Note: Brownian motion of colloidal particles of arbitrary shape Bogdan Cichocki Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland Maria L. Ekiel-Jez˙ewska∗ and Eligiusz Wajnryb Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawin´skiego 5B, 02-106 Warsaw, Poland (Dated: January 12, 2016) 6 Theanalyticalexpressionsforthetime-dependentcross-correlationsofthetranslationalandrota- 1 tionalBrowniandisplacementsofaparticlewitharbitraryshapearederived. Thereferencecenteris 0 arbitrary,andthereferenceframeissuchthattherotational-rotational diffusiontensorisdiagonal. 2 n Ingeneral,thediffusionandmobilitymatricesofapar- averagesh...i oftheirproductswithrespecttotheparti- a 0 J ticledependonthechoiceofthereferencecenterwhichis clepositionsandorientations,usingtheconditionalprob- 9 usedto describethe rotationalandtranslationalmotion. ability which satisfies the Smoluchowski equation [3, 4], The requirementthatthe rotational-translationalmobil- with the diffusion matrix, ] itymatrixµrtissymmetricdefinesuniquelytheso-called t f centerofmobility. InRef.[1],thiscenterwasusedtoan- Dtt Dtr o D = , (3) s alyze the Brownian motion of a particle with arbitrary Drt Drr . shape, and the corresponding analytical expressions for (cid:20) (cid:21) t a thetime-dependentcross-correlationsofthetranslational WeadopttheframeofreferenceinwhichDrr isdiagonal, m and rotational Brownian displacements were derived. i.e. Drr =D δ , with µ,ν =1,2,3. - In this note, we derive the analogical analytical ex- µν µ µν d When an arbitrary reference center is chosen, the ten- pressions for the cross-correlations of the translational n sor Drt contains non-vanishing antisymmetric part. In o and rotational displacements of an arbitrary reference this case to derive the rotational-translational correla- c center. We denote the time-dependent position of this 1 [ dceicnutelarrausnRit(tv)e,catnodrswue(pin)(ttr)o,dpuc=e t1h,r2e,e3m, utotudaellsycrpibereptehne- tRuioe(nfp.)s[(1to])∆nweRitch(atn)thperifosocleelvoeawdliunaasgteimtdoiisdnipfitrhceaesteianonntae.ldoTginhiceaSlceowcr.arVyelIaaItsIioionnf v particle orientation at time t [1, 2]. The translational 0 Eq.(79)fromRef.[1], butwithanothersecondrankten- 5 9 and rotational Brownian displacements are, s(cid:10)or A(p), i.e. (cid:11) 0 ∆R(t)=R(t)−R(0), (1) 2 1 .0 ∆u(t)= 1 3 u(p)(0)×u(p)(t). (2) A(p) =u(p)×Drt− 2u(p)V, (4) 1 2 0 Xp=1 where the components of vector V are given as 16 Theirdynamicalcross-correlationsareevaluatedasthe Vα= 3µ,ν=1ǫαµνDµrtν. : The resulting off-diagonal Cartesian components are, v P i X h∆u(t)∆R(t)i =− (Drt +Drt ) 1 + Dβ −Dγ +(Drt −Drt ) 1 + D−Dα e−f(−)t−e−fγ(1)t ar 0,αβ (cid:20) αβ βα (cid:18)4 4∆ (cid:19) αβ βα (cid:18)6 2∆ (cid:19) (cid:21) f(−)−fγ(1) − (Drt +Drt ) 1 − Dβ −Dγ +(Drt −Drt ) 1 − D−Dα e−f(+)t−e−fγ(1)t αβ βα 4 4∆ αβ βα 6 2∆ f(+)−f(1) (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) (cid:21) γ −Dαrtβ +Dβrtα e−fα(2)t−e−fβ(1)t + e−fα(1)t−e−fβ(1)t − Dαrtβ −Dβrtα e−fα(2)t−e−fβ(1)t − 1−e−fγ(1)t , (5) 4 " fα(2)−fβ(1) fα(1)−fβ(1) # 2 " fα(2)−fβ(1) 3fγ(1) # 1 withtheconventionthateverywhereinthisnote(α,β,γ) D = (D +D +D ), (8) 1 2 3 is a permutation of (1,2,3), and 3 ∆= D2+D2+D2−D D −D D −D D . (9) f(1) =3D−D , f(2) =3(D +D), α=1,2,3, (6) 1 2 3 1 2 1 3 2 3 α α α α f(±) =6D±2∆, (7) q 2 The diagonal Cartesian components read: Since 3 Dtt(±)=0, it is easy to see that W(t) is α=1 αα 1/6 of the mean square Brownian displacement, h∆u(t)∆R(t)i0,αα =−Dαrtα−8Dβrtβ e−fγ(2)tD−γe−fγ(1)t P W(t)=1h∆R(t)·∆R(t)i . (18) 6 0 −Dαrtα−Dγrtγ e−fβ(2)t−e−fβ(1)t + Dαrtα+Dβrtβ e−fγ(1)tt Moreover,it follows from our calculation that 8 D 2 β +Dαrtα+2Dγrtγ e−fβ(1)tt. (10) W(t)=Dcmt+ 13 3 (D(Dβrtγ−+DDγrtβ)2)2 1−e−(Dβ+Dγ)t , (19) β γ αX=1 (cid:16) (cid:17) To derive the translational-translational correlations, where β,γ 6= α and D is the self-diffusion coefficient the derivative (54) from Ref. [1] must be changed into cm referring to the center of mobility, d dth∆R(t)∆R(t)i0 D = 1 TrDtt− 3 (Dβrtγ −Dγrtβ)2 . (20) =2 Dtt(t) +hV(t)∆R(t)i +h∆R(t)V(t)i .(11) cm 3" Dβ +Dγ # 0 0 0 αX=1 The t(cid:10)wo last(cid:11)terms can be then calculated by decom- The importance of the center of mobility follows from posing the vectorV, defined under Eq. (4), in the frame Eq. (19) – this is the only reference center for which the u(p),p=1,2,3,andusingtheresultsfor u(p)(t)∆R(t) mean squaredisplacement is a linear function of time.[5] 0 obtained by the method described above. For completeness, we remind the rotational-rotational (cid:10) (cid:11) Theoff-diagonalCartesiancomponentswithα6=βread, correlations[1],whichdonotdependonthechoiceofthe reference center. The off-diagonal elements vanish, and 1h∆R(t)∆R(t)i = 1−e−fγ(2)tDtt the diagonal elements, α=1,2,3, are given by 2 0,αβ f(2) αβ 1 γ h∆u(t)∆u(t)i = 1 − 3(D−Dα)+∆e−f(−)t + (Drt −Drt)(3Drt −Drt ) I(f(2),f(1);t) 0,αα 6 12∆ 2 βγ γβ γα αγ γ α 3(D −D)+∆ 1 1 +1(Drt −Drt)(3Drt −Drt) I(f(2),f(1);t) − α12∆ e−f(+)t−4e−fα(2)t+4e−fα(1)t. (21) 2 αγ γα γβ βγ γ β −(Drt −Drt )(Drt −Drt ) I(f(2),f(1);t), (12) In this work, the analytical expressions for the αβ βα αα ββ γ γ cross-correlations are more complex that their analogs where in Ref. [1], but the advantage is that they apply to an arbitrary reference center. Therefore, they can be easily 1 e−f1t e−f2t I(f ,f ;t)= + − . (13) used to account for the experimental results, obtained 1 2 f f f (f −f ) f (f −f ) 1 2 1 1 2 2 1 2 for any reference center. An example of the compari- son of the theoretical expressions derived here with the The diagonal Cartesian components are, measurements(madeinRef.[2])canbefoundinRef.[6]. 1 1−e−f(σ)t 2h∆R(t)∆R(t)i0,αα=W(t)+ f(σ) Dαttα(σ) M.L.E.-J. and E.W. were supported in part by σ=± the Polish National Science Centre under Grant No. X 3 2012/05/B/ST8/03010. M.L.E.-J. benefited from the scien- + P(σ)(α,β)I(f(σ),f(1);t), (14) tificactivities of theCOST Action MP1305. β σ=±β=1 X X where Dtt(±) = 1 ∓ 3Dα−D Dtt −1TrDtt ∗ Corresponding author: [email protected] αα 2 4 ∆ αα 3 [1] B. Cichocki, M. L. Ekiel-Jez˙ewska and E. Wajnryb, J. (cid:18) (cid:19)(cid:18) (cid:19) D −D Chem. Phys. 142, 214902 (2015). ± β γ Dtt −Dtt , (15) 4∆ ββ γγ [2] D.J.Kraft,R.Wittkowski,B.tenHagen,K.V.Edmond, D.J.PineandH.L¨owen,Phys.Rev.E88,050301(2013). (cid:0) (cid:1) and [3] N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd Edition, North-Holland, 2007. P(±)(α,β)=−(Drt −Drt)2 1 ∓ D−Dγ [4] R.B.JonesandP.N.Pusey,Annu.Rev.Phys.Chem.42, αγ γα 3 ∆ 137 (1991). (cid:18) (cid:19) 1 D −D [5] B. Cichocki, M. L. Ekiel-Jez˙ewska and E. Wajnryb, J. + (Drt )2−(Drt)2 ∓ α β , for α6=β, (16) Chem. Phys. 136, 071102 (2012). αγ γα 2 2∆ (cid:18) (cid:19) [6] B. Cichocki, M. L. Ekiel-Jez˙ewska and E. Wajnryb,tobe P((cid:2)±)(α,α)=−P(±(cid:3))(β,α)−P(±)(γ,α), (17) published.