that wMwwM0 = w . Corollary 2.2 (The Bruhat De omposition). We have [ G = BwB (disjoint): w2W This follows by taking P = B. 3. Paraboli indu tion and the \Philosophy of Cusp forms". Let J = fj1;::: ;jkg be an ordered partition of r, and let Vu, u = 1;(cid:1)(cid:1)(cid:1) ;k be modules for GL(ju;F). Then V = V1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Vk is a module for MJ. We may extend the a tion of MJ on V to all of P, by allowing NJ to a t trivially. Then let I(V) = IM;G(V) denote the G-module obtained by indu ing V from P. The module I(V) is be said to be formed from V by paraboli indu tion. In order to have an analog of Frobenius re ipro ity for paraboli indu tion, it is ne essary to de(cid:12)ne a fun tor from the ategory of G-modules to the ategory of M-modules, the so- alled \Ja quet fun tor." Thus, let W be a G-module. We de(cid:12)ne amoduleJ(W) = JG;M(W) to be the set of allelements usu h that n:u = u for all n 2 N. Sin e N is normalized by M, J(W) is an M-submodule of W. It is alled the Ja quet module. Other names for the Ja quet fun tor from the ategory of G-modules to the ategory of M-modules whi h have o urred in the literature are \lo alization fun tor," \trun ation," and \fun tor of oinvariants." Lemma 3.1. Let U be a G-module, U0 the additive subgroup generated by all elements of the form u (cid:0) nu with u 2 U, n 2 N. Then U0 is an M-submodule of U and we have a dire t sum de omposition U = J(U)(cid:8)U0: Sin eM normalizesN, U0 isanM-submoduleofU. Weshow(cid:12)rstthatJ(U)\U0 = P f0g. Indeed, suppose that u0 = i(ui (cid:0)niui) is an element of U0. If this element is also in J(U), then " # X X X X 1 1 u0 = nu0 = nui (cid:0) nniui = 0: jNj jNj n2N i n2N n2N On the other hand, to show U = J(U)+U0, let u 2 U. Then X X 1 1 u = nu+ (u(cid:0)nu); jNj jNj n2N n2N where the (cid:12)rst element on the right is in J(U), while the se ond is in U0. 6 BY DANIEL BUMP Proposition 3.2. Let U be a G-module, M and N the Levi fa tor and unipotent radi al, respe tively, of a proper standard paraboli subgroup P of G. Then a ne - essary and suÆent ondition for JG;M(U) 6= 0 is that there exists a nonzero linear fun tional T on U su h that T(nu) = T(u) for all n 2 N, u 2 U. Indeed, a ne essary and suÆ ient ondition for a given linear fun tional T to have the property that T(nu) = T(u) for all n 2 N, u 2 U is that its kernel ontain the submodule U0 of Lemma 3.1. Thus there will exist a nonzero su h fun tional if and only if U0 6= U, i.e. if and only if J(U) 6= 0. Proposition 3.3. Suppose that V is an M-module and U a G-module. We have a natural isomorphism (cid:24) (3.1) HomG(U;I(V)) = HomM(J(U);V): Indeed, by Frobenius re ipro ity (1.1), we have an isomorphism (cid:24) HomG(U;I(V)) = HomP(UP;V): Re all that the a tion of M on V is extended by de(cid:12)nition to an a tion of P by allowing N to a t trivially. Then it is lear that a given M-module homomor- phism (cid:30) : U ! V is a P-module homomorphism if and only if (cid:30)(U0) = 0. Thus (cid:24) (cid:24) HomP(UP;V) = HomM(UM=U0;V). By Lemma 3.1, UM=U0 = J(U). Proposition 3.3 shows that the Ja quet onstru tion and paraboli indu tion are adjoint fun tors. There is also a transitivity property of paraboli indu tion, analogous to (1.3). Proposition 3.4. Let M is the Levi fa tor of a paraboli subgroup P of G, and let Q be a paraboli subgroup of M with Levi fa tor M0. Then there exists a paraboli subgroup P0 (cid:18) P of G su h that the Levi fa tor of P0 is also M0. Thus if V is an M0-module, then both IM0;M(V) and IM;G(V) are de(cid:12)ned as M- and G-modules, respe tively. We have (cid:24) (3.2) IM;G(IM0;M(V)) = IM0;G(V): We leave the proof to the reader. It is also very easy to show that: Proposition 3.5. The Ja quet and paraboli indu tion fun tors are exa t. An important strategy in lassifying the irredu ible representations of redu tive groups over (cid:12)nite or lo al (cid:12)elds onsists in trying to build up the representations from lower rank groups by paraboli indu tion. This strategy was alled the Phi- losophy of Cusp Forms by Harish-Chandra, who found motivation in the work of Selberg and Langlands on the spe tral theory of redu tive groups. An irredu ible representation whi h does not o ur in IM;G(V) for any representation V of the Levi fa tor of a proper paraboli subgroup is alled uspidal. Proposition 3.6. Any irredu ible representation of G o urs in the omposition series of some represention of the form IM;G(V), where V is a uspidal represen- tation of the Levi fa tor M of a paraboli subgroup P. Indeed, let P be minimal among the paraboli subgroups su h that the given rep- resentation of G o urs as a omposition fa tor of IM;G(V) for some representation NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 7 V of the Levi fa tor M of P. (There always exist su h paraboli s P, sin e we may take P to be G itself.) If V is not uspidal, it o urs in the omposition se- ries of IM0;M(V0) for some Levi fa tor M0 of a proper paraboli subgroup of M. Now in Proposition 3.3 the given representation of G also o urs in IM0;G(V0), ontradi ting the assumed minimality of P. A ording to the Philosophy of Cusp Forms, the uspidal representations should be regarded as the basi building blo ks from whi h other representations are on- stru ted by the pro ess of paraboli indu tion. Proposition 3.6 shows that every irredu ible representation of G may be realized as a subrepresentation of IM;G(V) where V is a uspidal representation of the Levi omponent P of a paraboli sub- group. Moreover, there is also a sense in whi h this realization is unique: although P is not unique, its Levi fa tor M and the representation V are determined up to isomorphism. More pre isely, we have 0 Theorem 3.7. Let V and V be uspidal representations of the Levi fa tors M 0 0 and M of standard paraboli subgroups P and P respe tively of G. Then either 0 IM;G(V) and IM0;G(V ) have no omposition fa tor in ommon, or there is a Weyl (cid:0)1 0 group element w in G su h that wMw = M , and a ve tor spa e isomorphism 0 (cid:30) : V ! V su h that (cid:0)1 (3.3) (cid:30)(mv) = wmw (cid:30)(v) for m 2 M, v 2 V. 0 In the latter ase, the modules IM;G(V) and IM0;G(V ) have the same omposition fa tors. (cid:0)1 0 0 Remark. The signi(cid:12) an e of (3.3) is that if wMw = M , then M and M are 0 isomorphi , and so V may be regarded as an M-module. Thus (3.3) shows that 0 (cid:30) is an isomorphism of V and V as M-modules. In other words, for the indu ed 0 representations to have a ommon omposition fa tor, not only do M and M have 0 to be onjugate, but V and V must be isomorphi as M-modules. We will defer the proof of this Theorem until the next se tion. Of ourse the omplete redu ibility of representations of a (cid:12)nite group G implies that two G- modules have the same omposition fa tors if and only if they are isomorphi . We have stated the theorem this way be ause this is the orre t formulation over a lo al (cid:12)eld. Over a lo al (cid:12)eld, one en ounters indu ed representations whi h may have the same omposition fa tors, but still fail to be isomorphi . There are two problems to be solved a ording to the Philosophy of Cusp forms: (cid:12)rstly, the onstru tion of the uspidal representations; and se ondly, the de om- position of the representations obtained by paraboli indu tion from the uspidal ones. We will examine the se ond problem in the following se tions. It follows from transitivity of indu tion that it is suÆ ient for a given irredu ible representation to be uspidal that the representation does not o ur in IM;G(V) for any maximal paraboli subgroup P. Indeed, suppose that the representation is not uspidal. Then it o urs in IM0;G(V) for some proper paraboli subgroup P0 of G, and some representation V of the Levi fa tor M0 of P0. If P is a maximal paraboli subgroup ontaining P0, and if M is the Levi fa tor of P, then by (3.2) it also o urs in IM;G(IM0;M(V)). Thus if an irredu ible representation o urs in a 8 BY DANIEL BUMP representation indu ed from a proper paraboli subgroup, it may be assumed that the paraboli is maximal. It follows from Proposition 3.3 that a a ne essary and suÆ ient ondition for the representation U to be uspidal is that JG;M(U) = 0 for every Levi fa tor M of a maximal paraboli subgroup. 4. Intertwining operators for indu ed representations. In this se tion we shall analyze the intertwining operators between two indu ed representations. We shall also prove Theorem 3.3. First let us establish 0 0 0 Proposition 4.1. Let J = fj1;(cid:1)(cid:1)(cid:1) ;jkg, J = fj1;(cid:1)(cid:1)(cid:1) ;jlg be two ordered partitions of r, and let P = PJ, P0 = PJ0. Let M (cid:24)= GL(j1;F)(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)GL(jk;F) and M0 (cid:24)= 0 0 0 GL(j1;F)(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)GL(jl;F) be their respe tive Levi fa tors. Let Vu, (resp. Vu) be 0 given uspidal GL(ju;F)-modules (resp. GL(ju;F)-modules). Let V = V1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Vk, 0 0 0 V = V1 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10) Vl, and let d = dimC HomG(IM;G(V);IM0;G(V )). Then d = 0 unless k = l, in whi h ase, d is equal to the number of permutations (cid:27) of f1;(cid:1)(cid:1)(cid:1) ;kg 0 (cid:24) 0 su h that j(cid:27)(u) = ju; and su h that V(cid:27)(u) = Vu as GL(j(cid:27)(u);F)-modules for ea h u = 1;(cid:1)(cid:1)(cid:1) ;k. To prove Proposition 4.1, assume (cid:12)rst that we are given nonzero intertwining 0 operator in HomG(IM;G(V);IM0;G(V )), whi h is supported on a single double 0 oset of P nG=P. We will asso iate with this intertwining operator a bije tion (cid:27) : f1;(cid:1)(cid:1)(cid:1) ;kg ! f1;(cid:1)(cid:1)(cid:1) ;lg whi h has the required properties. Then we will show that the orresponden e between double osets whi h support intertwining oper- ators and su h (cid:27) is a bije tion, and that no oset an support more than one intertwining operator. This will show that the dimension d is equal to the number of su h (cid:27). 0 Given the intertwining operator, let (cid:1) : G ! HomC(V;V ) be the fun tion asso iated in Theorem 3.1. Thus 0 0 0 0 (4.1) (cid:1)(p gp):v = p (cid:1)(g)p:v for p 2 P, p 2 P , v 2 V. 0 Re all that we are assuming that (cid:1) is supported on a single double oset P wP, where by the Bruhat de omposition we may take the representative w 2 W. Let 0 (cid:30) = (cid:1)(w) : V ! V . (cid:0)1 0 Now let us show that wMw = M . 0 (cid:0)1 0 (cid:0)1 First we show that M (cid:18) wMw . Suppose on the ontrary that M 6(cid:18) wMw . 0 (cid:0)1 Let NP be the unipotent radi al of P. Then Q = M \ wPw is a proper (not 0 ne essarily standard) paraboli subgroup of M , whose unipotent radi al NQ = 0 (cid:0)1 (cid:0)1 M \ wNPw is ontained in the unipotent radi al of wPw . Now let v 2 V, (cid:0)1 (cid:0)1 0 and n 2 NQ. Applying (4.1) with g = w, p = w n w, p = n, we see that (cid:0)1 (cid:0)1 (cid:0)1 (cid:0)1 n:(cid:30)(w n w:v) = (cid:30)(v). Now sin e w n w is ontained in the unipotent radi al (cid:0)1 (cid:0)1 of P, w n w:v = v, and so if n 2 NQ we have n:(cid:30)(v) = (cid:30)(v). Thus (cid:30)(v) = 0, 0 sin e V is uspidal. This shows that (cid:30) is the zero map, whi h is a ontradi tion. 0 (cid:0)1 0 (cid:0)1 Therefore M (cid:18) wMw . The proof of the opposite inequality M (cid:19) wMw is similar. (cid:0)1 0 0 Now the isomorphism m ! wmw of M onto M makes V into an M-module. (4.1) implies that if m 2 M, v 2 V, then (cid:0)1 (4.2) wmw (cid:30)(v) = (cid:30)(mv): NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 9 0 This implies that if V, V are regarded as M-modules, they are isomorphi , sin e (cid:30) is an isomorphism. By S hur's Lemma, there an be only one isomorphism (up to onstant multiple) between irredu ible M-modules, and sin e by (4.1) (cid:1) is determined by (cid:30), it follows that there an be at most one intertwining operator 0 supported on ea h double oset. On the other hand, if w is given su h that M = (cid:0)1 0 0 wMw , and ifthe indu ed M-modulestru ture onV makesV andV isomorphi , then denoting by (cid:30) su h an isomorphism, so that (4.2) is satis(cid:12)ed, it is lear that 0 (4.1) is also satis(cid:12)ed, sin e the unipotent matri es in both P and P a t trivially 0 on V and V . 0 ThusbyProposition2.1,thedimensiondofthespa eHomG(IM;G(V);IM0;G(V )) of intertwining operators is exa tly equal to the number of w 2 WM0nW=WM su h (cid:0)1 0 0 that wMw = M , and su h that the indu ed M-module stru ture on V makes (cid:24) 0 V = V . It is lear that this is equal to the number of permutations (cid:27) of f1;(cid:1)(cid:1)(cid:1) ;kg 0 (cid:24) 0 su h that j(cid:27)(i) = ji; and su h that V(cid:27)(i) = Vi as GL(j(cid:27)(i);F)-modules for ea h i = 1;(cid:1)(cid:1)(cid:1) ;k. Corollary 4.2. Let P (cid:18) G be the standard paraboli subgroup PJ where J is the (cid:24) ordered partition fj1;(cid:1)(cid:1)(cid:1) ;jkg of r. Let M = GL(j1;F)(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)GL(jk;F) be the Levi fa tor of P, and let Vu be given uspidal GL(ju;F)-modules. Let V = V1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Vk. Then I(V) is redu ible if and only there exist distin t u, v su h that ju = jv, and (cid:24) Vu = Vv as GL(ju;F)-modules. 0 This follows from Proposition 4.1 by taking P = P. We now give the proof of Theorem 3.7. The only part whi h is not ontained in Proposition 4.1 is the (cid:12)nal assertion that if there exists a Weyl group element w in (cid:0)1 G su h that wMw , and (cid:30) su h that (3.3) is satis(cid:12)ed, then the indu ed modules have the same omposition fa tors. 0 0 0 Theproblemmaybestatedasfollows. LetJ = fj1;(cid:1)(cid:1)(cid:1) ;jkgandJ = fj1;(cid:1)(cid:1)(cid:1) ;jkg 0 be two sets of positive integers whose sum is r, and assume that J is obtained from J by permuting the indi es j1. Thus there exists a bije tion (cid:27) : f1;(cid:1)(cid:1)(cid:1) ;kg ! 0 f1;(cid:1)(cid:1)(cid:1) ;kg su h that j(cid:27)(i) = ji: Let Vi be a uspidal GL(ji;F)-module for i = 0 0 0 1;(cid:1)(cid:1)(cid:1) ;k, and let Vi = V(cid:27)(i). Let P = PJ, P = PJ0, M = MP, and M = MP0. 0 0 0 0 Then V = V1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Vk and V = V1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Vk are M- and M -modules respe tively. 0 What is to be shown is that IM;G(V) and IM0;G(V ) have the same omposition fa tors. Clearly it is suÆ ient to show this when (cid:27) simply inter hanges two adja- ent omponents. Moreover in that ase, by transitivity and exa tness of paraboli indu tion (Propositions 3.4 and 3.5) it is suÆ ient to show this when k = 2. Now (cid:24) 0 (cid:24) 0 if V = V this is obvious. On the other hand, if V 6= V then by Corollary 4.2, 0 0 IM0;G(V ) is irredu ible, and a nonzero intertwining map IM;G(V) ! IM0;G(V ) exists by Proposition 4.1. Consequently IM;G(V) (cid:24)= IM0;G(V0). This ompletes the proof of Theorem 3.7. 5. The Kirillov Representation. Let G = Gr = GL(r;F) as before, and let Pr be the subspa e onsisting of elements having bottom row (0;::: ;0;1). Let N = Nr be the subgroup of unipotent upper triangular matri es, and let Ur be the subgroup onsisting of matri es whi h have only zeros above the diagonal, ex ept (cid:24) r(cid:0)1 for the entries in the last olumn. Thus Ur = F . If k (cid:20) r, we will denote by Gk the subgroup of G, isomorphi to GL(k;F), onsisting of matri es of the form (cid:18) (cid:19) (cid:3) 0 ; 0 Ir(cid:0)k 10 BY DANIEL BUMP where `(cid:3)' denotes an arbitrary k (cid:2) k blo k, and Ir(cid:0)k denotes the r (cid:0) k (cid:2) r (cid:0) k identity matrix. Identifying GL(k;F) with this subgroup of Gr, the subgroups Pk, Nk and Uk are then ontained as subgroups of Gr. Thus Pk = Gk(cid:0)1:Uk (semidire t produ t). Let = F be a (cid:12)xed nontrivial hara ter of the additive group of F. For k (cid:20) r, (cid:2) let (cid:18)k : Nk ! C be the hara ter of Nk de(cid:12)ned by 00 11 1 x12 x13 (cid:1)(cid:1)(cid:1) x1k BB 1 x23 (cid:1)(cid:1)(cid:1) x2kCC BB CC BB .. .. CC (cid:18)kBB 1 . . CC = (x12+x23 +(cid:1)(cid:1)(cid:1)+xk(cid:0)1;k): BB CC . . AA . 1 We will denote (cid:18)r as simply (cid:18). Then let K = Kr be the module of Pr indu ed from the hara ter (cid:18) of Nr. By de(cid:12)nition K is a spa e of fun tions Pr ! C. However, ea h fun tion in K is determined by its value on Gr(cid:0)1, and it is most onvenient to regard K as a spa e of fun tions on Gr(cid:0)1. Spe i(cid:12) ally, K = ff : Gr(cid:0)1 ! Cjf(ng) = (cid:18)r(cid:0)1(ng)f(g) for n 2 Nr(cid:0)1g; and the group a tion is de(cid:12)ned by (cid:18)(cid:18) (cid:19) (cid:19) h u f (g) = (cid:18)(gu)f(gh) for g, h 2 Gr(cid:0)1, u 2 Ur, f 2 K. 1 K is alled the Kirillov representation of the group Pr. Theorem 5.1. The Kirillov representation of Pr is irredu ible. To prove this, it is suÆ ient to show that HomPr(K;K) is one dimensional. Let there be given a double oset in NrnPr=Nr whi h supports an intertwining operator K ! K. Let (cid:1) : Pr ! C be the fun tion asso iated with the given intertwining operator. We may take a oset representative h whi h lies in Gr(cid:0)1. We will prove that h = Ir(cid:0)1. Theorem 5.1 will then follow from Corollary 1.2. Suppose by indu tion that we have shown that h 2 Gk, where 1 (cid:20) k (cid:20) r(cid:0)1. We will show then that h 2 Gk(cid:0)1. (If k = 1, this is to be interpreted as the assertion that h = 1.) Let (cid:18) (cid:19) Ik(cid:0)1 u 2 Uk; 1 k(cid:0)1 where u is a olumn ve tor in F . We have 0 1 0 1(cid:0)1 (cid:18) (cid:19) Ik(cid:0)1 h:u (cid:18) (cid:19) Ir(cid:0)1 u h h = 1 A 1 A ; Ir(cid:0)k Ir(cid:0)k Ir(cid:0)k+1 Ir(cid:0)k+1 and the bi-invarian e property (1.4) of (cid:1) implies that 00 11 00 11 Ik(cid:0)1 h:u Ik(cid:0)1 u (cid:18)k 1 AA = (cid:18)k 1 AA: Ir(cid:0)k Ir(cid:0)k Sin e this is true for all u, it follows that h 2 Gk(cid:0)1.