ebook img

North Anatolian Fault PDF

14 Pages·2017·1.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview North Anatolian Fault

Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences Nicolas Pondard, Rolando Armijo, Geoffrey C. P. King, Bertrand Meyer, Frédéric Flerit To cite this version: Nicolas Pondard, Rolando Armijo, Geoffrey C. P. King, Bertrand Meyer, Frédéric Flerit. Fault in- teractions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences. Geophysical Journal International, 2007, 171 (3), pp.1185-1197. ￿10.1111/j.1365-246X.2007.03580.x￿. ￿hal-00314342￿ HAL Id: hal-00314342 https://hal.science/hal-00314342 Submitted on 16 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophys.J.Int. (2007)171,1185–1197 doi:10.1111/j.1365-246X.2007.03580.x Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences Nicolas Pondard,1 Rolando Armijo,1 Geoffrey C. P. King,1 Bertrand Meyer2 and Fre´de´ric Flerit3 1LaboratoiredeTectonique,IPGP,CNRS-UMR7578,4,placeJussieu,75252ParisCedex05,France.E-mail:[email protected] 2UPMC,CNRS-UMR7072,Paris,France 3IFG,UniversityofHannover,Germany Accepted2007August7.Received2007July16;inoriginalform2006February28 SUMMARY Knowledge on large earthquakes (M ≥ 7.0), geology and fault kinematics is used to anal- yseconditionsthatfavourisolatedseismicity,clusteredearthquakesorpropagatingsequences alongtheNorthAnatolianFault(NAF)andtheSeaofMarmarapull-apart.TheoverallNAF– MarmarafaultsystemisoneofthemostappropriateonEarthtodocumentfaultinteractions becausereliableinformationcoversalmostcompletelytwoseismiccycles(thepast∼500yr). Coulombstressanalysisisusedtocharacterizeloadingevolutioninwell-identifiedfaultseg- ments,includingsecularloadingfrombelowandlateralloadingimposedbytheoccurrenceof previousearthquakes.EarthquakesalongtheNAFtendtooccurwherepreviouseventshave increasedthestress,butsignificantisolatedeventsintheSeaofMarmararegion(1894,1912) have occurred, suggesting the secular loading has been the determining factor. Present-day loading appears to be particularly high along the 70-km-long segment located in the central Marmara Sea, southwest of Istanbul. For the 18th century M ≥ 7.0 earthquake clusters, we y g construct scenarios consistent with the tectonic and historical data. We find that scenarios o consistent with slip deficit and secular loading distributions (from below) clearly involve a ol m sequencethatpropagateswestwardthroughtheSeaofMarmara,despitethestructuralcom- s ei plexity.However,theinferenceofapropagatingsequenceimpliesthateacheventhasoccurred S inasegmentpreviouslystressedbylateralCoulombstressinteractions.Themostlikelyscenar- I J G iosforthepropagatingsequencearealsoconsistentwithCoulombstressinteractionsbetween faultswithsignificantnormalslipacrosstheCinarcikbasin.Propagatingearthquakesequences do not occur every seismic cycle along the NAF. The loading has to be in a particular state ofstressclosetofailureanduniformallalongthefaultsegmentstoexperiencepropagating earthquake sequences. Non-uniform stress relief during the 18th century sequence explains theoccurrenceofisolatedeventsinMarmarain1894and1912.Asaconsequence,thewell- known 20th century sequence along the NAF has not propagated as a sequence across the SeaofMarmara.ThemostlinearpartoftheNAFacrossnorthernTurkeybehavesasasingle faultsegment,accumulatingstressduringhundredsofyearsandrupturingentirelyduringvery shortperiods.TheMarmarapull-apartfaultsystembehavesasamajorgeometriccomplexity, stoppingordelayingtheprogressionofearthquakeclusteringandpropagatingsequences.Fault zonesinteractwitheachotherataverylargescale. Keywords: earthquakeprediction,Istanbul,Marmara,seismicmodelling,seismotectonics, stressdistribution. staticstressinducedbyanearthquake,addedtotheseculartectonic INTRODUCTION loading, favours or inhibits the occurrence of subsequent events. Observationsofearthquakeclusteringandpropagatingsequences Specifically, what are the conditions that favour isolated seismic- on diverse fault systems have stimulated studies on fault interac- ity, clustered earthquakes or propagating sequences along a fault tions(e.g.Richter1958;Rice1980;Kasahara1981;Scholz1990). system?AnapproachbasedonCoulombstresschangeshasbeen Animportantproblemistoassesstowhatextentthevariationof extensivelyusedtoexplainthedistributionofearthquakesinspace (cid:4)C 2007TheAuthors 1185 Journalcompilation(cid:4)C 2007RAS 1186 N.Pondardetal. Figure 1. Propagating earthquake sequence along the North Anatolian Fault during the 20th century. (a) Tectonic framework: Extrusion in the eastern Mediterraneanregion.TheredvectorsrepresenttheGPSvelocitydatareferencedtoafixedEurasia(McCluskyetal.2000).NAF,NorthAnatolianFault; EAF,EastAnatolianFault;DSF,DeadSeaFault;NAT,NorthAegeanTrough.Thecurvedblackboxisenlargedinb.ThesmallerblackboxlocatestheSeaof MarmararegionandisenlargedinFig.2.(b)DistributionofearthquakerupturesalongtheNAF(Barka1996;Steinetal.1997;Barkaetal.2002;Akyu¨zetal. 2002;C¸akiretal.2003;Armijoetal.2005).ThemapisanObliqueMercatorprojectionaboutthepoleofrelativemotionbetweentheAnatolianandEurasian plates,32.6◦E.,30.7◦N.(McCluskyetal.2000).Strike-slipfaultsbetweenthetwoplateslieonsmallcirclesaboutthepoleofrelativemotion;thus,inthis projectiontheyformhorizontallines(Atwater1970).TheNAFliesonalinerelativelyhorizontal,thedifferentdirectionsofthefaultidentifyingtranstensive andtranspressiveregions.NNAF,NorthernbranchoftheNorthAnatolianFault;SNAF,SouthernbranchoftheNorthAnatolianFault.(c)Slipdistributionfor eacheventandthecumulativedisplacement(thickestline)alongthefault. andtime(e.g.Kingetal.1994;Harris&Simpson1998;Stein1999; ongoingandpastfaultinteractionsalongtheNAF.Acriticalquestion King&Cocco2000).Themostappropriateplacestoperformanal- istodeterminewhethertheNAFhasexperiencedisolatedevents, yses of fault interactions are regions where historical and instru- earthquakeclustersorpropagatingsequencesinthepast,especially mental seismicity exists over several seismic cycles, and where a intheMarmararegion. well-resolvedfaultgeometryandkinematicsallowsrupturetobe The Sea of Marmara is a major transtensional step-over of the associatedwithdistinctfaultsegments. NAF(Armijoetal.1999,2002).The1912Ganos(M7.4)and1999 The North Anatolian Fault (NAF) has ruptured during a well- Izmit(M 7.4)earthquakesoccurredattheedgesofthepull-apart known propagating earthquake sequence between 1939 and 1999 (Fig.2).Theregionhasalsorecordedfivedevastatingearthquakes (Fig.1)(Tokso¨zetal.1979;Barka1996;Steinetal.1997;Nalbant sincethe18thcentury(1719,1754,1766May,1766August,1894) et al. 1998). Currently the western tip of the sequence is located (Ambraseys & Finkel 1991, 1995; Ambraseys & Jackson 2000; intheMarmararegionandaseismicgapremainsclosetothecity Ambraseys 2000, 2001a, 2002). Following the 1999 Izmit event ofIstanbul.Theobjectiveofthisstudyistodiscussthenatureof studies have been carried out by Hubert-Ferrari et al. (2000) and (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS FaultinteractionsintheSeaofMarmarapull-apart(NorthAnatolianFault) 1187 1912 TMek ir7d.a4g Central Cinarcik Izmit Gulf 12/11/99 Basin Basin Basin 17/08/99 1894 MM~~77 ? Saros Gulf NNAF S N A F Figure2. SegmentationofthefaultsystemandrecentearthquakerupturesintheSeaofMarmarapull-apart(redrawnfromArmijoetal.2002,2005).Thered circlesindicatethegeometriccomplexities(jogsandfault-bends)thatmaybeassociatedwiththeinitiationandterminationofM≥7.0earthquakeruptures. Parsonsetal.(2000,2004),buthavebeenhamperedbyalackof thecontinentalcrust(Armijoetal.2003;Hubert-Ferrarietal.2003; knowledgeofthesubmarinefaultsystemandconsequentuncertain- Fleritetal.2004). tiesintheearthquakerupturelocations. The NAF is an 800 km long, narrow fault as it crosses north- Recentlyacquiredbathymetricandseismicdatadefinetheseg- ern Turkey (Fig. 1) (Barka 1992; Hubert-Ferrari et al. 2002), but mentationoffaultsbeneaththeSeaofMarmara(Armijoetal.2002; becomesmorecomplexintheMarmararegionwhereitsplitsinto Carton2003;Hirnetal.2003).Theregionalkinematicframework aNorthern(NNAF)andaSouthern(SNAF)branch(Fig.2).The is constrained using both geological and GPS data (Armijo et al. recentgeologic,morphologic,seismicandGPSresultssuggestthat 1999, 2002; McClusky et al. 2000; Flerit et al. 2003). Detailed slippartitioningcombiningrightlateralmotionandnormalsubsi- morphologic description of the submarine fault scarps associated denceisresponsibleforthedeformationoftheMarmarapull-apart with recent major earthquakes has been possible using a Remote region (Armijo et al. 2002, 2005; Carton 2003; Hirn et al. 2003; OperatedVehicle(ROV).Theseobservationsprovidecriticalinfor- Fleritetal.2003,2004).AtectonicmodelusingGPSvelocitiessug- mationonthemostrecentearthquakeruptures(1894,1912,1999) geststheAnatolia/EurasiamotionisaccommodatedacrosstheMar- (Armijoetal.2005;Pondard2006).Hereweidentifypossiblefault mararegionby18–20mmyr–1ofright-lateralslipand8mmyr–1 segmentsthatmayhaverupturedsincethe18thcentury,consistent of extension (Fig. 3) (Flerit et al. 2003, 2004). The normal com- with macroseismic observations and scaling laws. We model the ponentofmotionismostlydistributedalongtheSNAFwhilethe evolutionofloadingdistributionsonthosesegmentstodiscusspos- strike-slipcomponentismostlyaccommodatedbytheNNAF.Other siblescenariosforallM≥7.0earthquakessince1509intheSeaof authorshaveofferedmodelsforthedeformationoftheMarmarare- Marmararegion.Weassesstherelativeimportanceofthesecular gion (Parke et al. 1999; Le Pichon et al. 2001, 2003) but appear loadingandthelateralloadingbypreviousearthquakesinCoulomb inconsistentwiththegeologyofthepull-apart(Armijoetal.2002, interactions. Finally, we compare results of the modelling in the 2005). MarmararegionwithresultsintherestoftheNAFtodiscussfault interactionsassociatedwithisolatedevents,earthquakeclustersand propagatingsequences. SEGMENTATION AND PAST EARTHQUAKE RUPTURES The magnitude of the most relevant earthquakes observed in the Marmararegionisabout7. TECTONIC SETTING AND Bathymetric mapping reveals that the main fault strand in the KINEMATICS: BOUNDARY SeaofMarmaraisformedbydiscretesegmentssometensofkilo- CONDITIONS metres long, separated by geometric fault complexities (jogs and The formation of the right-lateral NAF results from the process fault-bends)(Fig.2)(Armijoetal.2002).Coseismicslipmeasured of shear and westward extrusion of the Anatolian plate (Fig. 1a). alongthesesegmentsisabout1–5m(Armijoetal.2005;Pondard GeologicalstudiessuggestthattheNAFhaspropagatedwestward 2006).Accordingtostrikevariations,eachsegmentaccommodates throughAnatoliaandtheAegean(Armijoetal.1999).Processes different proportions of strike- and normal-slip. We associate the ofelasto-plasticfractureassociatedwithlargedamageregionshave initiationandtheterminationofM ≥7.0earthquakeruptureswith beenproposedtoexplainthelong-termpropagationoffaultsthrough thesegeometricfaultcomplexities,commonlynamedasperitiesand (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS 1188 N.Pondardetal. 26˚ 30˚ 42˚ Black Sea u r a s i a E Istanbul 20 mm/yr NAF 20 mm/yr Marmara Sea 1122 m mmm/y/yrr 24 mm/yr F A N N Aegean 3 mm/yr SeaF 2 mm/yr Anatolia A 4 mm/yr N S km 39° 4 mm/yr 5 mm/yr 0 50 100 Figure3. Slip-partitioningintheMarmararegion(Fleritetal.2003).ThevelocityvectorsaremodelledusingtectonicobservationsandGPSdatareferenced tofixedAnatolia.ThepurplearrowsfollowasmallcirclecentredontheArabia–EurasiaEulerrotationpole. barriers (e.g. Das & Aki 1977; Kanamori 1978; Aki 1979; King thoughtheycanbeusedinconjunctionwithdetailedstudiesoffault 1983;King&Nabelek1985;Sibson1985). geometrytodefinereasonablerupturescenarios.Onshore,palaeo- Thelocationandtheslipdistributionofthepastearthquakerup- seismicstudiessuggestthattheIzmitandtheGanosfaultsegments tures is more or less established. Two categories are distinct: (1) haverupturedduringthe1719andAugust1766events,respectively theearthquakesforwhichthesurfacebreakhasbeenconstrained (Rockwelletal.2001;Klingeretal.2003).Offshore,themorpho- withgeologicalandinstrumentalmethods(1999,1912,1894)and logicalstudyofsubmarinescarpssuggestsaslipof4–5massociated (2) the previous historical events (1719, 1754, 1766 May, 1766 withthe1766Augustearthquake,similartothe1912coseismicslip August,1894)wheretheextentofrupturemustbededucedfrom (Armijoetal.2005;Pondard2006).Thedistributionofearthquake thedistributionofhistoricaldamageandaknowledgeoftheactive ruptures associated with the 18th and 19th century events is dis- faultsystem. cussedinthefollowingsections. Theslipdistributionassociatedwiththe1999Izmitearthquake (M 7.4) is well constrained by morphologic and interferometric COULOMB STRESS MODELLING observations (Barka 1999; Barka et al. 2002; C¸akir et al. 2003). The 1912 Ganos earthquake (M 7.4) slip distribution is less cer- Tostudyfaultinteractions,changesofstaticstressassociatedwith tain.Inbothcasesacriticalproblemhasbeenalackofknowledge largehistoricalearthquakes(M ≥7.0)aremodelledusingrectan- oftheextensionofruptureintotheSeaofMarmara.Morphologic gulardislocations.Thelengthofruptureandslipforthedislocation observationsofsubmarinefaultscarpsnowsuggestthatthe1999 sources are chosen to be consistent with seismic moments deter- earthquake rupture extends 30 km offshore to the eastern tip of minedfrommagnitudeestimates(Ambraseys&Jackson2000;King the Cinarcik basin and the 1912 earthquake extends 60 km east- etal.2001;Parsons2004)andsegmentlengthsasdiscussedearlier. wardbetweentheGanosfaultandtheCentralBasinwith4–5mof Thedislocationparametersassociatedwiththemostrecentevents right-lateralmotion(Fig.2)(Armijoetal.2005).The1894July10 arebasedonmoredetailedfieldandinstrumentalconstraints.The (M∼7)earthquakemaybecorrelatedwithyoungsubmarinebreaks 1912Ganosearthquakeruptureismodelledusingconstraintsde- observedattheedgesoftheCinarcikbasin,withsignificantnormal scribedbyArmijoetal.(2005).Theslipdistributionassociatedwith slip(Armijoetal.2005).Thecorrelationwiththelargebreakalong the1999Izmitruptureisbasedonfieldobservations,morpholog- theSWedgeoftheCinarcikbasin(∼50kmlong)isconsistentwith icaldescriptionofsubmarinescarpsandSARinterferometricdata scalinglaws.However,itisnotimpossiblethatthe1894earthquake (Barka1999;C¸akiretal.2003;Armijoetal.2005).Despitepossible hasrupturedalongtheNEedgeoftheCinarcikbasin,beforethe variationsoflockingdepthindifferentsectorsoftheNAF(around occurrenceofthesmallfreshbreaksthatareobservedthere,which and across the Sea of Marmara), earthquake ruptures throughout areprobablyassociatedwiththeMs6.41963event(Armijoetal. the whole region are considered to extend from the surface to an 2005). averagedepthof12km(seediscussioninArmijoetal.2005).A The location of earthquake ruptures associated with the previ- regionalstressfieldisimposedinagreementwiththekinematicsof oushistoricaleventsispoorlyknown(1719,1754,1766May,1766 theMarmarapull-apartregiontodetermineoptimumfailuredirec- August, 1894). However, the Marmara region has been the cen- tions,unlessstrike,dipandrakeofthefaultsarespecified(Nalbant tre of the Ottoman Empire since 1453 and descriptions of earth- etal.1998;Fleritetal.2003). quakedamagesincethattimeprovidesubstantialconstraints(seethe ThevariationofstaticstressinducedbyM ∼6earthquakesis AppendixA)(Ambraseys&Finkel1990,1991,1995;Ambraseys negligiblecomparedtoM∼7eventsforlong-termstressmodelling 2000,2001a,b,2002;Ambraseys&Jackson2000).However,his- (Nalbant et al. 1998; Hubert-Ferrari et al. 2000). For this reason toricaldataalonecannotdeterminewherefaultruptureoccurred,al- stresschangesaremodelledonlyforearthquakeswithM ≥7.0. (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS FaultinteractionsintheSeaofMarmarapull-apart(NorthAnatolianFault) 1189 for any elapsed time (Figs 4 and 5a). In terms of kinematics, the earthquakeslipondiscretesegmentsofthefaultrelievespartofthe slip deficit in some regions and leaves the slip deficit unchanged in other regions (usually named gaps). A gap may be formed by one or many segments. Fig. 5 illustrates the distribution of slip deficits (or loading) in terms of Coulomb stress. For clarity, the loadingduetosecularloadingthroughoutthefaultandthatdueto earthquakeslipondiscretesegmentscanbeseparated(Figs5aand b).Thesuperpositionofthetwoeffects(a+b)isgiveninFigs5(c) and(d). Figs 5(a) and (c) show that 4 m of steady slip below 12 km (correspondingto∼200yrofsecularloadingfortheNAF)creates critical conditions throughout any segment. Fig. 5(c) shows that likely Coulomb stress differences due to contrasts in slip deficit distributionalongthefault(betweenslippedandgapregions)are large(upto∼80bars).Thisimportantpartoftheloadingappears simplylinkedtothekinematics.Theothereffectisthatproducedby rupturedfaultsegmentsinteractingwithneighbouringunruptured segmentsontheirsides(usuallyreferredasCoulombinteractions). The corresponding stress induced laterally by a seismic event is significant(≥40bars)butlimitedtoacertaindistance(≤5km)from theearthquakerupture’send(Figs5bandc).FromFigs5(c)and(d) itcanbeappreciatedthatlateralCoulombinteractionsmayplaya moresignificantrolefortriggeringmoderateeventsrupturingshort segments(∼10kmlong)thanlongones.Inthefollowingsections earthquakescenariosandCoulombstressevolutioninMarmaraare discussedusingthesesimpleconcepts. SCENARIOS OF 18th AND 19th CENTURY M ≥ 7.0 EARTHQUAKES We model possible scenarios for the five M ≥ 7.0 earthquake Figure4. SeculartectonicloadingmodelalongtheNAFusingtheelastic ruptures in the period from 1509 (after the earthquake) to 1900 dislocationsfromFleritetal.(2003).Theupperpanelshowstheloading (events of 1719, 1754, 1766 May, 1766 August and 1894) alongallthebranches.Thelowerpanelshowsloadingforthenorthernbranch (Appendix A). No assumption is made for slip deficits result- alone.ThefaultratesarebasedontheinterseismicGPSvelocities(McClusky ing from previous events. Although many scenarios can be pro- etal.2000).Theloadingisimposedstartingtheyear1509.Twohundred posed, only eight are significantly different and consistent with yearsofloadingcorrespondstoabout40barsofCoulombstressincrease tectonic and historical data (Fig. 6). However some loading con- alongthefaultsegmentsatadepthof5km.Theblackcrossrepresentsthe ditions due to the instantaneous slip deficit distributions are less optimumfailuredirections(strike-slipandnormal)(Nalbantetal.1998). Theprincipalcompressivestressaxisof150–250barsisindicatedbetween probable than others, independently of lateral Coulomb fault theyellowarrows(orientedN115◦E). interactions. It is not likely that earthquake rupture is absent along a fault segmentthatissignificantlyloaded(forinstancemorethan50–80 Ourseculartectonicloadingmodelusesthedislocationmodelof bars).Thisisthecaseforscenarioh(Fig.6)wherenoearthquake Fleritetal.(2003),whichisbasedoninterseismicGPSvelocities hasoccurredfor500yralongthe60-km-longsegmentatthecentre andtectonicobservations(McCluskyetal.2000;Armijoetal.2002) oftheSeaofMarmara,suggestingaslipdeficitofmorethan10m. (Fig.4a).Theelementsforthesecularloadingextendfromalocking Suchaslipdeficitwouldbeenoughtogenerateanimprobablylarge depthof12kmtogreatdepth.Alikelyrecurrencetimeof200yrof earthquake(M >7.6),unlikelyinviewofthehistoricalseismicity loadingcorrespondsto40barsofstressincreasealongthelocked (Ambraseys&Jackson2000),thecoseismicslipmeasuredalong faultsegmentsatadepthof5km.Theloadingisimposedstarting the Sea of Marmara fault segments (1–5 m) (Armijo et al. 2005; in1509,atthebeginningofaknownquiescentperiodofthenorth Pondard 2006) and earthquake recurrence times deduced for the Marmararegion(from1509to1719;Ambraseys&Jackson2000). Marmararegion(150–280yr)(Rockwelletal.2001;Klingeretal. LoadingalongtheSNAFissmallcomparedtothatalongtheNNAF 2003).AllotherpossiblescenariosinFig.6implythatthecluster and they do not interfere significantly with each other. Moreover of large earthquakes in the 18th century occurred as a westward changes of static stress due to M ∼ 7 events along the SNAF do propagatingsequencealongthenorthernbranchoftheNAF,across notinfluencethefaultinteractionsalongtheNNAF(Hubert-Ferrari theSeaofMarmara. etal.2000).SofaultinteractionswiththeSNAFarenotincluded Conversely,unlessearthquakescanoccurrandomlywithoutany inourmodels(Fig.4b). relation with loading, a rupture is unlikely to occur along a fault The kinematic effect of a uniform secular loading (due to slip segmentwheretheslipdeficithasjustbeenrelievedbysignificant below12km)istheaccumulationofauniformslipdeficitinthe earthquakeslip.Loadingacrosssuchasegmentwouldbetoolowand lockedregion(above12kmdepth).Thisoccursataratefixedby acertaintimeisrequiredforstresstobuildupagain.Thisappears thedislocationmodelandaCoulombstressfieldcanbecalculated tobethecaseforscenariosc,d,e,fandg(Fig.6).Anearthquake (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS 1190 N.Pondardetal. Depth (km) 4 m of slip deficit 0 a 5 40 bars from loading locking10 10 km depth 4 m of slip 15 + 0 40 bars b from slip 5 4 m of coseismic slip 10 15 = 4 m of slip deficit 4 m of slip deficit no slip deficit 0 Future c event 5 40 bars 80 bars 10 15 0 Future d 5 40 bars event 80 bars 10 15 -100 -50 0 50 100 Coulomb Stress Change (bars) Figure5. Loadingdistributionasaresultofsecularloadingandearthquakeslip.(a)Secularloadingassociatedwith4mofsteadyslipbelow12km.Theslip deficit(4m)isassociatedwith40barsofuniformloadingat5kmdepth.(b)Loadingproducedbyearthquakeslipondiscretefaultsegment(Mw7.1eventwith 4mon35-km-longsegment).Thelateralloadingonadjacentsegmentsislimited(lessthan40barsat5kmdistancefromtherupture).Thesuperpositionof secularandearthquakeloading(a+b)isgivenin(c)and(d).Forthe35-km-longsegmentinc(widedashedrectangleindicatingfutureeventwithM∼7)the loadingproducedbysteadyslipbelowcreatescriticalconditionsthroughoutthesegmentwhilethestressduetoearthquakeslipislimited.Forthe10-km-long segmentind(narrowdashedrectangleforfutureeventwithM ∼6)secularandearthquakeloadingaresimilar.Gridwithdotsandarrowsspecifieszones wheresliphasoccurredornot. occurringalongeitherofthefaultswithsignificantnormalslipin theeffectsofrupturepropagationcannotbeincorporated.Although theCinarcikpull-apartrelievesstressalongtheantitheticsegment. thisisattractiveasaquantitativeapproach,itappearstosufferfrom Thismaydelaythetriggeringofamajorearthquakeinthebasin. drawbacks.Therawhistoricalinformationhasbeenconvertedinto Stressinteractionsbetweencloselyspacedantitheticnormalfaults numericalvalues,whichconcealssubstantialuncertainties.Forex- shouldcauseaneventononefaulttodelayeventsontheother(e.g. ample,aquiescenceofmorethan500yrinthenorthwestSeaof King&Cocco2000).AsshowninFig.6forscenariose,fandg Marmara deduced from the raw historical data is emphasized by animprobableearthquakerupturehasfollowedalargeeventinthe Ambraseys&Jackson(2000).Itisnotclearwhythisisnotfound Cinarcikbasinbyonly12yrandby35yrforscenarioscandd.It bythenumericalprocedureofParsons(2004)usingthesamedata isunlikelyfortwoM ≥7.0eventstooccurinthebasinwithina set.Observationsofthesubmarinemorphology(Armijoetal.2005) periodofaboutacentury.Interactionsacrossthebasinmayexplain showclearlythatthemostspectacularscarps(correspondingtothe alsowhy140yrofloadinghavebeennecessarytotriggeranother 1912andprobablyAugust1766events)areinfactfoundinthenorth- earthquakeinCinarcik(1894). westSeaofMarmara.Ontheotherhand,thenumericalprocedure Another scenario has been proposed by Parsons (2004) and is concentratesearthquakesintheeasternSeaofMarmarawherethe showninFig.7.Theextentofruptureforeacheventisbasedona historicalinformationisrichest.InthescenarioofParsons(2004) numericalprocedureusingattenuationlawsandhistoricalinforma- fourrupturesoverlapintheCinarcikBasin(1719,1754,May1766 tion.Someeffectsoflocallyincreasedshakingareconsidered,but and1894)justsouthofIstanbul(Fig.7)andnoruptureisidentified (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS FaultinteractionsintheSeaofMarmarapull-apart(NorthAnatolianFault) 1191 Figure6. PossiblescenariosforM≥7.0earthquakerupturesintheSeaofMarmara,between1719and1894.Eachscenarioisconsistentwithreporteddamage (seeAppendixA)(e.g.Ambraseys&Finkel1991,1995)andobservations(Armijoetal.2005).(a)Scenarioimplyingapropagatingearthquakesequence rupturingthemainfaultstrandentirely.TheearthquaketimerecurrenceintheCinarcikbasin((cid:2))is140yr.(b)Ascenariosimilartothescenarioa.However the1754andthe1894earthquakerupturesareinverted.Itisalsopossiblethatthe1894earthquakerupturereactivatedthe1754break.(c),(d)Otherscenarios implyingapropagatingearthquakesequence.HoweveranearthquakeoccursintheCinarcikbasinonly35yrafteranotherlargeevent.Scenarioswiththe1894 earthquakeoccurringalongthenorthernbranchofthebasinareequivalent.(e),(f),(g)ForthesescenariosanearthquakeruptureoccursintheCinarcikbasin only12yrafteranotherlargeevent.(h)Theonlyscenarioimplyingacluster.NoearthquakeruptureoccursinthecentreoftheSeaofMarmara.Ifweassociate theearthquakeruptureswithotherfaultsegmentsitispossibletoproposeotherscenariosimplyingearthquakeclustering,howevernoneareconsistentwith tectonicandhistoricaldata. ina30-km-longfaultstretchinthecentralMarmaraSea.According Izmitwithatotallengthof120–180km.(2)The1754September toourapproachtheseresultsappeartobeunlikely. 2eventbreaksabout30–60kmofnormalfaultatoneoftheedges Thus only two scenarios appear consistent with loading condi- oftheCinarcikBasin.(3)Thefaultsegmentslocatedbetweenthe tions,associatedslipdeficitdistributionsandwithCoulombstress CinarcikBasinandtheGulfofSarosbreakduringthe1766May22 interactions across the Cinarcik basin (scenarios a and b; Fig. 6). andthe1766August5events.Itisnotpossibletodistinguishwhich Scenariosaandbhavefeaturesincommon(Fig.8):(1)The1719 ofthetwoearthquakerupturesextendsfromtheTekirdagBasinto May25earthquakeruptureextendstothewesterntipoftheGulfof theCentralBasin.Thebreaksassociatedwiththeseeventsareabout (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS 1192 N.Pondardetal. May 1766 1754 1719 1719 August 1766 1894 Figure7. 18thand19thcenturyM >7earthquakerupturesproposedby Parsons(2004),basedonanumericalprocedureusingattenuationlawsand 1754 historicalinformation. 70and140kmlong,respectively,inscenarioa,or120and50km longinscenariob(Fig.6).(4)The1894July10earthquakebreaks 30–60kmoffaultsegmentatthenorthernorsouthernedgeofthe CinarcikBasin,reactivatingthe1754earthquakebreak,orrupturing theantitheticnormalfault.Fig.9showsdetailsoftheloadingevo- lutionforscenarioa,andFig.10depictstheresultingpresent-day May 1766 loading. COULOMB STRESS EVOLUTION: FAULT INTERACTIONS VERSUS SLIP DEFICITS AND SECULAR LOADING Any possible earthquake scenario consistent with slip deficit and secularloadingdistributions(Fig.6;scenariosatog)impliesasys- tematicwestwardpropagationoffaultruptureduringthe18thcen- turysequence.Therefore,the18thcenturyearthquakesequencehas veryprobablybrokenthesubmarinefaultsystementirely,inspiteof August 1766 geometricandkinematiccomplexitiesassociatedwiththeMarmara pull-apart (Figs 6, 8 and 9). This has important implications for faultinteractions.Besides,onlytwoscenariosareconsistentwith CoulombstressinteractionsacrosstheCinarcikbasin(scenariosa andb).Theyimplythatduringthepropagationonlyoneearthquake rupture(nottwo)hasoccurredintheCinarcikbasin. Itisclearhoweverthatthe1894,1912and1999Augustearth- quakes have not formed any propagating sequence in the Sea of Marmara (Figs 2 and 11a). In particular, the 1894 and the 1912 events appear as isolated breaks that have not been triggered in a region stressed by a large nearby event (Figs 9f and g). How- ever, the 1912 earthquake may be coupled with a smaller Ms 6.9 1894 eventthatoccurredintheGulfofSarosin1893(seeAppendixB) (Ambraseys & Finkel 1991; Ambraseys & Jackson 2000; Ambraseys2002).Togetherthesetwoearthquakesmaybeseenasa singlelargeevent.Thustheoccurrenceofthe1894eventandofthe possiblycoupled1893–1912eventssuggeststhatstresshasreached failurecriteriamostlybecauseofseculartectonicloadingalone.So the1894and1912(plus1893?)eventsmayberegardedasexamples oflargeisolatedearthquakesalongtheNAF. Figure8. Themostplausiblelocationofearthquakerupturesbetween1719 Thepresent-dayloadingintheMarmararegiondeducedfromour and1894,consistentwithmorphologicobservations(Armijoetal.2005), preferredscenario(Fig.10a)showsthatCoulombstressishigh(>40 historicaldata(e.g.Ambraseys&Finkel1991,1995)anddistributionofslip bars,red)intwolargeisolatedregions.OnespreadsovertheGulfof deficitatanyelapsedtime.ThiscorrespondstoscenariosaandbinFig.6, whichonlydifferinthepreciselocationofthe1754and1894eventsinthe Saros,theothercoversthemostlystrike-slipsegmentatthecentre Cinarcikbasin. oftheSeaofMarmara.AsidefromSarosandcentralMarmara,the other segments in the Marmara region appear unloaded (white), while minor loaded zones, positive (red) and negative (blue), are (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS FaultinteractionsintheSeaofMarmarapull-apart(NorthAnatolianFault) 1193 Figure9. DistributionofslipdeficitintheSeaofMarmarabetween1719and1999.ThemodelcorrespondstothescenariopresentedintheFig.6(a). seenatfaultcomplexitiesbetweensegments.Thisoverallresultis Fig.10(b)incorporatesthecorrespondingCoulombstressrelease consistentwithearlierCoulombstresscalculationsthatweremade of all earthquakes in the Gulf of Saros. It shows that the central for the same rate of tectonic loading while superposed with only Marmarasegmentisthemostprobablesiteofruptureforthenext threerecentlargeevents(1894,1912and1999),thuswithoutcon- largeearthquakeonthenorthernbranchoftheNAF,nexttoIstanbul. sideringthe18thcenturysequence(Armijoetal.2005).Sothe18th Itwouldoccurasanisolatedevent(notinsequence),howeverasa centurysequencedoesnotappeartoinfluencemuchtheoccurrence likelyeffectofthelarge-scale20thcenturypropagatingsequence. oflaterevents,suggestingthatthetectonicloadingwasmostlyre- Itseemsthatpropagatingearthquakesequencesdonotoccurev- lievedafterruptureofthesequence. eryseismiccyclealongafaultsystem.Specialconditionsofloading The stress along the fault segment north of the Cinarcik basin arenecessarytotriggerthem.Theloadinghastoberelativelyuni- appears reduced. This relief is an effect of the 1894 earthquake form and close to failure to trigger earthquake clustering along a (Ms∼7.3),whichoccurredonacloselyspacednormalfault.Mostof faultzone.Propagatingearthquakesequencesformoneparticular thepreviousstudiesconcludedtheoppositebecausetheyconsidered categoryofearthquakeclustering.Suchpropagatingsequencemay thestresstransferassociatedwiththe1999Izmitearthquakeonly occur when the state of loading is so uniform that the variations (Parsons 2004), or they associated the 1894 earthquake with an ofstaticstressinducedbyanearthquake(∼1–10barsatdistances onshorefaultsegment(Hubert-Ferrarietal.2000),inconsistentwith ofsometensofkilometresfromtheruptureedge,seeFig.5)are therecentmorphologicobservations(Armijoetal.2005). sufficienttosuccessivelytriggerevents. The seismicity in the Gulf of Saros during the 20th and 19th Eventsateachsideofaslip-deficitgaparegenerallyassociated centuriesincludeseventsofmoderatemagnitudeandforprevious with the loading in the gap. However for long fault stretches the centurieseventsmuchlessconstrainedbyobservationsthaninthe influenceofeventsonitssidesislessimportantthansecularload- Sea of Marmara region. However five significant earthquakes are ing produced by the steady slip below the segment (Fig. 5). It is likelytohaverupturedfaultsegmentsintheGulfofSaros,in1623, because the extent of stress due to a dislocation surface depends 1659,1859,1893(seeAppendixB)and1975(Taymazetal.1991). mainlyonitsshortestdimension.Faultshaveadowndipwidththat TheMs7.2eventin1659appearsthelargest(Ambraseys2002). isrelatedtothethicknessoftheseismogeniccrust(∼12kminthis (cid:4)C 2007TheAuthors,GJI,171,1185–1197 Journalcompilation(cid:4)C 2007RAS

Description:
along the North Anatolian Fault (NAF) and the Sea of Marmara pull-apart. The overall NAF–. Marmara fault system is one of the most appropriate on
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.