ebook img

NOTES AND SOLUTIONS TO THERMAL PHYSICS BY CHARLES KITTLE AND HERBERT KROEMER PDF

40 Pages·00.568 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NOTES AND SOLUTIONS TO THERMAL PHYSICS BY CHARLES KITTLE AND HERBERT KROEMER

NOTES AND SOLUTIONS TO THERMAL PHYSICS BY CHARLES KITTLE AND HERBERT KROEMER ERNESTYEUNG-LOSANGELES ABSTRACT. ThesearenotesandsolutionstoKittleandKroemer’sThermalPhysics. Thesolutionsare(almost)complete: Iwill continuouslyaddtosubsections,beforetheproblemsineachchapter,mynotesthatIwritedownasIread(andcontinuouslyreread). IamattemptingamanifoldformulationoftheequilibriumstatesinthestyleofSchutz’sGeometricalMethodsofMathematical PhysicsandwillpointouthowitappliesdirectlytoThermalPhysics. Otherusefulreferencesalongthisavenueofinvestigationis providedattheverybottominthereferences. Anyandallfeedback,includingnegativefeedback,iswelcomedandyoucanreachmebyemailormywordpress.comblog. Youarefreetocopy,edit,paste,andaddontothepdfandLaTeXfilesasyoulikeinthespiritofopen-sourcesoftware. Youare responsibleadultstousethesenotesandsolutionsasgovernedbytheCaltechHonorCode:“NomemberoftheCaltechcommunity shalltakeunfairadvantageofanyothermemberoftheCaltechcommunity”andfollowtheHonorCodeinspirit. SECOND EDITION. Thermal Physics. Charles Kittel. Herbert Kroemer. W. H. Freeman and Company. New York. QC311.5.K521980536’.7ISBN0-7167-1088-9 1. STATESOFAMODELSYSTEM 2. ENTROPYANDTEMPERATURE Thermal Equilibrium. EY : 20150821 Based on considering the physical setup of two systems that can only exchange energybetweeneachother,thatareinthermalcontact,thisisaderivationoftemperature. U =U +U isconstanttotalenergyof2systems1,2inthermalcontact 1 2 multiplicityg(N,U)ofcombinedsystemis (cid:88) g(N,U)= g (N ,U )g (N ,U −U ) 1 1 1 2 2 1 U1≤U The“differential”ofg(N,U)is (cid:18) (cid:19) (cid:18) (cid:19) ∂g ∂g dg = 1 g dU +g 2 dU =0 ∂U 2 1 ∂U 2 1 N1 2 N2 EY:20150821Thisstepcanbemademathematicallysensiblebyconsideringtheexteriorderivativedofg ∈C∞(Σ),where Σ is the manifold of states of the system, with local coordinates N,U, where U happens to be a global coordinate. Then, consideracurveinΣs.t. ithasnocomponentin ∂ , ∂ ,andthiscurveisa“nullcurve”sothatthevectorfieldX ∈X(Σ) ∂N ∂N1 generatedbythiscurveiss.t. dg(X)=0. With−dU =dU , 1 2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 1 ∂g 1 ∂g ∂lng ∂lng 1 = 2 =⇒ 1 = 2 g ∂U g ∂U ∂U ∂U 1 1 N1 2 2 N2 1 N1 2 N2 Define σ(N,U):=lng(N,U) Then (cid:18) (cid:19) (cid:18) (cid:19) ∂σ ∂σ =⇒ 1 = 2 ∂U ∂U 1 N1 2 N2 Date:Fall2008. IamcrowdfundingonTilt/Opentosupportbasicsciencesresearch: ernestyalumni.tilt.com. Ifyoufindthispdf(andLaTeXfile)valuable and/orhelpful,pleaseconsiderdonatingtomycrowdfundingcampaign. ThereisalsoaPaypalbuttonthereandit’seasytodonatewithPayPal,asIhad recentlytotheMemorialFundforthecreatorofPython’smatplotlib. Butthemostimportantthingisforanyone,anywhere,andatanytimebeableto learnthermodynamicsanduseitforresearchandapplicationandsoIwanttokeepthisasopenlypublicaspossible,inthespiritofopen-sourcesoftware. Tilt/Openisanopen-sourcecrowdfundingplatformthatisuniqueinthatitoffersopen-sourcetoolsforbuildingacrowdfundingcampaign. Tilt/Openhas beenusedbyMicrosoftandDicksSportingGoodstocrowdfundtheirrespectivecharitycauses. 1 Temperature. T =T -temperaturesof2systemsinthermalequilibriumareequal. 1 2 T “mustbeafunctionof(cid:0)∂σ(cid:1) [?]. ∂U N (cid:18) (cid:19) 1 ∂σ =⇒ =k T B ∂U N Experimentally,k =1.381×10−23J/K =1.381×10−16 ergs/K. B Now (cid:18) (cid:19) 1 ∂σ = τ =k T τ ∂U B N Problems. Solution1. Entropyandtemperature. (a) Recallthat 1 ≡(cid:0)∂σ(cid:1) andσ(N,U)≡logg(N,U). Giveng(U)=CU3N/2, τ ∂U N,V 3N σ(N,U)=logCU3N/2 =logC+ logU 2 ∂σ 3N 1 1 3N = = =⇒ U = τ ∂U 2 U τ 2 (cid:16) (cid:17) (b) ∂2σ <0? ∂U2 N (cid:18)∂2σ(cid:19) 3N (cid:18) 1 (cid:19) =− <0 ∂U2 2 U2 N Solution2. Paramagnetism. U U(s)=U (s )+U (s )=−2mB(s +s )=−2mBsors= 1 1 2 2 1 2 −2mB i.e. potentialenergyU(s)=−2s·mB. For|s|(cid:28)N,then g(N,s)(cid:39)g(N,0)exp(cid:0)−2s2/N(cid:1)=g(N,0)exp(cid:18) −U2 (cid:19) 2(mB)2N U2 1 σ(N,U)=lng(N,U)=σ − whereσ =lng(N,0) 0 2m2B2N 0 (cid:18) (cid:19) 1 ∂σ −U 1 = = τ ∂U m2B2N N WhatisthethermalequilibriumvalueofthisN-spinsystemoffractionalmagnetization? IfU denotes(cid:104)U(cid:105),thermalaverage energy,wealsogetthethermalaveragespinexcess. (cid:104)U(cid:105)=(cid:104)−2mBs(cid:105)=−2mB(cid:104)s(cid:105) m2B2N mBN =⇒τ = = −U 2(cid:104)s(cid:105) Solution3. Quantumharmonicoscillator. (a) ResultfromCh. 1: g(N,n)= (N+n−1)!. n!(N−1)! LetN −1→N =⇒g(N +1,n)= (N+n)!. n!N! (N +n)! σ(N +1,n)≡lng(N +1,n)=ln =ln(N +n)!−ln(n!)−ln(N!) n!N! ≈(N +n)ln(N +n)−N −n−nlnn+n−NlnN +N = (N +n)ln(N +n)−nlnn−NlnN (b) LetU denotetotalenergyn(cid:126)ωofoscillators. U =n(cid:126)ωorn= U (cid:126)ω U U U U σ(N,U)=(N + )ln(N + )− ln −NlnN ω ω ω ω Atτ, 1 =(cid:0)∂σ(cid:1) . τ ∂U N (cid:18) (cid:19) 1 1 U 1 U 1 Nω Nω = ln(N + )− ln = ln +1 or U = τ ω ω ω ω ω U exp(ω/τ)−1 2 Solution4. Themeaningof“never.” Suppose1010monkeys. (a) Hamlet represents one specific ordering of 1015 with 44 possibilities for each character. The probability of hitting upon Hamlet from a given, random sequence is (cid:0) 1 (cid:1)100000 = 1 . Given that log 44 = 1.64345, then 44 44100000 10 101.64345 =44or10−1.64345 =44−1sothen (cid:18) 1 (cid:19)100000 =10−164345 44 (b) (cid:18) (cid:19) (cid:18) (cid:19) 10keys 10keys (ageofuniverse)· =1018s =1019keys second second (cid:18) (cid:19) 1hamlet 1019keys·1010monkeys=1029keystypedout =1024possible“Hamlets” 105characters Frompart(a),theprobabilitythatagiven,randomsequenceisHamlet,10−164345 (1029characters)(10−164345)=10−164316 Note,Ithinkthattheprobabilityshouldbe(1029characters)(cid:0) 1Hamlet (cid:1)(10−164345)=10−164321 105characters Sinceweareconsideringthenumberof“Hamlet”,105charactersequences. 3. BOLTZMANNDISTRIBUTIONANDHELMHOLTZFREEENERGY cf. Example: Energy and heat capacity of a two state system, pp. 62 of Kittel and Kroemer [1]. Kittel and Kroemer introducestheheatcapacityveryearly,specifictothisexample. Definition1. heatcapacityC atconstantvolumeisdefinedas V (cid:18) (cid:19) ∂σ (1) C :=τ V ∂τ V Recallthethermodynamicidentity(whichisintroducedmanyequationslater): dU =τdσ−pdV ∈Ω1(Σ) whereΣisamanifoldofstatesofallsystems. ConsiderlocalcoordinatesofΣ,(σ,V). Considercurve c:R→Σs.t. cgeneratesavectorfieldc˙=σ˙ ∂ i.e. nocomponent ∂σ c(τ)∈Σ intheV direction. Noticetheprescientchoiceofparameterτ. NowforinternalenergyU ∈C∞(Σ),takingtheexteriorderivativedresultsin ∂U ∂U dU = dσ+ dV ∂σ ∂V ThenapplyingdU ontovectorfieldσ˙ ∂ , ∂σ (cid:18) (cid:19) ∂ ∂U dU σ˙ = σ˙ =σ˙τ +0 ∂σ ∂σ Now, (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) ∂U ∂σ ∂U ∂σ = = τ ∂σ ∂τ ∂τ ∂τ V V V V Hence, (cid:18) (cid:19) (cid:18) (cid:19) ∂σ ∂U (2) C :=τ = V ∂τ ∂τ V V EY:20150825Whydoweneeddifferentialgeometry? It’sbecauseIalwayswonderedwhyyoucoulddothis: (cid:18) (cid:19) (cid:18) (cid:19) ∂σ ∂U ? ? C :=τ = withτdσ =dU =⇒τ∂σ =∂U V ∂τ ∂τ V V andtalkof“differentials.” Definition: Reversibleprocess. EY:20150824Mathematically,1-formsareexact. 3 Pressure. Considercoordinates(σ,V)∈ΣofmanifoldofthermodynamicstatesΣ. Imagineareversiblecompressionofacubesystem(soimaginedV <0;cube’svolumegetsmaller). σ constant,i.e. dσ = 0(onthiscurveinΣ)becauseasparticlesincubegetssqueezed,lesspositionsparticlescouldsitin, buttheygetmorekineticenergy,moreenergetic(moremomentumsquared). NowU =U(σ,V)∈C∞(Σ). =⇒dU =(cid:0)∂U(cid:1) dσ+(cid:0)∂U(cid:1) dV ∂σ V ∂V σ Again,imagineacurvec:R→Σ,connecting1state(σ,V)∈Σtoanotherstate(σ,V +dV)∈Σs.t. c˙=V˙ ∂ . ∂V (cid:18) (cid:19) ∂U =⇒dU(c˙)= V˙ ∂V σ Introduce1-formW ∈Ω1(Σ)ofworkdoneonthecubesystemfromsomeexternalagent W =−pdV soW >0whendV <0. Then (cid:18) (cid:19) ∂U W(c˙)=−pV˙ =dU(c˙)= V˙ ∂V σ (cid:18) (cid:19) ∂U (3) =⇒ p=− ∂V σ Consider another set of coordinates (U,V) ∈ Σ for manifold Σ. Now entropy σ is a function of U,V, as σ = σ(U,V) ∈ C∞(M),sothat dσ =(cid:0)∂σ(cid:1) dU +(cid:0)∂σ(cid:1) dV ∂U V ∂V U Considercurvec = (U,V) ∈ Σ. Thenc˙ = U˙ ∂ +V˙ ∂ . Forthiscurvec,σ isconstant,meaningdσ(c˙) = 0(it’sa“null ∂U ∂V curve”ofdσ (cid:18) (cid:19) (cid:18) (cid:19) ∂σ ∂σ dσ(c˙)=0= U˙ + V˙ ∂U ∂V V U Nowdefine Definition2. (cid:18) (cid:19) 1 ∂σ (4) := τ ∂U V Sothenwehave 1U˙ +(cid:0)∂σ(cid:1) V˙ =0. Fortheparameterofcurvec,choosetheparametertobeV,knowingthatσisconstant τ ∂V U onthiscurve,orthermodynamicprocess. Thus (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 1 ∂U ∂σ −p ∂σ =− =⇒ =− or τ ∂V ∂V τ ∂V σ U U (cid:18) (cid:19) ∂σ (5) p=τ ∂V U ThermodynamicIdentity. Letσ =σ(U,V)∈C∞(Σ). Then dσ =(cid:0)∂σ(cid:1) dU +(cid:0)∂σ(cid:1) dV ∈Ω1(Σ). ∂U V ∂V U Nowrecallthequantitieswe’verecentlyused: 1 :=(cid:0)∂σ(cid:1) (thisisadefinition)and p =(cid:0)∂σ(cid:1) (itcomesfromthephysics, τ ∂U V τ ∂V U ofdoingworkonthesystem,bysomeexternalagent). Thenthethermodynamicidentityisobtained: Theorem1. (6) τdσ =dU +pdV IdealGas: AFirstLook. 4 Oneatominabox. oneatomofmassM incubicalboxofvolumeV =L3 −(cid:126)2∇2ψ =(cid:15)ψ p= (cid:126)∇ p2ψ =(cid:15)ψ 2M i =⇒ψ(x)=Asin(cid:0)nxπx(cid:1)sin(cid:0)nyπy(cid:1)sin(cid:0)nzπz(cid:1) L L L (cid:15) = (cid:126)2 (cid:0)π(cid:1)2(n2 +n2 +n2) n 2M L x y z ThenthepartitionfunctionZ is 1 Z =(cid:88)exp(cid:18)−(cid:15)n(cid:19)= (cid:88) exp(cid:18) −(cid:126)2 (cid:16)π(cid:17)2(n2 +n2 +n2)(cid:19) 1 τ 2Mτ L x y z n (nx,ny,nz) Let (cid:126)2π2 (cid:126)π α2 = orα= 2ML2τ (2Mτ)1/2V2/d Then (cid:90) ∞ (cid:90) ∞ (cid:90) ∞ (cid:18)(cid:90) ∞ (cid:19)3 (cid:18)1(cid:19)3(cid:18)π1/2(cid:19)3 (cid:18)π1/2(cid:19)3 Z = dn dn dn exp[−α2(n2 +n2 +n2)]= dn exp(−α2n2) = = 1 x y z x y z x x α 2 2α 0 0 0 0 (cid:16) (cid:17)d Ingeneral,Z = π1/2 1 2α Now (cid:32) (cid:33)d π1/2V1/d V n Z = = =n V = Q 1 2 (cid:126)π (cid:0)2(cid:126)π(cid:1)d/2 Q n (2Mτ)1/2 Mτ intermsofconcentrationn=1/V. n :=(cid:0) Mτ (cid:1)d/2isthequantumconcentration. Q 2π(cid:126)2 Problems. Solution1. Freeenergyofatwostatesystem. (a) Z =1+e−(cid:15)/τ F =−τlnZ =−τln(1+e−(cid:15)/τ) (b) ∂(F/τ) (cid:15)e−(cid:15)/τ U =−τ2 = ∂τ 1+e−(cid:15)/τ ∂F (cid:15)e−(cid:15)/τ σ =− =ln(1+e−(cid:15)/τ)+ τ ∂τ (1+e−(cid:15)/τ) Solution2. Magneticsusceptibility (a) RemembertocalculatethemultiplicityintheN-spinsystem(it’snotenoughtosumupexp(−(cid:15) /τ)factors). s M =2sm U =−MB =−2smB N =N +N s + − 2s=N −N =N −(N −N )=2N −N + − + + + N/2 (cid:18) (cid:19) (cid:18) (cid:19) N/2 (cid:18) (cid:19) N (cid:18) (cid:18) (cid:19)(cid:19) (cid:88) N 2smB (cid:88) N! 2mBs (cid:88) N! 2mB N Z = exp = exp = exp s− = N τ (cid:0)N +s(cid:1)!(cid:0)N −s(cid:1)! τ s!(N −s)! τ 2 s=−N/2 + s=−N/2 2 2 s=0 (cid:18) (cid:19) mB =e−NmτB(1+e2mτB)N =2NcoshN τ whereitwascrucialtouse(1+x)N = (cid:80)N (cid:0)N(cid:1)xj. Note, inchangingthesumindex, sinceN islarge, wecan j=1 j neglectdroppingthes=0term. (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) mB mB −m ∂ Z =2N(N)(coshN−1 )sinh τ τ τ τ2 (cid:18) (cid:19) ∂ mB M =−τ2 lnZ =Nmtanh ∂τ τ ∂M Nm2 (cid:18)mB(cid:19) χ= = sech2 ∂B τ τ 5 (b) (cid:18) (cid:18) (cid:19) (cid:19) (cid:18) (cid:19) mB mB F =−τlnZ =−τln (2cosh )N =−Nτln(2cosh ) τ τ Forx≡ M =tanh(cid:0)mB(cid:1). Now1−tanh2y =sech2y. F =−Nτln(cid:16)√ 2 (cid:17)= −Nτ ln(cid:16) 4 (cid:17). nm τ 1−x2 2 1−x2 (c) For mB (cid:28)1,cosh2(cid:0)mB(cid:1)→1. χ= m2N τ τ τ Solution3. Freeenergyofaharmonicoscillator (a) Z =(cid:88)∞ exp(cid:18)−s(cid:126)ω0(cid:19)= 1 =(1−e−(cid:126)ω0/τ)−1 τ 1−e−(cid:126)ω0/τ s=0 (cid:18)(cid:126)ω (cid:19) (cid:126)ω F =−τlnZ =τln(1−e−(cid:126)ω0/τ)(cid:39)τln 0 for1(cid:29) 0 τ τ (b) σ =−∂∂Fτ =−{ln(1−e−(cid:126)ω0/τ)+ 1−e−τ(cid:126)ω0/τ(−e−(cid:126)ω0/τ)(cid:18)(cid:126)τω0(cid:19)}= e(cid:126)−ω(cid:126)0/ωτ0/−τ1 −ln(1−e−(cid:126)ωτ0) Solution4. Energyfluctuations. (cid:88) Z = e−(cid:15)sβ 1 s τ =β ∂βZ =(cid:88)−(cid:15)e−(cid:15)sβ U = (cid:80)s(cid:15)se−(cid:15)s/τ =−∂ lnZ ∂ ∂β ∂ 1 ∂ Z β = =− s ∂τ ∂τ ∂β τ2∂β ∂2Z =(cid:88)(cid:15)2e−(cid:15)sβ β s s ∂U =−β2 ∂ U =β2(cid:18)∂ (cid:18)∂βZ(cid:19)(cid:19)=β2(cid:32)(∂β2Z)Z−(∂βZ)2(cid:33)=β2(cid:32)∂β2Z −(cid:18)∂βZ(cid:19)2(cid:33)= ∂τ ∂β β Z Z2 Z Z ∂U =⇒τ2 =(cid:104)(cid:15)2(cid:105)−(cid:104)(cid:15)(cid:105)2 ∂τ Solution5. Overhausereffect. SystemS inenergyeigenstateEn =n(cid:15). P(E)=(1)g (E) R Note∆UR =(α−1)(cid:15). ∆US =(cid:15). ddU(cid:15)S + dUd(cid:15)R =1+(α−1)=α= dUdt(cid:15)ot inaspecificenergyeigenstate;gS(n(cid:15))=1 Whileg (U )=multiplicityofreservoirRwithU energy. R R R Now ∂σ 1 R = ∂E τ s and g (U )=exp(σ (U )) R R R R If(cid:15)dUd(cid:15)R =(α−1)(cid:15)=∆URsmallcomparedtoUR. dU U (E =(n+1)(cid:15))=U (n(cid:15))+ R(cid:15)=U (n(cid:15))+(α−1)(cid:15) R S R d(cid:15) R 1 σ (U ((n+1)(cid:15)))(cid:39)σ (U (n(cid:15)))+ (α−1)(cid:15) R R R R τ P(E =(n+1)(cid:15)) exp(σ (U (n(cid:15)))+ 1(α−1)(cid:15)) (cid:16) (cid:15) (cid:17) S = R R τ = exp − (1−α) P(E =n(cid:15)) exp(σ (U (n(cid:15)))) τ S R R Solution6. Rotationofdiatomicmolecules. (a) (cid:15)(j)=j(j+1)(cid:15) . g(j)=2j+1 0 RememberthatZ isasumoverallstates,notoveralllevels. Z =(cid:88)∞ (2j+1)e−j(j+1)(cid:15)0/τ =(cid:88)∞ d(e−(j2+j)(cid:15)0/τ)(cid:18)−τ(cid:19)= −τ (cid:88)∞ d (cid:16)e−(cid:15)0/τ(cid:17)j2+j dj (cid:15) (cid:15) dj 0 0 j=0 j=0 j=0 (b) For1(cid:29) (cid:15)0 τ τ (cid:90) ∞ d (cid:16) (cid:17)x2+x τ (cid:16) (cid:17) τ Z (τ)=− e−(cid:15)0/τ dx=− (e−(cid:15)0/τ)x2+x−(e−(cid:15)0/τ)0 = R (cid:15) dx (cid:15) (cid:15) 0 0 0 0 6 (c) For τ (cid:28)1 (cid:15)0 Z (τ)=1+3e−2(cid:15)0/τ R (d) (cid:18) (cid:19) ∂lnZ (cid:15) τ U =τ2 for1(cid:29) 0 U =τ2∂ ln =τ ∂τ τ τ (cid:15) 0 for τ (cid:28)1, U =τ2(cid:18) 1 (cid:19)(3e−2(cid:15)0/τ)(cid:18)2(cid:15)0(cid:19)= 6(cid:15)0e−2(cid:15)0/τ (cid:15)0 1+3e−2(cid:15)0/τ τ2 1+3e−2(cid:15)0/τ (cid:18) (cid:19) ∂U (cid:15) C = =1when1(cid:29) 0 V ∂τ τ V (cid:32)e−2(cid:15)0/τ(cid:0)2(cid:15)0(cid:1)(1+3e−2(cid:15)0/τ)−(3e−2(cid:15)0/τ)(cid:0)2(cid:15)0(cid:1)e−2(cid:15)0/τ(cid:33) e−2(cid:15)0/τ (cid:18) 1 (cid:19) C =6(cid:15) τ2 τ2 =12(cid:15)2 V 0 (1+3e−2(cid:15)0/τ)2 0 τ2 (1+3e−2(cid:15)0/τ)2 (cid:18)e−2(cid:15)0/τ(cid:19) Forverysmall τ (cid:28)1, C ≈12 (cid:15)0 V (τ/(cid:15)0)2 (e) Seesketch. Solution7. Zipperproblem. (a) N links. (cid:15) =0closed,(cid:15)open. s (cid:88)N 1−e−(N+1)(cid:15)/τ Z = exp(−s(cid:15)/τ)= 1−e−(cid:15)/τ s=0 (b) 1(cid:29) τ. (cid:15) Z =(cid:80)N exp(−s(cid:15)B) s=0 −1 −1(cid:80)N (−s(cid:15))e−s(cid:15)β ∂ lnZ = s=0 =(cid:104)s(cid:105)= (cid:15) β (cid:15) Z (cid:18) 1−e−(cid:15)/τ (cid:19)(cid:18)−e−(N+1)(cid:15)/τ(−(N +1)(cid:15))(1−e−(cid:15)/τ)−(−e−(cid:15)/τ)(−(cid:15))(1−e−(N+1)/(cid:15)/τ)(cid:19) = = 1−e−(N+1)(cid:15)/τ (1−e−(cid:15)/τ)2 (cid:15)e−(cid:15)/τ(e−N(cid:15)β(N +1)(1−e−(cid:15)β)−(1−e−(N+1)(cid:15)/τ)) (cid:15)e−(cid:15)/τ(e−N(cid:15)β(N +1)(1−e−(cid:15)β)−1) = (cid:39) (1−e−(N+1)(cid:15)/τ)(1−e−(cid:15)/τ) (1−e−(cid:15)β) Thisstilldoesnotgivethedesiredapproximation. Considerthefollowing: 1−e−(N+1)(cid:15)β e(cid:15)β −e−N(cid:15)β Z = = 1−e−(cid:15)β e(cid:15)β −1 (cid:15)((e(cid:15)β +Nβe−N(cid:15)β)(e(cid:15)β −1)−(e(cid:15)β)(e(cid:15)β −e−N(cid:15)β)) (cid:15)(e(cid:15)β(e(cid:15)β +Ne−N(cid:15)β −e(cid:15)β +e−N(cid:15)β)−e(cid:15)β −Ne−N(cid:15)β) ∂ Z = = β (e(cid:15)β −1)2 (e(cid:15)β −1)2 ∂ Z (cid:15)(e(cid:15)β(N +1)e−N(cid:15)β −e(cid:15)β −Ne−N(cid:15)β) (cid:15)(e(cid:15)β(N +1)e−N(cid:15)β −e+(cid:15)β −Ne−N(cid:15)β) β = (cid:39) = Z (e(cid:15)β −1)(e(cid:15)β −e−N(cid:15)β) e2(cid:15)β (cid:15)(Ne−(N−1)(cid:15)β +e−(N−1)(cid:15)β −e(cid:15)β −Ne−N(cid:15)β) (cid:15)((N +1)e−(N−1)(cid:15)β −(e(cid:15)β +Ne−N(cid:15)β)) = = = e2(cid:15)β e2(cid:15)β (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:15) (Ne+N1(cid:15))βe(cid:15)β − eNn(cid:15)β −e(cid:15)β (cid:15) (N+e1N)e(cid:15)(cid:15)ββ−N −e(cid:15)β (cid:15) Ne(cid:15)β+ee(cid:15)Nβ−(cid:15)βe(cid:15)βeN(cid:15)β (cid:18)N −eN(cid:15)β(cid:19) = = = =(cid:15) (cid:39) e2(cid:15)β e2(cid:15)β e2(cid:15)β eN(cid:15)βe(cid:15)β (cid:15)(−eN(cid:15)β) (cid:39) =−(cid:15)e−(cid:15)β eN(cid:15)βe(cid:15)β =⇒ (cid:104)s(cid:105)=e−(cid:15)/τ Solution8. Quantumconcentration. NowΨ(x,y,z)=Asin(cid:0)nxπx(cid:1)sin(cid:0)nyπy(cid:1)sin(cid:0)nzπz(cid:1). p= 1∇, p2 =− 1 ∇2. L L L i 2m 2m Groundorbital: n =n =n =1. x y z 3 (cid:16)π(cid:17)2 3 (cid:16)π(cid:17)2 T = (cid:104)ψ |ψ (cid:105)= 2m L 0 0 2m L 7 where(cid:104)ψ |ψ (cid:105)=1,ψnormalized. Itwasnormalizedinthisway: 0 0 (cid:90) ∞sin2(cid:16)nxLπx(cid:17)dnx =(cid:90) L 1−cos2(cid:0)2nLxπx(cid:1)dnx = nx−sin(cid:0)2n2Lxπx(cid:1)(cid:16)2nLxπ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)L = L2 0 0 (cid:12) 0 (cid:18)L(cid:19)3 A2L3 8 (cid:104)ψ|ψ(cid:105)=A2 = =1orA2 = 2 8 L3 Recallthatn =(cid:0) mτ (cid:1)3/2. Q 2π(cid:126)2 Consider the condition that there will be a concentration for which the zero-point quantum kinetic energy is equal to the temperatureτ: 3 π2 3 2mτ (cid:18) 2mτ (cid:19)3/2 =⇒ = π2n2/3 =τ orn2/3 = orn= 2mL2 2m 3π2(cid:126)2 3π2(cid:126)2 (cid:18) 4 (cid:19) mτ (cid:18) 4 (cid:19)3/2 =⇒ n=( )3/2 = n 3π 2π(cid:126)2 3π Q Solution9. Partitionfunctionfortwosystems. (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) Z(1+2)= (cid:88) g(E )exp −E1+2 = (cid:88) g(E +E )exp −E1 exp −E2 = 1+2 τ 1 2 τ τ E1+2 E1+E2=E0 (cid:18) (cid:19) (cid:18) (cid:19) =(cid:88)(cid:88)g(E )g(E )exp −E1 exp −E2 =Z(1)Z(2) 1 2 τ τ E1 E2 sincesystemsareindependent. Solution10. Elasticityofpolymers. (a) Consider2s=N −N ; N =N +N , 2s=N −(N −N )=2N −N. N = 2s+N. + − + − + + + + 2 For2s,consider−2s=N −(N −N )=2N −N. N = −2s+N. + + + + 2 2N! =⇒ g(N,−s)+g(N,s)= (cid:0)N +s(cid:1)!(cid:0)N −s(cid:1)! 2 2 (b) |s|(cid:28)N   (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) l −l 2(N!) σ(l)=ln g N, +g N, =ln(cid:16) (cid:17) (cid:16) (cid:17) = 2ρ 2ρ N + l ! N + −l ! 2 2ρ 2 2ρ (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) N L N l N l N l N l N l =ln(2N!)={ + ln + − + + − ln − − − } 2 2ρ 2 2ρ 2 2ρ 2 2ρ 2 2ρ 2 2ρ whereweusedln(x+∆x)(cid:39)lnx+ 1∆x. x (cid:18) (cid:19)(cid:18) (cid:18) (cid:19) (cid:19) (cid:18) (cid:19)(cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) N l N 1 l N N l N 1 −l σ(l)=ln(2N!)−{ + ln + − + − ln + }= 2 2ρ 2 N/22ρ 2 2 2ρ 2 N/2 2ρ N N N N N N l (cid:18)N(cid:19) l 2 (cid:18) l (cid:19)2 −l l (cid:18)N(cid:19) l2 =ln(2N!)−{ ln − + ln − + ln + + + − ln + } 2 2 2 2 2 2 2ρ 2 2ρ N 2ρ 2ρ 2ρ 2 N2ρ2 (cid:32) (cid:33) 2N! l2 σ(l)=ln − (cid:0)N(cid:1)!(cid:0)N(cid:1)! Nρ2 2 2 (c) ∂σ −2l 2lτ = =⇒ f = ∂l Nρ2 Nρ2 Solution11. One-dimensionalgas. (cid:126)2 (cid:16)π(cid:17)2 (cid:15) = n2 inonedimension n 2m L √ Z = (cid:88)∞ exp(cid:18)−(cid:126)2 (cid:16)π(cid:17)2n2/τ(cid:19)=⇒(cid:90) ∞dne−α2n2 = π 1 2m L 2α n=1 0 8 (cid:126)2 (cid:16)π(cid:17)2 α2 = 2mτ L where . (cid:126)π/L α= √ 2mτ1/2 Recallthatσ =(cid:0)∂F(cid:1),F =U −τσ,sothat ∂τ √ π (cid:18)2α(cid:19) (cid:18) 2(cid:126)π/L (cid:19) F =−τlnZ =−τNln =τNln √ =τNln √ √ = 2α π π 2mτ1/2 (cid:32) √2π(cid:126) (cid:33) 1 (cid:18) 2π(cid:126)2 (cid:19) =τNln √ = τNln mLτ1/2 2 mL2τ ∂F 1 (cid:18) 2π(cid:126)2 (cid:19) τN (cid:32) 1 (cid:33)(cid:18)−2π(cid:126)2(cid:19) = Nln + = ∂τ 2 mL2τ 2 (cid:0) 2π(cid:126)2 (cid:1) mL2τ2 mL2τ 1 (cid:18) 2π(cid:126)2 (cid:19) −τN N (cid:18) (cid:18) 2π(cid:126)2 (cid:19) (cid:19) = Nln + = ln −1 2 mL2τ 2τ 2 mL2τ 4. THERMALRADIATIONANDPLANCKDISTRIBUTION Problems. Solution1. Numberofthermalphotons. WeconsideracavityofvolumeV,andofedgelengthL(soV L3). Sothenω =nπc/L. n Now 1 isthethermalaveragenumberofphotonsinasinglemodefrequencyω. Sothen exp((cid:126)ωn)−1 τ (cid:88) (cid:88) 1 (cid:104)s (cid:105)= n exp(cid:0)(cid:126)ωn(cid:1)−1 τ Consider(n ,n ,n )onpositiveoctant,and2independentpolarizationsofemfield. x y z (cid:88) 1 (2)(cid:90) ∞ 1 (cid:90) ∞ n2dn = 4πn2dn =π = exp(cid:0)(cid:126)nπc(cid:1)−1 8 exp(cid:0)(cid:126)nπc(cid:1)−1 exp(cid:0)(cid:126)nπc(cid:1)−1 n Lτ 0 Lτ 0 Lτ (cid:18)Lτ (cid:19)3(cid:90) ∞(cid:18) x2dx (cid:19) V (cid:16) τ (cid:17)3 =π = N = (2.404) (cid:126)πc ex−1 π2 (cid:126)c 0 whereIusedthesubstitutions (cid:126)πcn x= Lτ Lτx =n (cid:126)πc Lτ (dx) =dn (cid:126)πc Nowσ(τ)=(4π2V/45)(τ/(cid:126)c)3,sothen σ 1 (cid:18)4π4(cid:19) = (cid:39) 3.602 N 2.404 45 Nowhowwas(cid:82)∞dxx2dx evaluated? 0 ex−1 Solution2. SurfacetemperatureofaSun. GiventhesolarconstantoftheEarth,thetotalradiantenergyfluxdensityat theEarthfromtheSunnormaltotheincidentrays,integratedoverallemissionwavelengths, solarconstant =0.136Js−1cm−2, (49) (a) (cid:18)102cm(cid:19)2 4π(1.49×1011m)2·0.136Js−1cm−2 =(4π)(1.49)21022·0.136×104 = 3.8×1026J ·s−1 1m NotethatIhadused1.49×1011masthedistanceoftheEarthfromtheSun. (b) J =energyfluxdensityorrateofenergyemissionperunitarea. ν σB = 6π02(cid:126)k3B4c2 =5.670×10−8W m−2K−4. NotethatW = 1J. IwilluseR =6.9599×1010cmastheradiusoftheSun. s ◦ 4×1026J ·s−1 =J =σ T4 4π(6.9599×1010cm)2 ν B 9  (cid:16) (cid:17)2  4×1026J ·s−1  1m2 1012mcm k4 =T4 4π(6.9599×1010cm)2 5.670×10−8J/s T (cid:39)5830K Solution3. AveragetemperatureoftheinterioroftheSun. (a) (cid:90) R G(cid:0)4πρr3(cid:1)(4πr2ρdr) 16 (cid:90) R −16 4 U =− 3 =− π2Gρ2 r4dr = π2ρ2GR5; M = πR3ρ r 3 15 3 0 0 −3GM2 U = 5R 1(cid:90) R G(cid:0)4πρr3(cid:1) −8 (cid:90) R −8 U =− 3 (4πr2ρdr)= π2Gρ2 r4dr = π2ρ2GR5 = 2 r 3 15 0 0 −8 (cid:18) M (cid:19)2 −3GM2 = π2GR5 = =1.14×1041J 15 4πR3 10 R 3 (b) Usingthevirialtheoremofmechanics,notethat (cid:16) (cid:17) −1U = 3 GM2 = 3 6.67×10−11kg· sm2 · kmg22 ·2×1033g 110k3gg =5.72×1040J 2 20 R 20 7×1010cm(cid:0) 1m (cid:1) 102cm Now (cid:104)s(cid:105) = 1 , is the Planck distribution function, giving the thermal average number of photons in a exp((cid:126)ω/τ)−1 singlemodefrequencyω. thermalaverageenergy(cid:104)(cid:15)(cid:105)=(cid:104)s(cid:105)(cid:126)ω = (cid:126)ω forτ (cid:28)(cid:126)ω,(cid:104)(cid:15)(cid:105)(cid:39)τ exp((cid:126)ω/τ)−1 Sothen5.72×1040J =N(cid:104)(cid:15)(cid:105)=Nτ. 5.72×1040J τ = = 4.14×106K 1×1057(1.381×10−23J/K) Solution4. AgeoftheSun. (a) Consider4H →4 He. Then4(1.0078)−4.0026=0.0286amu. Then 2 (cid:18)1.6726×10−27kg(cid:19) (0.0286amu) (3×108m/s)2 =4.27×10−12J 1.00727647u GivenM =2×1033g, (cid:12) (cid:18) (cid:19)(cid:18) (cid:19) 1 1.00727647u (2×1030kg)(0.10) (4.27×10−12J)=1.28×1044J 4×(1.0078amu) 1.6726×10−27kg So 1.28×1044J energyisavailable. (b) 1.15×1045J (cid:18) 1hr (cid:19)(cid:18)1day(cid:19)(cid:18) 1yr (cid:19) =1.02×1010years 4×1026J ·s−1 3600s 24hr 365days Solution5. SurfacetemperatureoftheEarth. JS =σbT(cid:12)4 istheradiantpowerperunitarea. TotalemittedradiationenergyofthesunisJ 4πR2. S (cid:12) 4πR(cid:12)2JS = R(cid:12)2 J = radiationenergyhitting1cm2ofEarth’ssurfaceinonesecond 4πR2 R2 S ES ES SincetheEarthisconsideredablack-body,therateofabsorptionmustequaltherateofemission: (cid:114) R2 7×1010cm (cid:12) σ T4 =σ T4orT4 =T4R2 =⇒T =5800K =396.2K =123C R2 b (cid:12) b e e (cid:12) (cid:12) e 1.5×1013cm ES Solution6. Pressureofthermalradiation. (a) s =numberofphotonsinthatmode. Supposemodesofω ,j =0,1,2,.... j j (cid:15) =s (cid:126)ω =totalenergyinjthmode,s photonsinjthmode. j j j j U =(cid:88)(cid:15) =(cid:88)s (cid:126)ω P =−∂U =−(cid:88)s (cid:126)∂ωj j j j ∂V j ∂V j j j 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.