ebook img

Notes on Randomized Algorithms CS 469/569 PDF

362 Pages·2014·1.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Notes on Randomized Algorithms CS 469/569

Notes on Randomized Algorithms CS 469/569: Fall 2014 James Aspnes 2014-12-17 20:04 Contents Table of contents i List of figures xi List of tables xii List of algorithms xiii Preface xiv Syllabus xv Lecture schedule xviii 1 Randomized algorithms 1 1.1 A trivial example . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Verifying polynomial identities . . . . . . . . . . . . . . . . . 3 1.3 Randomized QuickSort . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Brute force method: solve the recurrence . . . . . . . 5 1.3.2 Clever method: use linearity of expectation . . . . . . 6 1.4 Classifying randomized algorithms by their goals . . . . . . . 8 1.4.1 Las Vegas vs Monte Carlo . . . . . . . . . . . . . . . . 8 1.4.2 Randomized complexity classes . . . . . . . . . . . . . 9 1.5 Classifying randomized algorithms by their methods . . . . . 10 2 Probability theory 12 2.1 Probability spaces and events . . . . . . . . . . . . . . . . . . 13 2.1.1 General probability spaces . . . . . . . . . . . . . . . . 13 2.2 Boolean combinations of events . . . . . . . . . . . . . . . . . 15 2.3 Conditional probability . . . . . . . . . . . . . . . . . . . . . 17 i CONTENTS ii 2.3.1 Application to algorithm analysis . . . . . . . . . . . . 18 2.3.1.1 Racing coin-flips . . . . . . . . . . . . . . . . 19 2.3.1.2 Karger’s min-cut algorithm . . . . . . . . . . 21 2.3.2 Conditional probability and independence . . . . . . . 22 3 Random variables 23 3.1 Operations on random variables . . . . . . . . . . . . . . . . . 24 3.2 Random variables and events . . . . . . . . . . . . . . . . . . 24 3.3 Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.1 Linearity of expectation . . . . . . . . . . . . . . . . . 27 3.4.1.1 Linearity of expectation for infinite sequences 28 3.4.2 Expectation of a product . . . . . . . . . . . . . . . . 29 3.4.2.1 Wald’s equation (simple version) . . . . . . . 29 3.5 Conditional expectation . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.2 Properties of conditional expectations . . . . . . . . . 33 3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6.1 Geometric random variables . . . . . . . . . . . . . . . 35 3.6.2 Coupon collector . . . . . . . . . . . . . . . . . . . . . 36 3.6.3 Hoare’s FIND . . . . . . . . . . . . . . . . . . . . . . . 37 4 Basic probabilistic inequalities 39 4.1 Union bound (Boole’s inequality) . . . . . . . . . . . . . . . . 39 4.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.1.1 Balls in bins . . . . . . . . . . . . . . . . . . 40 4.1.1.2 Independent sets . . . . . . . . . . . . . . . . 40 4.2 Markov’s inequality . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1.1 The union bound . . . . . . . . . . . . . . . 41 4.2.1.2 Fair coins . . . . . . . . . . . . . . . . . . . . 42 4.2.1.3 Randomized QuickSort . . . . . . . . . . . . 42 4.2.1.4 Balls in bins . . . . . . . . . . . . . . . . . . 42 4.3 Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.1.1 Fair coins: lower bound . . . . . . . . . . . . 43 4.3.1.2 Fair coins: upper bound . . . . . . . . . . . . 43 4.3.1.3 Sifters . . . . . . . . . . . . . . . . . . . . . . 44 CONTENTS iii 5 Concentration bounds 46 5.1 Chebyshev’s inequality . . . . . . . . . . . . . . . . . . . . . . 46 5.1.1 Computing variance . . . . . . . . . . . . . . . . . . . 47 5.1.1.1 Alternative formula . . . . . . . . . . . . . . 47 5.1.1.2 Variance of a Bernoulli random variable . . . 48 5.1.1.3 Variance of a sum . . . . . . . . . . . . . . . 48 5.1.1.4 Variance of a geometric random variable . . 49 5.1.2 More examples . . . . . . . . . . . . . . . . . . . . . . 53 5.1.2.1 Flipping coins . . . . . . . . . . . . . . . . . 53 5.1.2.2 Balls in bins . . . . . . . . . . . . . . . . . . 53 5.1.2.3 Lazy select . . . . . . . . . . . . . . . . . . . 54 5.2 Chernoff bounds . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1 The classic Chernoff bound . . . . . . . . . . . . . . . 56 5.2.2 Easier variants . . . . . . . . . . . . . . . . . . . . . . 58 5.2.3 Lower bound version . . . . . . . . . . . . . . . . . . . 59 5.2.4 Two-sided version . . . . . . . . . . . . . . . . . . . . 59 5.2.5 Other tail bounds for the binomial distribution . . . . 60 5.2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.6.1 Flipping coins . . . . . . . . . . . . . . . . . 60 5.2.6.2 Balls in bins again . . . . . . . . . . . . . . . 60 5.2.6.3 Flipping coins, central behavior . . . . . . . 61 5.2.6.4 Permutation routing on a hypercube . . . . . 62 5.3 The Azuma-Hoeffding inequality . . . . . . . . . . . . . . . . 64 5.3.1 Hoeffding’s inequality . . . . . . . . . . . . . . . . . . 65 5.3.2 Azuma’s inequality . . . . . . . . . . . . . . . . . . . . 68 5.3.3 The method of bounded differences . . . . . . . . . . . 72 5.3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.4.1 Sprinkling points on a hypercube . . . . . . . 73 5.3.4.2 Chromatic number of a random graph . . . . 74 5.3.4.3 Balls in bins . . . . . . . . . . . . . . . . . . 74 5.3.4.4 Probabilistic recurrence relations . . . . . . . 74 5.3.4.5 Multi-armed bandits . . . . . . . . . . . . . . 76 The UCB1 algorithm . . . . . . . . . . . . . . . 77 Analysis of UCB1 . . . . . . . . . . . . . . . . . 78 5.4 Anti-concentration bounds . . . . . . . . . . . . . . . . . . . . 80 5.4.1 The Berry-Esseen theorem. . . . . . . . . . . . . . . . 81 5.4.2 The Littlewood-Offord problem . . . . . . . . . . . . . 81 CONTENTS iv 6 Randomized search trees 83 6.1 Binary search trees . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.1 Rebalancing and rotations . . . . . . . . . . . . . . . . 84 6.2 Random insertions . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3 Treaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.1 Assumption of an oblivious adversary . . . . . . . . . 88 6.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.2.1 Searches . . . . . . . . . . . . . . . . . . . . 89 6.3.2.2 Insertions and deletions . . . . . . . . . . . . 90 6.3.2.3 Other operations . . . . . . . . . . . . . . . . 91 6.4 Skip lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Hashing 94 7.1 Hash tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.2 Universal hash families . . . . . . . . . . . . . . . . . . . . . . 96 7.2.1 Linear congruential hashing . . . . . . . . . . . . . . . 97 7.2.2 Tabulation hashing . . . . . . . . . . . . . . . . . . . . 99 7.3 FKS hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.4 Cuckoo hashing . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.5 Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.6 Bloom filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . 105 7.6.2 False positives . . . . . . . . . . . . . . . . . . . . . . 105 7.6.3 Comparison to optimal space . . . . . . . . . . . . . . 108 7.6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . 108 7.6.5 Counting Bloom filters . . . . . . . . . . . . . . . . . . 109 7.6.6 Count-min sketches . . . . . . . . . . . . . . . . . . . 110 7.6.6.1 Initialization and updates . . . . . . . . . . . 110 7.6.6.2 Queries . . . . . . . . . . . . . . . . . . . . . 111 7.6.6.3 Finding heavy hitters . . . . . . . . . . . . . 113 7.7 Locality-sensitive hashing (not covered Fall 2014) . . . . . . . 114 7.7.1 Approximate nearest neighbor search . . . . . . . . . . 114 7.7.1.1 Locality-sensitive hash functions . . . . . . . 115 7.7.1.2 Constructing an (r ,r )-PLEB . . . . . . . . 116 1 2 7.7.1.3 Hash functions for Hamming distance . . . . 117 7.7.1.4 Hash functions for ‘ distance . . . . . . . . 119 1 CONTENTS v 8 Martingales and stopping times 121 8.1 Submartingales and supermartingales . . . . . . . . . . . . . 122 8.2 The optional stopping theorem . . . . . . . . . . . . . . . . . 123 8.3 Proof of the optional stopping theorem (optional) . . . . . . . 124 8.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.4.1 Random walks . . . . . . . . . . . . . . . . . . . . . . 126 8.4.2 Wald’s equation . . . . . . . . . . . . . . . . . . . . . 128 8.4.3 Waiting times for patterns . . . . . . . . . . . . . . . . 129 9 Markov chains 130 9.1 Basic definitions and properties . . . . . . . . . . . . . . . . . 130 9.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.1.2 Classification of states . . . . . . . . . . . . . . . . . . 133 9.1.3 Reachability. . . . . . . . . . . . . . . . . . . . . . . . 135 9.2 Stationary distributions . . . . . . . . . . . . . . . . . . . . . 135 9.2.1 The ergodic theorem . . . . . . . . . . . . . . . . . . . 136 9.2.1.1 Proof for finite chains . . . . . . . . . . . . . 137 9.3 Reversible chains . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.3.2 Time-reversed chains . . . . . . . . . . . . . . . . . . . 140 9.3.3 The Metropolis-Hastings algorithm . . . . . . . . . . . 141 9.4 The coupling method . . . . . . . . . . . . . . . . . . . . . . . 142 9.4.1 Total variation distance . . . . . . . . . . . . . . . . . 143 9.4.2 The coupling lemma . . . . . . . . . . . . . . . . . . . 143 9.4.3 Random walk on a cycle . . . . . . . . . . . . . . . . . 144 9.4.4 Random walk on a hypercube . . . . . . . . . . . . . . 146 9.4.5 Various shuffling algorithms . . . . . . . . . . . . . . . 146 9.4.5.1 Move-to-top . . . . . . . . . . . . . . . . . . 147 9.4.5.2 Random exchange of arbitrary cards . . . . . 147 9.4.5.3 Random exchange of adjacent cards . . . . . 148 9.4.5.4 Real-world shuffling . . . . . . . . . . . . . . 149 9.4.6 Path coupling . . . . . . . . . . . . . . . . . . . . . . . 149 9.4.6.1 Sampling graph colorings . . . . . . . . . . . 151 9.4.6.2 Sampling independent sets . . . . . . . . . . 153 9.4.6.3 Metropolis-Hastings and simulated annealing 157 Single peak . . . . . . . . . . . . . . . . . . . . 158 Single peak with very small amounts of noise . 158 9.5 Spectral methods for reversible chains . . . . . . . . . . . . . 159 9.5.1 Spectral properties of a reversible chain . . . . . . . . 159 9.5.2 Analysis of symmetric chains . . . . . . . . . . . . . . 160 CONTENTS vi 9.5.3 Analysis of asymmetric chains. . . . . . . . . . . . . . 162 9.5.4 Conductance . . . . . . . . . . . . . . . . . . . . . . . 163 9.5.5 Easy cases for conductance . . . . . . . . . . . . . . . 164 9.5.6 Edge expansion using canonical paths . . . . . . . . . 165 9.5.7 Congestion . . . . . . . . . . . . . . . . . . . . . . . . 166 9.5.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 168 9.5.8.1 Lazy random walk on a line. . . . . . . . . . 168 9.5.8.2 Random walk on a hypercube . . . . . . . . 168 9.5.8.3 Matchings in a graph . . . . . . . . . . . . . 169 9.5.8.4 Perfect matchings in dense bipartite graphs . 171 10 Approximate counting 173 10.1 Exact counting . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.2 Counting by sampling . . . . . . . . . . . . . . . . . . . . . . 174 10.3 Approximating #DNF . . . . . . . . . . . . . . . . . . . . . . 175 10.4 Approximating #KNAPSACK . . . . . . . . . . . . . . . . . 176 10.5 Approximating exponentially improbable events . . . . . . . . 178 10.5.1 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . 179 10.5.2 Other applications . . . . . . . . . . . . . . . . . . . . 180 11 The probabilistic method 181 11.1 Randomized constructions and existence proofs . . . . . . . . 181 11.1.1 Unique hats . . . . . . . . . . . . . . . . . . . . . . . . 182 11.1.2 Ramsey numbers . . . . . . . . . . . . . . . . . . . . . 183 11.1.3 Directed cycles in tournaments . . . . . . . . . . . . . 185 11.2 Approximation algorithms . . . . . . . . . . . . . . . . . . . . 185 11.2.1 MAX CUT . . . . . . . . . . . . . . . . . . . . . . . . 186 11.2.2 MAX SAT . . . . . . . . . . . . . . . . . . . . . . . . 187 11.3 The Lovász Local Lemma . . . . . . . . . . . . . . . . . . . . 190 11.3.1 General version . . . . . . . . . . . . . . . . . . . . . . 191 11.3.2 Symmetric version . . . . . . . . . . . . . . . . . . . . 191 11.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . 192 11.3.3.1 Graph coloring . . . . . . . . . . . . . . . . . 192 11.3.3.2 Satisfiability of k-CNF formulas . . . . . . . 192 11.3.4 Non-constructive proof . . . . . . . . . . . . . . . . . . 193 11.3.5 Constructive proof . . . . . . . . . . . . . . . . . . . . 196 12 Derandomization 200 12.1 Deterministic vs. randomized algorithms . . . . . . . . . . . . 201 12.2 Adleman’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 202 CONTENTS vii 12.3 Limited independence . . . . . . . . . . . . . . . . . . . . . . 203 12.3.1 MAX CUT . . . . . . . . . . . . . . . . . . . . . . . . 203 12.4 The method of conditional probabilities . . . . . . . . . . . . 204 12.4.1 A trivial example . . . . . . . . . . . . . . . . . . . . . 205 12.4.2 Deterministic construction of Ramsey graphs . . . . . 205 12.4.3 MAX CUT using conditional probabilities . . . . . . . 206 12.4.4 Set balancing . . . . . . . . . . . . . . . . . . . . . . . 207 13 Quantum computing 208 13.1 Random circuits . . . . . . . . . . . . . . . . . . . . . . . . . 208 13.2 Bra-ket notation . . . . . . . . . . . . . . . . . . . . . . . . . 211 13.2.1 States as kets . . . . . . . . . . . . . . . . . . . . . . . 211 13.2.2 Operators as sums of kets times bras . . . . . . . . . . 212 13.3 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . 212 13.3.1 Quantum operations . . . . . . . . . . . . . . . . . . . 214 13.3.2 Quantum implementations of classical operations . . . 215 13.3.3 Representing Boolean functions . . . . . . . . . . . . . 216 13.3.4 Practical issues (which we will ignore) . . . . . . . . . 217 13.3.5 Quantum computations . . . . . . . . . . . . . . . . . 217 13.4 Deutsch’s algorithm . . . . . . . . . . . . . . . . . . . . . . . 217 13.5 Grover’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 219 13.5.1 Initial superposition . . . . . . . . . . . . . . . . . . . 219 13.5.2 The Grover diffusion operator . . . . . . . . . . . . . . 219 13.5.3 Effect of the iteration . . . . . . . . . . . . . . . . . . 220 A Assignments 223 A.1 Assignment 1: due Wednesday, 2014-09-10, at 17:00 . . . . . 223 A.1.1 Bureaucratic part. . . . . . . . . . . . . . . . . . . . . 223 A.1.2 Two terrible data structures . . . . . . . . . . . . . . . 223 A.1.3 Parallel graph coloring . . . . . . . . . . . . . . . . . . 227 A.2 Assignment 2: due Wednesday, 2014-09-24, at 17:00 . . . . . 229 A.2.1 Load balancing . . . . . . . . . . . . . . . . . . . . . . 229 A.2.2 A missing hash function . . . . . . . . . . . . . . . . . 229 A.3 Assignment 3: due Wednesday, 2014-10-08, at 17:00 . . . . . 230 A.3.1 Tree contraction . . . . . . . . . . . . . . . . . . . . . 230 A.3.2 Part testing . . . . . . . . . . . . . . . . . . . . . . . . 233 Using McDiarmid’s inequality and some clev- erness . . . . . . . . . . . . . . . . . 234 A.4 Assignment 4: due Wednesday, 2014-10-29, at 17:00 . . . . . 235 A.4.1 A doubling strategy . . . . . . . . . . . . . . . . . . . 235 CONTENTS viii A.4.2 Hash treaps . . . . . . . . . . . . . . . . . . . . . . . . 236 A.5 Assignment 5: due Wednesday, 2014-11-12, at 17:00 . . . . . 237 A.5.1 Agreement on a ring . . . . . . . . . . . . . . . . . . . 237 A.5.2 Shuffling a two-dimensional array . . . . . . . . . . . . 240 A.6 Assignment 6: due Wednesday, 2014-12-03, at 17:00 . . . . . 241 A.6.1 Sampling colorings on a cycle . . . . . . . . . . . . . . 241 A.6.2 A hedging problem . . . . . . . . . . . . . . . . . . . . 242 A.7 Final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 A.7.1 Double records (20 points) . . . . . . . . . . . . . . . 244 A.7.2 Hipster graphs (20 points) . . . . . . . . . . . . . . . . 245 Using the method of conditional probabilities . 245 Using hill climbing . . . . . . . . . . . . . . . . 246 A.7.3 Storage allocation (20 points) . . . . . . . . . . . . . . 246 A.7.4 Fault detectors in a grid (20 points) . . . . . . . . . . 247 B Sample assignments from Spring 2013 250 B.1 Assignment 1: due Wednesday, 2013-01-30, at 17:00 . . . . . 250 B.1.1 Bureaucratic part. . . . . . . . . . . . . . . . . . . . . 250 B.1.2 Balls in bins. . . . . . . . . . . . . . . . . . . . . . . . 250 B.1.3 A labeled graph . . . . . . . . . . . . . . . . . . . . . 251 B.1.4 Negative progress . . . . . . . . . . . . . . . . . . . . . 251 B.2 Assignment 2: due Thursday, 2013-02-14, at 17:00 . . . . . . 253 B.2.1 A local load-balancing algorithm . . . . . . . . . . . . 253 B.2.2 An assignment problem . . . . . . . . . . . . . . . . . 255 B.2.3 Detecting excessive collusion . . . . . . . . . . . . . . 255 B.3 Assignment 3: due Wednesday, 2013-02-27, at 17:00 . . . . . 257 B.3.1 Going bowling . . . . . . . . . . . . . . . . . . . . . . 257 B.3.2 Unbalanced treaps . . . . . . . . . . . . . . . . . . . . 258 B.3.3 Random radix trees . . . . . . . . . . . . . . . . . . . 260 B.4 Assignment 4: due Wednesday, 2013-03-27, at 17:00 . . . . . 261 B.4.1 Flajolet-Martin sketches with deletion . . . . . . . . . 261 B.4.2 An adaptive hash table . . . . . . . . . . . . . . . . . 263 B.4.3 An odd locality-sensitive hash function . . . . . . . . . 265 B.5 Assignment 5: due Friday, 2013-04-12, at 17:00 . . . . . . . . 266 B.5.1 Choosing a random direction . . . . . . . . . . . . . . 266 B.5.2 Random walk on a tree . . . . . . . . . . . . . . . . . 267 B.5.3 Sampling from a tree . . . . . . . . . . . . . . . . . . . 268 B.6 Assignment 6: due Friday, 2013-04-26, at 17:00 . . . . . . . . 270 B.6.1 Increasing subsequences . . . . . . . . . . . . . . . . . 270 B.6.2 Futile word searches . . . . . . . . . . . . . . . . . . . 271 CONTENTS ix B.6.3 Balance of power . . . . . . . . . . . . . . . . . . . . . 272 B.7 Final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 B.7.1 Dominating sets . . . . . . . . . . . . . . . . . . . . . 273 B.7.2 Tricolor triangles . . . . . . . . . . . . . . . . . . . . . 274 B.7.3 The n rooks problem . . . . . . . . . . . . . . . . . . . 275 B.7.4 Pursuing an invisible target on a ring . . . . . . . . . 275 C Sample assignments from Spring 2011 278 C.1 Assignment 1: due Wednesday, 2011-01-26, at 17:00 . . . . . 278 C.1.1 Bureaucratic part. . . . . . . . . . . . . . . . . . . . . 278 C.1.2 Rolling a die . . . . . . . . . . . . . . . . . . . . . . . 278 C.1.3 Rolling many dice . . . . . . . . . . . . . . . . . . . . 280 C.1.4 All must have candy . . . . . . . . . . . . . . . . . . . 280 C.2 Assignment 2: due Wednesday, 2011-02-09, at 17:00 . . . . . 281 C.2.1 Randomized dominating set . . . . . . . . . . . . . . . 281 C.2.2 Chernoff bounds with variable probabilities . . . . . . 283 C.2.3 Long runs . . . . . . . . . . . . . . . . . . . . . . . . . 284 C.3 Assignment 3: due Wednesday, 2011-02-23, at 17:00 . . . . . 286 C.3.1 Longest common subsequence . . . . . . . . . . . . . . 286 C.3.2 A strange error-correcting code . . . . . . . . . . . . . 288 C.3.3 A multiway cut . . . . . . . . . . . . . . . . . . . . . . 289 C.4 Assignment 4: due Wednesday, 2011-03-23, at 17:00 . . . . . 290 C.4.1 Sometimes successful betting strategies are possible . 290 C.4.2 Random walk with reset . . . . . . . . . . . . . . . . . 292 C.4.3 Yet another shuffling algorithm . . . . . . . . . . . . . 294 C.5 Assignment 5: due Thursday, 2011-04-07, at 23:59 . . . . . . 295 C.5.1 A reversible chain . . . . . . . . . . . . . . . . . . . . 295 C.5.2 Toggling bits . . . . . . . . . . . . . . . . . . . . . . . 296 C.5.3 Spanning trees . . . . . . . . . . . . . . . . . . . . . . 298 C.6 Assignment 6: due Monday, 2011-04-25, at 17:00 . . . . . . . 299 C.6.1 Sparse satisfying assignments to DNFs . . . . . . . . . 299 C.6.2 Detecting duplicates . . . . . . . . . . . . . . . . . . . 300 C.6.3 Balanced Bloom filters . . . . . . . . . . . . . . . . . . 301 C.7 Final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 C.7.1 Leader election . . . . . . . . . . . . . . . . . . . . . . 304 C.7.2 Two-coloring an even cycle . . . . . . . . . . . . . . . 305 C.7.3 Finding the maximum . . . . . . . . . . . . . . . . . . 306 C.7.4 Random graph coloring . . . . . . . . . . . . . . . . . 307

Description:
Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms. Cambridge University Press APL, appears in later languages like C where the convention is that true predicates eval- uate to 1 and false (13.5.3). Aficionados of computer graphics, robotics, or just matrix algebra in general may
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.