ebook img

Note: Brownian motion of colloidal particles of arbitrary shape PDF

0.08 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Note: Brownian motion of colloidal particles of arbitrary shape

Note: Brownian motion of colloidal particles of arbitrary shape Bogdan Cichocki Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland Maria L. Ekiel-Jez˙ewska∗ and Eligiusz Wajnryb Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawin´skiego 5B, 02-106 Warsaw, Poland (Dated: January 12, 2016) 6 Theanalyticalexpressionsforthetime-dependentcross-correlationsofthetranslationalandrota- 1 tionalBrowniandisplacementsofaparticlewitharbitraryshapearederived. Thereferencecenteris 0 arbitrary,andthereferenceframeissuchthattherotational-rotational diffusiontensorisdiagonal. 2 n Ingeneral,thediffusionandmobilitymatricesofapar- averagesh...i oftheirproductswithrespecttotheparti- a 0 J ticledependonthechoiceofthereferencecenterwhichis clepositionsandorientations,usingtheconditionalprob- 9 usedto describethe rotationalandtranslationalmotion. ability which satisfies the Smoluchowski equation [3, 4], The requirementthatthe rotational-translationalmobil- with the diffusion matrix, ] itymatrixµrtissymmetricdefinesuniquelytheso-called t f centerofmobility. InRef.[1],thiscenterwasusedtoan- Dtt Dtr o D = , (3) s alyze the Brownian motion of a particle with arbitrary Drt Drr . shape, and the corresponding analytical expressions for (cid:20) (cid:21) t a thetime-dependentcross-correlationsofthetranslational WeadopttheframeofreferenceinwhichDrr isdiagonal, m and rotational Brownian displacements were derived. i.e. Drr =D δ , with µ,ν =1,2,3. - In this note, we derive the analogical analytical ex- µν µ µν d When an arbitrary reference center is chosen, the ten- pressions for the cross-correlations of the translational n sor Drt contains non-vanishing antisymmetric part. In o and rotational displacements of an arbitrary reference this case to derive the rotational-translational correla- c center. We denote the time-dependent position of this 1 [ dceicnutelarrausnRit(tv)e,catnodrswue(pin)(ttr)o,dpuc=e t1h,r2e,e3m, utotudaellsycrpibereptehne- tRuioe(nfp.)s[(1to])∆nweRitch(atn)thperifosocleelvoeawdliunaasgteimtdoiisdnipfitrhceaesteianonntae.ldoTginhiceaSlceowcr.arVyelIaaItsIioionnf v particle orientation at time t [1, 2]. The translational 0 Eq.(79)fromRef.[1], butwithanothersecondrankten- 5 9 and rotational Brownian displacements are, s(cid:10)or A(p), i.e. (cid:11) 0 ∆R(t)=R(t)−R(0), (1) 2 1 .0 ∆u(t)= 1 3 u(p)(0)×u(p)(t). (2) A(p) =u(p)×Drt− 2u(p)V, (4) 1 2 0 Xp=1 where the components of vector V are given as 16 Theirdynamicalcross-correlationsareevaluatedasthe Vα= 3µ,ν=1ǫαµνDµrtν. : The resulting off-diagonal Cartesian components are, v P i X h∆u(t)∆R(t)i =− (Drt +Drt ) 1 + Dβ −Dγ +(Drt −Drt ) 1 + D−Dα e−f(−)t−e−fγ(1)t ar 0,αβ (cid:20) αβ βα (cid:18)4 4∆ (cid:19) αβ βα (cid:18)6 2∆ (cid:19) (cid:21) f(−)−fγ(1) − (Drt +Drt ) 1 − Dβ −Dγ +(Drt −Drt ) 1 − D−Dα e−f(+)t−e−fγ(1)t αβ βα 4 4∆ αβ βα 6 2∆ f(+)−f(1) (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) (cid:21) γ −Dαrtβ +Dβrtα e−fα(2)t−e−fβ(1)t + e−fα(1)t−e−fβ(1)t − Dαrtβ −Dβrtα e−fα(2)t−e−fβ(1)t − 1−e−fγ(1)t , (5) 4 " fα(2)−fβ(1) fα(1)−fβ(1) # 2 " fα(2)−fβ(1) 3fγ(1) # 1 withtheconventionthateverywhereinthisnote(α,β,γ) D = (D +D +D ), (8) 1 2 3 is a permutation of (1,2,3), and 3 ∆= D2+D2+D2−D D −D D −D D . (9) f(1) =3D−D , f(2) =3(D +D), α=1,2,3, (6) 1 2 3 1 2 1 3 2 3 α α α α f(±) =6D±2∆, (7) q 2 The diagonal Cartesian components read: Since 3 Dtt(±)=0, it is easy to see that W(t) is α=1 αα 1/6 of the mean square Brownian displacement, h∆u(t)∆R(t)i0,αα =−Dαrtα−8Dβrtβ e−fγ(2)tD−γe−fγ(1)t P W(t)=1h∆R(t)·∆R(t)i . (18) 6 0 −Dαrtα−Dγrtγ e−fβ(2)t−e−fβ(1)t + Dαrtα+Dβrtβ e−fγ(1)tt Moreover,it follows from our calculation that 8 D 2 β +Dαrtα+2Dγrtγ e−fβ(1)tt. (10) W(t)=Dcmt+ 13 3 (D(Dβrtγ−+DDγrtβ)2)2 1−e−(Dβ+Dγ)t , (19) β γ αX=1 (cid:16) (cid:17) To derive the translational-translational correlations, where β,γ 6= α and D is the self-diffusion coefficient the derivative (54) from Ref. [1] must be changed into cm referring to the center of mobility, d dth∆R(t)∆R(t)i0 D = 1 TrDtt− 3 (Dβrtγ −Dγrtβ)2 . (20) =2 Dtt(t) +hV(t)∆R(t)i +h∆R(t)V(t)i .(11) cm 3" Dβ +Dγ # 0 0 0 αX=1 The t(cid:10)wo last(cid:11)terms can be then calculated by decom- The importance of the center of mobility follows from posing the vectorV, defined under Eq. (4), in the frame Eq. (19) – this is the only reference center for which the u(p),p=1,2,3,andusingtheresultsfor u(p)(t)∆R(t) mean squaredisplacement is a linear function of time.[5] 0 obtained by the method described above. For completeness, we remind the rotational-rotational (cid:10) (cid:11) Theoff-diagonalCartesiancomponentswithα6=βread, correlations[1],whichdonotdependonthechoiceofthe reference center. The off-diagonal elements vanish, and 1h∆R(t)∆R(t)i = 1−e−fγ(2)tDtt the diagonal elements, α=1,2,3, are given by 2 0,αβ f(2) αβ 1 γ h∆u(t)∆u(t)i = 1 − 3(D−Dα)+∆e−f(−)t + (Drt −Drt)(3Drt −Drt ) I(f(2),f(1);t) 0,αα 6 12∆ 2 βγ γβ γα αγ γ α 3(D −D)+∆ 1 1 +1(Drt −Drt)(3Drt −Drt) I(f(2),f(1);t) − α12∆ e−f(+)t−4e−fα(2)t+4e−fα(1)t. (21) 2 αγ γα γβ βγ γ β −(Drt −Drt )(Drt −Drt ) I(f(2),f(1);t), (12) In this work, the analytical expressions for the αβ βα αα ββ γ γ cross-correlations are more complex that their analogs where in Ref. [1], but the advantage is that they apply to an arbitrary reference center. Therefore, they can be easily 1 e−f1t e−f2t I(f ,f ;t)= + − . (13) used to account for the experimental results, obtained 1 2 f f f (f −f ) f (f −f ) 1 2 1 1 2 2 1 2 for any reference center. An example of the compari- son of the theoretical expressions derived here with the The diagonal Cartesian components are, measurements(madeinRef.[2])canbefoundinRef.[6]. 1 1−e−f(σ)t 2h∆R(t)∆R(t)i0,αα=W(t)+ f(σ) Dαttα(σ) M.L.E.-J. and E.W. were supported in part by σ=± the Polish National Science Centre under Grant No. X 3 2012/05/B/ST8/03010. M.L.E.-J. benefited from the scien- + P(σ)(α,β)I(f(σ),f(1);t), (14) tificactivities of theCOST Action MP1305. β σ=±β=1 X X where Dtt(±) = 1 ∓ 3Dα−D Dtt −1TrDtt ∗ Corresponding author: [email protected] αα 2 4 ∆ αα 3 [1] B. Cichocki, M. L. Ekiel-Jez˙ewska and E. Wajnryb, J. (cid:18) (cid:19)(cid:18) (cid:19) D −D Chem. Phys. 142, 214902 (2015). ± β γ Dtt −Dtt , (15) 4∆ ββ γγ [2] D.J.Kraft,R.Wittkowski,B.tenHagen,K.V.Edmond, D.J.PineandH.L¨owen,Phys.Rev.E88,050301(2013). (cid:0) (cid:1) and [3] N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd Edition, North-Holland, 2007. P(±)(α,β)=−(Drt −Drt)2 1 ∓ D−Dγ [4] R.B.JonesandP.N.Pusey,Annu.Rev.Phys.Chem.42, αγ γα 3 ∆ 137 (1991). (cid:18) (cid:19) 1 D −D [5] B. Cichocki, M. L. Ekiel-Jez˙ewska and E. Wajnryb, J. + (Drt )2−(Drt)2 ∓ α β , for α6=β, (16) Chem. Phys. 136, 071102 (2012). αγ γα 2 2∆ (cid:18) (cid:19) [6] B. Cichocki, M. L. Ekiel-Jez˙ewska and E. Wajnryb,tobe P((cid:2)±)(α,α)=−P(±(cid:3))(β,α)−P(±)(γ,α), (17) published.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.